
12/4/2023

1

STRING IN C

Sumit Srivastav @ BIT Mesra

Dr. Sumit Srivastava

Dept. of CSE, BIT Mesra Ranchi

Email:- sumit@bitmesra.ac.in

String

2Sumit Srivastav @ BIT Mesra

 A String is collection of characters in a linear sequence.

 A String is a sequence of characters terminated with a null

character ‘\0’.

 Strings are used for storing text/characters.

 The String is stored as an array of characters.

 (The difference between a character array and a C string is
that the string is terminated with a unique character ‘\0’.)

String

3Sumit Srivastav @ BIT Mesra

 C Strings are single dimensional array of characters ending

with a null character(‘\0’).

 Null character marks the end of the string.

 Strings constants are enclosed by double quotes and

character are enclosed by single quotes.

 For Example

 String constant : “BITMesraRanchi"

 Character constant: ‘B'

String

4Sumit Srivastav @ BIT Mesra

 If the size of a C string is N, it means this string contains

N-1 characters from index 0 to N-2 and last character at

index N-1 is a null character.

 Each character of string is stored in consecutive memory

location and occupy 1 byte of memory.

1 2

3 4

12/4/2023

2

String

5Sumit Srivastav @ BIT Mesra

For example:

char c[] = "c string";

 When the compiler encounters a sequence of characters enclosed

in the double quotation marks, it appends a null character \0 at

the end by default.

Declaration of Strings

Syntax of String Declaration

char str_name[size];

Here,

 str_name is the string variable's name

 The size is the maximum number of characters

the string can hold, excluding the null character.

Example of String Declaration

Here, we have declared a string of 5 characters.

char c[] = "abcd";

char c[50] = "abcd";

char c[] = {'a', 'b', 'c', 'd', '\0'};

char c[5] = {'a', 'b', 'c', 'd', '\0'}

Example of String Declaration
// C Program to illustrate the String declaration

#include <stdio.h>

int main() {

char message[31]; // declaring the string variable

printf("Enter a message (up to 30 characters): ");

scanf("%30s", message); // reading input from the user and storing it in the string

printf("The message you entered is: %s\n", message); // printing the string

return 0;
}

5 6

7 8

12/4/2023

3

Initialization of String

 There are 4 ways in which we can initialize string in C

language. These are by-.

1. Assigning a string literal with size

2. Assigning a string literal without size

3. Assigning character by character with size

4. Assigning character by character without size

Assigning String Literal With Size

It allows for the direct assignment of array size and value at

once.

 Syntax:

char string name[Size] = “String_Literal”;

Here.
• The string name is the name of the string variable.
• The size is the maximum number of characters in the string (basically, it

is the space that will be allocated to the array).
• The “string_Literal” is the string that you are going to assign.

Example

// C Program to illustrate the Assigning String Literal With Size

#include<stdio.h> //Header File

int main() //Main Method

{

char Name[7] = “Mesra"; //Assign A String With Size

printf("Name : %s", Name); //Print Statement

return 0;

}

Example

Output:
Name: Mesra

Explanation:

In the example-

•We initialized the character Array named ‘Name’ by assigning it with ‘Programming'.

•This will occupy 6 characters + 1 Null Character ('/0'), which indicates the ending of

the string.

•If you don't provide the space for a Null character, then the compiler will automatically

add a Null character at the end.

•Also, if the size we provide is lower than the actual character count, then the result will

be up to the defined size only.

9 10

11 12

12/4/2023

4

Example

// C Program to illustrate the Assigning String Literal With Size

#include<stdio.h> //Header File

int main() //Main Method

{

char Name[4] = “Mesra"; //Assign A String With Size

printf("Name : %s", Name); //Print Statement

return 0;

}

Assigning A String Literal Without Size

 A string variable may be initialized by assigning a literal string

to it without specifying the array's size.

 The compiler automatically allocates the null terminator and

sufficient memory.

Syntax:

char stringName[] = "string literal“;

Example

// C Program to illustrate the Assigning String Literal Without Size

#include <stdio.h>

int main()

{

char myString[] = "Hello BIT!"; // Assigning a string literal without size

printf("%s",myString);

return 0;

}

Assigning Character By Character With Size

 We can initialize a string by assigning it characters

individually and specifying the maximum size of the string as

an array size.

 Syntax:

char array_name[static size] = {'C', 'H',' A', 'R', '\0'}

13 14

15 16

12/4/2023

5

Example

// C Program to illustrate the Assigning Character By Character With Size

#include<stdio.h>
int main()
{

char arr[5] = {'c', 'h', 'a', 'r','\0' }; //Assigning character by character
with size and null-terminator ('\0') at
the end of the string is compulsory.

printf("%s",arr);// Output char

return 0;
}

Assigning Character By Character Without Size

 we can also initialize a string in C by assigning it characters

individually without specifying the size of the array.

 The compiler will automatically allocate enough memory to

store the string, including the null terminator.

 Syntax:

char str[] = {'s', 't', 'r', 'i', 'n', 'g',}

Example
// C Program to illustrate the Assigning Character By Character Without Size

#include <stdio.h>
int main()

{

char str[]={'H', 'e', 'l', 'l', 'o'}; // We made an array type character
variable named 'str' to store characters
one by one in it, without size specification.

printf("%s",str);

return 0;

}

Access Strings

 We can access a string by referring to its index number

inside square brackets [].

