

Type of Operator	Sample Operator Expression	Description/Explanation
Prefix Increment Operator	++p	p increases by a value of 1, then the program uses the value of p.
Postfix Increment Operator	p++	The program uses the current value of p and increases the valu of p by 1.
Prefix Decrement Operator	-p	p decreases by a value of 1 then the program uses the value
Postfix Decrement Operator	p-	The program uses the current value of p and decreases the value of p 1

15

17

Pre-Increment & Post-increment

pre-increment

- In the case of pre-increment, the value of the variable is increased by one before the expression evaluation.
- It means in pre-increment, first the value of the variable is incremented by one, then the modified value is used in the expression evaluation.

post-increment

- In the case of post-increment, the value of the variable is increased by one after the expression evaluation.
- It means, in post-increment, first the expression is evaluated with existing value, then the value of the variable is incremented by one.

Post-fix notation & Pre-fix notation

16

14

Post-fix notation

variable = expression

CS101 PPS @Sumit

Greater than or equal to

Less than or equal to

 $5 \ge 3$ is evaluated to 1

 $5 \le 3$ is evaluated to 0

Statement with simple	Statement with shorthand
assignment operator	operator
a =a + 100	a += 100
a = a - 20	a -= 20
a = a * (n+1)	a *= (n+1)
a = a / (n+1)	a /= (n+1)
a = a % b	a %= b
CS:	101 PPS @Sumit

28	Ass रा	nment Operator	
	O ₁ ator	Meaning	Example
	-	Assign the right-hand side value to left-hand side variable	A = 15
	+=	Add both left and right-hand side values and store the result into left-hand side variable	$A \stackrel{+=}{=} 10$ $\Rightarrow A \stackrel{=}{=} A \stackrel{+}{=} 10$
	-=	Subtract right-hand side value from left-hand side variable value and store the result into left-hand side variable	$\begin{array}{l} A \mathrel{-=} B \\ \Rightarrow A \mathrel{=} A \mathrel{-} B \end{array}$
	*=	Multiply right-hand side value with left-hand side variable value and store the result into left-hand side variable	A *= B $\Rightarrow A = A*B$
	/=	Divide left-hand side variable value with right-hand side variable value and store the result into the left-hand side variable	$A \models B$ $\Rightarrow A = A/B$
	%=	Divide left-hand side variable value with right-hand side variable value and store the remainder into the left-hand side variable	$\begin{array}{c} A \% = B \\ \Rightarrow A = A \% B \end{array}$

Both expressions are false. so,

CS101 PPS @Sumit

Logical Operators || (Logical OR) operator 31 • If one of the operands or expressions is true, it will return 1. Logical Expression • An expression whose value is a boolean type (true (1) or false (0)). • If all of them are false, it will return 0. A в A || B Example Logical operators are used when we want to compare more than one $(5 > 10) \parallel (5 < 4)$ 0 relation at a time. logical OR output will be 0 $(10 > 20) \parallel (10 < 20)$ First expression is false and second one is true. so, logical OR output will be 1 There are three logical operators 1. || (Logical OR) operator $(10 < 20) \parallel (10 > 100)$ First expression is true and second one is false. so, logical OP $_{\odot}$, ut will be 1 2. && (Logical AND) operator 3. ! (Logical NOT) operator $(10 < 20) \parallel (10 < 100)$ Poth exp ic ns are true, so, logical OR outp will b 1 1 CS101 PPS @Sumit 32 31

&& (Logical AND) Operator					
 If both left and right operands or expressions are true, it will return true. Otherwise, it will return false. Note, non-zero value operands are considered as true. 					
A	В	A & & B	Example		
0	0	0	(5 > 10) && (5 < 4) Both expressions are false. so, logical AND output will be 0		
0	1	0	(10>20) && $(10<20)$ $$ First expression is false and second on $$ is true. so, logical AND output will be 0 $$		
1	0	0	(10 < 20) && $(10 > 100)$ First expression is true and second one is false. so, logical AND output will be 0		
1	1	1	(10 < 20) && (10 < 100) Both expressions are tr so, logical AND output will be I		

Say,	if current	a state is true, Logical NOT (!) operator will make it false
A	!A	Example
0	1	!(100 < 10) 100 is greater than 10. So, it will return false. $!(false) \implies$ true
1	0	!(10 < 100) 10 is less than 100. So, it will return true. !(true) ==> false
		:(uuc)> laise

Bitwise Operators								
■ B	 Bitwise operators performs operations on bits. 							
 B 	Bitwise operators may not be applied to float or double.							
 A 	ND (ð	&), OR (), XOR (^), NOT	`(~).			
• 1	Truth Table:-							
	А	В	A&B	A B	A^B	~A		
	0	0	0	0	0	1		
	0	1	0	1	1	1		
	1	0	0	1	1	0		
	1	1	1	1	0	0		

10	Bit. ise Operato	ors					
40							
	Operator	Also known as					
	~	Binary Left Shift Operator					
	>>	Binary Right Shift Operator					
	~	Binary Ones Complement Operator					
	&	Binary AND Operator					
	^	Binary XOR Operator					
	I	Binary OR Operator					
		CS101 PPS @Sumit					

