
LOOPS IN C

Unit -II CS101 PPS @Sumit

1

by

Dr. Sumit Srivastava
Dept. of Computer Science & Engineering

Loops in C Programming

▪ A loop statement allows us to execute a statement or group of

statements multiple times.

▪ It repeats some portion of the program either a specified number of

times or until a particular condition is being satisfied.

▪ Types of Iterative/Looping statements:

❖ for loop

❖ while loop

❖ do-while-loop

CS101 PPS @Sumit

2

Loops in C Programming

CS101 PPS @Sumit

3

For loop in C

 A for loop is a repetition control structure that allows you

to efficiently write a loop that needs to execute a specific

number of times.

 Syntax:

CS101 PPS @Sumit

4

for (initialization; condition; updation)

 {

 body;

 }

For loop
5

For loop

 expression1 is an initialization, expression2 is the conditional

expression and expression3 is an updation.

 In the for loop, expression1 is used to initialize the variable,

expression2 is evaluated and if the condition is true, then the body

of for loop will be executed and then the statements under

expression3 will be executed.

 This process is repeated as long as the for loop condition is true,

once the condition is false control will return to the statements

following the for loop and execute those statements.

CS101 PPS @Sumit

6

Example:

WAP to print hello 5 times
using for loop.

Output

7

CS101 PPS @Sumit

#include< stdio.h >

int main()

{

 int i;

 for(i=1; i<=5; i++)

 {

 printf("%d. Hello!!\n",i);

 }

 return 0;

}

1. Hello

2. Hello

3. Hello

4. Hello

5. Hello

While loop in C

 Similar to for Loop, while statement creates a loop that repeats until

the test expression becomes false.

 A while loop is also known as an entry loop because in a while loop

the condition is tested first then the statements underbody of the

while loop will be executed.

 If the while loop condition is false for the first time itself then the

statements under the while loop will not be executed even once.

8

While loop in C

Syntax Flow Diagram

9

CS101 PPS @Sumit

initialization;

 while(condition)

 {

 body;

 updation;

 }

10

Syntax Flow Diagram

While loop in C: Example

1. Hello

2. Hello

3. Hello

4. Hello

5. Hello

WAP to print hello 5 times
using while.

Output

11

CS101 PPS @Sumit

#include <stdio.h >

 int main ()

 {

 int i=1;

 while(i<=5)

 {

 printf("%d. Hello!!\n",i); i++;

 }

 return 0;

 }

do... while loop

 Like while loop, do-while is also an iterative statement, but it tests

the condition at the end of the loop body.

 The do-while is also known as an exit loop because in the do-while

loop, the statements will be executed first and then the condition is

checked.

 If the condition of the while loop is true then the body of the loop

will be executed again and again until the condition is false. Once

the condition is false, the control will transfer outside the do-while

loop and execute statements followed soon after the do-while loop.

12

do... while loop

Syntax Flow Diagram

13

initialization;

 do

 {

 body;

 updation;

 }

 while(condition);

do... while loop

Syntax Flow Diagram

14

do... while loop (Example)

1. Hello

2. Hello

3. Hello

4. Hello

5. Hello

WAP to print hello 5 times
using do while.

Output

15

CS101 PPS @Sumit

#include < stdio.h >

 int main()

 {

 int i=1;

 do

 {

 printf("%d. Hello!!\n",i);

 i++;

 }

 while(i<=5);

 return 0;

 }

nested loops in C

 C programming allows to use one loop inside another loop.

 loop nesting is that you can put any type of loop inside any

other type of loop. For example, a 'for' loop can be inside a

'while' loop or vice versa.

CS101 PPS @Sumit

16

nested for loop in C

 The syntax for a nested for loop statement in C is as follows −

CS101 PPS @Sumit

17

for (init; condition; increment){

 for (init; condition; increment) {

 statement(s);

 }

 statement(s);

 }

nested while loop

 The syntax for a nested while loop statement is as follows −

CS101 PPS @Sumit

18

while(condition) {

 while(condition) {

 statement(s);

 }

 statement(s);

}

nested do...while loop

 The syntax for a nested do...while loop statement is as follows −

CS101 PPS @Sumit

19

do {

 statement(s);

 do {

 statement(s);

 }while(condition);

}while(condition)

Loop Control Statements20

CS101 PPS @Sumit

Loop Control Statements

▪ Loop control statements change execution from its normal sequence.