 Example:

#include <stdio.h>
int main()
{

char greetings[] = "Hello World!";
printf("%c", greetings[0]);

return 0;
}

17 18

19 20

12/4/2023

6

Modify Strings

 To change the value of a specific character in a string, refer

to the index number, and use single quotes:

 Example:

#include <stdio.h>
int main()
{

char greetings[] = "Hello World!";
greetings[0] = 'J';
printf("%s", greetings);
return 0;

}

Loop Through a String

 You can also loop through the characters of a string, using a

for loop:

 Example:
#include <stdio.h>
int main()
{

char carName[] = "Volvo";
int i;
for (i = 0; i < 5; ++i)

{
printf("%c\n", carName[i]);

}
return 0;

}

Read String from the user

 To read a string use the scanf() function

 The scanf() function reads the sequence of characters until it

encounters whitespace (space, newline, tab, etc.).

Example
 scanf() to read a string

#include <stdio.h>
int main()
{

char name[20];
printf("Enter name: ");
scanf("%s", name);
printf("Your name is %s.", name);
return 0;

}
 Output:

Enter name: BIT Mesra
Your name is BIT.

21 22

23 24

12/4/2023

7

Strings –
Special Characters

Strings - Special Characters

 Because strings must be written within quotes, C will

misunderstand this string, and generate an error.

 The solution to avoid this problem, is to use the backslash

escape character.

 The backslash (\) escape character turns special characters

into string characters:

char txt[] = "We are the so-called “students“
of the BIT Mesra.";

Strings - Special Characters

DescriptionResultEscape character

Single quote'\'

Double quote"\"

Backslash\\\

ResultEscape Character

New Line\n

Tab\t

Null\0

Strings - Special Characters

The sequence \" inserts a double quote in a string:

Output: We are the so-called “students" of the BIT Mesra.

#include <stdio.h>
int main()
{

char txt[] = "We are the so-called \“students\" of the BIT Mesra.";
printf("%s", txt);

return 0;
}

25 26

27 28

12/4/2023

8

Strings - Special Characters

The sequence \' inserts a single quote in a string:

Output: It's alright.

#include <stdio.h>
int main()
{

char txt[] = "It\'s alright.";
printf("%s", txt);

return 0;
}

Strings - Special Characters

The sequence \\ inserts a single backslash in a string:

Output: The character \ is called backslash.

#include <stdio.h>
int main()
{

char txt[] = "The character \\ is called backslash.";
printf("%s", txt);

return 0;
}

Strings - Special Characters

Output: Hello
World!

#include <stdio.h>
int main()
{

char txt[] = "Hello\tWorld!";
printf("%s", txt);

return 0;
}

#include <stdio.h>
int main()
{

char txt[] = "Hello\nWorld!";
printf("%s", txt);

return 0;
}

Output: Hello World!

Strings - Special Characters

#include <stdio.h>
int main()
{

char txt[] = {'H', 'e', 'l', 'l', 'o', '\0'};
printf("%s", txt);

return 0;
}

Output: Hello

29 30

31 32

12/4/2023

9

String Functions

String Functions

 C also has many useful string functions, which can be used

to perform certain operations on strings.

 To use them, you must include the <string.h> header file in

your program:

#include <string.h>

String Length

 To get the length of a string, you can use the strlen() function.

 Example:

 Output: 26

#include <stdio.h>
#include <string.h>
int main()
{
char alphabet[] = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";
printf("%d", strlen(alphabet));
return 0;

}

String Length

 To get the length of a string, you can use the strlen() function.

 Example:

 Output: Length is: 26

Size is: 27

#include <stdio.h>
#include <string.h>
int main()
{
char alphabet[] = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";
printf("Length is: %d\n", strlen(alphabet));
printf("Size is: %d\n", sizeof(alphabet));
return 0;

}

33 34

35 36

12/4/2023

10

String Length

 Example:

 Output: Length is: 26

Size is: 50

#include <stdio.h>
#include <string.h>
int main()
{

char alphabet[50] = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";
printf("Length is: %d\n", strlen(alphabet));
printf("Size is: %d\n", sizeof(alphabet));

return 0;
}

Strings - Special Characters

 We used sizeof to get the size of a string/array.

 The sizeof and strlen behaves differently, as sizeof also

includes the \0 character when counting.

 sizeof will always return the memory size (in bytes), and not

the actual string length.

Concatenate Strings
To concatenate (combine) two strings, you can use the strcat() function.

#include <stdio.h>
#include <string.h>

int main() {
char str1[20] = "Hello ";
char str2[] = "World!";

// Concatenate str2 to str1 (the result is stored in str1)
strcat(str1, str2);

// Print str1
printf("%s", str1);
return 0;

}

Output: Hello World

Copy Strings
To copy the value of one string to another, you can use the strcpy()
function.

#include <stdio.h>
#include <string.h>
int main()
{
char str1[20] = "Hello World!";
char str2[20];

// Copy str1 to str2
strcpy(str2, str1);

// Print str2
printf("%s", str2);

return 0;
} Output: Hello World

37 38

39 40

12/4/2023

11

Compare Strings

To compare two strings, you can use the strcmp() function.

It returns 0 if the two strings are equal, otherwise a value that is not 0.

char str1[] = "Hello";
char str2[] = "Hello";
char str3[] = "Hi";

// Compare str1 and str2, and print the result
printf("%d\n", strcmp(str1, str2)); // Returns 0 (the strings are equal)

// Compare str1 and str3, and print the result
printf("%d\n", strcmp(str1, str3)); // Returns -4 (the strings are not equal)

Output: 0
-4

String Input Output in C

Standard library functions for reading strings

 gets() : Reads a line from stdin and stores it into given

character array.

 scanf() : Reads formatted data from stdin.

 getchar() : Returns a character from stdin stream.

 fscanf() : Read formatted data from given stream.

String Input Output in C

Standard library functions for printing strings

 puts() : Writes a string to stdout stream excluding null

terminating character.

 printf() : Print formatted data to stdout.

 putchar() : Writes a character to stdout stream.

 fprintf() : Writes formatted output to a stream.

41 42

43