When execution leaves a scope, all automatic objects that were created

in that scope are destroyed.

▪ C supports the following control statements.

1. break statement: Terminates the loop or switch statement and transfers

execution to the statement immediately following the loop or switch.

2. continue statement: Causes the loop to skip the remainder of its body

and immediately retest its condition prior to reiterating.

3. goto statement: Transfers control to the labeled statement.

CS101 PPS @Sumit

21

https://www.tutorialspoint.com/cprogramming/c_break_statement.htm
https://www.tutorialspoint.com/cprogramming/c_continue_statement.htm
https://www.tutorialspoint.com/cprogramming/c_goto_statement.htm

Break Statment

▪ Break :

The break statement in C has the following two usage:

1. in loops

2. in switch – case

➢ The break statement stops the current iteration of loop and exit

(When a break statement is encountered inside a loop, the loop is

immediately terminated and the program control resumes at the next

statement following the loop).

➢ Break, only terminates the current loop in which it occurs.

➢ It can be used to terminate a case in switch.

CS101 PPS @Sumit

22

Break Statement

Syntax Flow Diagram

23

CS101 PPS @Sumit

break;

➢ If you are using nested loops, the break

statement will stop the execution of the

innermost loop and start executing the

next line of code after the block.

Break: Example

1. Hello

2. Hello

3. Hello

Program Output

24

CS101 PPS @Sumit

#include < stdio.h >

 int main()

 {

 int i;

 for (i=1; i<10; i++)

 {

 if(i==4)

 {

 break;

 }

 printf("%d. Hello",i);

 }

 return 0;

 }

Break: Example

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 15

Output

25

CS101 PPS @Sumit

#include <stdio.h>

int main () {

 /* local variable definition */

 int a = 10;

 /* while loop execution */

 while(a < 20) {

 printf("value of a: %d\n", a);

 a++;

 if(a > 15) {

 /* terminate the loop using break statement */

 break;

 }

 }

 return 0;

}

Continue Statement

 The continue statement stops the current iteration of loop and

continue the next iteration.

CS101 PPS @Sumit

26

Continue Statement

 The continue statement stops the current iteration of loop and

continue the next iteration.

 The continue statement in works somewhat like the break statement.

Instead of forcing termination, it forces the next iteration of the loop

to take place, skipping any code in between.

CS101 PPS @Sumit

27

Continue Statement

 For the for loop, continue statement causes the conditional test

and increment portions of the loop to execute.

 For the while and do...while loops, continue statement causes

the program control to pass to the conditional tests.

CS101 PPS @Sumit

28

Continue : Example

Syntax Flow Diagram

29

CS101 PPS @Sumit

continue;

Continue : Example

1. Hello

2. Hello

3. Hello

5. Hello

6. Hello

8. Hello

9. Hello

Program Output

30

CS101 PPS @Sumit

#include < stdio.h >

 int main()

 {

 int i;

 for (i=1; i<10; i++)

 {

 if (i==4 || i==7)

 {

 continue;

 }

 printf("%d. Hello",i);

 }

 return 0;

 }

Continue : Example

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 16

value of a: 17

value of a: 18

value of a: 19

Output

31

CS101 PPS @Sumit

#include <stdio.h>

int main () {

 /* local variable definition */

 int a = 10;

 /* do loop execution */

 do {

 if(a == 15) {

 /* skip the iteration */

 a = a + 1;

 continue;

 }

 printf("value of a: %d\n", a);

 a++;

 }while(a < 20);

 return 0;

 }

goto Statement

▪ A goto statement in C programming provides an unconditional jump

from the 'goto' to a labeled statement in the same function.

▪ NOTE − Use of goto statement is highly discouraged in any

programming language because it makes difficult to trace the control

flow of a program, making the program hard to understand and hard

to modify.

CS101 PPS @Sumit

32

goto Statement

Syntax Flow Diagram

33

CS101 PPS @Sumit

goto label;

 ..

 .

label: statement;

Here label can be any plain text except C

keyword, and it can be set anywhere in the C

program above or below to goto statement.

goto Statement

Syntax Flow Diagram

34

CS101 PPS @Sumit

goto label;

 ..

 .

label: statement;

Here label can be any plain text except C

keyword, and it can be set anywhere in the C

program above or below to goto statement.

goto statement: Example

 Output:

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 16

value of a: 17

value of a: 18

value of a: 19

35

CS101 PPS @Sumit

#include <stdio.h>

int main () {

 /* local variable definition */

 int a = 10;

 /* do loop execution */

 LOOP:do {

 if(a == 15) {

 /* skip the iteration */

 a = a + 1;

 goto LOOP;

 }

 printf("value of a: %d\n", a);

 a++;

 }while(a < 20);

 return 0;

 }

Input / Output in C36

CS101 PPS @Sumit

Input / Output in C

printf: This function is used to display output to the output screen.

The general syntax of this function is as follows.

printf("format string",var_list);

TYPE FORMATTERS:

CS101 PPS @Sumit

37

DATA_TYPE FORMATTER

 int %d %X %x %o %u %p

 float %f

 double %lf %Lf

 char %c

 string %s

Input / Output in C

TYPE FORMATTERS Escape Sequence

38

CS101 PPS @Sumit

DATA_TYPE FORMATTER

 int %d %X %x %o %u %p

 float %f

 double %lf %Lf

 char %c

 string %s

SEQ DETAIL

 \n New Line

 \t Tab

 \b Back Space

 \f Form Feed

 \r Carriage Return

 \a Alarm

 \\ Back Slash

 \" Double Quote

Input / Output in C

scanf: This function allows us to enter data from keyboard that

will be formatted in a certain way.

The general form of scanf () statement is as follows:

 scanf ("format string",var_address);

CS101 PPS @Sumit

39

Input / Output in C

Enter value a: 17

Enter value b: 23

User Input is:

A=17 & B=23

Example OUTPUT

40

CS101 PPS @Sumit

#include < stdio.h >

 int main()

 {

 int a, b;

 printf ("Enter value a: ");

 scanf ("%d", &a);

 printf ("Enter value b: ");

 scanf ("%d", &b);

 printf ("User Input is:\n");

 printf ("A=%d & B=%d", a, b);

 return 0;

 }

Input / Output in C

 getchar: This function allows us to enter character from

keyboard.

 The general form of getchar() statement is as follows:

 char ch = getchar();

CS101 PPS @Sumit

41

Input / Output in C

Enter Any Char: F

Input is: F

Example OUTPUT

42

CS101 PPS @Sumit

#include< stdio.h >

 int main()

{

char choice;

printf("Enter Any Char: ");

choice = getchar();

printf("Input is: %c",choice);

return 0;

}

THANK YOU

CS101 PPS @Sumit

43

	Slide 1: Loops IN c
	Slide 2: Loops in C Programming
	Slide 3: Loops in C Programming
	Slide 4: For loop in C
	Slide 5: For loop
	Slide 6: For loop
	Slide 7: Example:
	Slide 8: While loop in C
	Slide 9: While loop in C
	Slide 10
	Slide 11: While loop in C: Example
	Slide 12: do... while loop
	Slide 13: do... while loop
	Slide 14: do... while loop
	Slide 15: do... while loop (Example)
	Slide 16: nested loops in C
	Slide 17: nested for loop in C
	Slide 18: nested while loop
	Slide 19: nested do...while loop
	Slide 20: Loop Control Statements
	Slide 21: Loop Control Statements
	Slide 22: Break Statment
	Slide 23: Break Statement
	Slide 24: Break: Example
	Slide 25: Break: Example
	Slide 26: Continue Statement
	Slide 27: Continue Statement
	Slide 28: Continue Statement
	Slide 29: Continue : Example
	Slide 30: Continue : Example
	Slide 31: Continue : Example
	Slide 32: goto Statement
	Slide 33: goto Statement
	Slide 34: goto Statement
	Slide 35: goto statement: Example
	Slide 36: Input / Output in C
	Slide 37: Input / Output in C
	Slide 38: Input / Output in C
	Slide 39: Input / Output in C
	Slide 40: Input / Output in C
	Slide 41: Input / Output in C
	Slide 42: Input / Output in C
	Slide 43: THANK YOU

