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Loops in C Programming

▪ A loop statement allows us to execute a statement or group of 

statements multiple times.

▪ It repeats some portion of the program either a specified number of 

times or until a particular condition is being satisfied.

▪ Types of Iterative/Looping statements:

❖ for loop     

❖ while loop     

❖ do-while-loop
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Loops in C Programming
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For loop in C

 A for loop is a repetition control structure that allows you 

to efficiently write a loop that needs to execute a specific 

number of times.

 Syntax:
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for (initialization; condition; updation) 

  {  

        body; 

   } 



For loop 
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For loop 

 expression1 is an initialization, expression2 is the conditional 

expression and expression3 is an updation. 

 In the for loop, expression1 is used to initialize the variable, 

expression2 is evaluated and if the condition is true, then the body 

of for loop will be executed and then the statements under 

expression3 will be executed. 

 This process is repeated as long as the for loop condition is true, 

once the condition is false control will return to the statements 

following the for loop and execute those statements.
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Example:

WAP to print hello 5 times 
using for loop.

Output
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#include< stdio.h > 

int main( )

{ 

 int i; 

 for(i=1; i<=5; i++)

  { 

     printf("%d. Hello!!\n",i); 

  } 

 return 0;

} 

1. Hello

2. Hello

3. Hello

4. Hello

5. Hello



While loop in C

 Similar to for Loop, while statement creates a loop that repeats until 

the test expression becomes false.

 A while loop is also known as an entry loop because in a while loop 

the condition is tested first then the statements underbody of the 

while loop will be executed.

 If the while loop condition is false for the first time itself then the 

statements under the while loop will not be executed even once. 
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While loop in C

Syntax Flow Diagram
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initialization; 

   while(condition) 

     { 

          body; 

          updation;

      } 
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Syntax Flow Diagram



While loop in C: Example

1. Hello

2. Hello

3. Hello

4. Hello

5. Hello

WAP to print hello 5 times 
using while.

Output
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#include <stdio.h >

 int main ( )

 {  

  int i=1; 

  while(i<=5)

     {

       printf("%d. Hello!!\n",i); i++; 

      } 

  return 0; 

 } 



do... while loop

 Like while loop, do-while is also an iterative statement, but it tests 

the condition at the end of the loop body.

 The do-while is also known as an exit loop because in the do-while 

loop, the statements will be executed first and then the condition is 

checked. 

 If the condition of the while loop is true then the body of the loop 

will be executed again and again until the condition is false. Once 

the condition is false, the control will transfer outside the do-while 

loop and execute statements followed soon after the do-while loop.
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do... while loop

Syntax Flow Diagram
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initialization; 

   do 

     { 

            body; 

            updation; 

      }

    while(condition); 

 



do... while loop

Syntax Flow Diagram
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do... while loop (Example)

1. Hello

2. Hello

3. Hello

4. Hello

5. Hello

WAP to print hello 5 times 
using do while.

Output
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#include < stdio.h > 

   int main( ) 

  { 

   int i=1; 

   do

     { 

       printf("%d. Hello!!\n",i); 

       i++;

     }

   while(i<=5);

    return 0; 

   } 



nested loops in C

 C programming allows to use one loop inside another loop. 

 loop nesting is that you can put any type of loop inside any 

other type of loop. For example, a 'for' loop can be inside a 

'while' loop or vice versa.
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nested for loop in C

 The syntax for a nested for loop statement in C is as follows −
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for ( init; condition; increment ){ 

     for ( init; condition; increment ) { 

           statement(s); 

      } 

     statement(s);

 } 



nested while loop

 The syntax for a nested while loop statement is as follows −
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while(condition) {

   while(condition) {

      statement(s);

   }

   statement(s);

}



nested do...while loop

 The syntax for a nested do...while loop statement is as follows −
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do {

   statement(s);

   do {

      statement(s);

   }while( condition );

}while( condition )



Loop Control Statements20
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Loop Control Statements

▪ Loop control statements change execution from its normal sequence. 

When execution leaves a scope, all automatic objects that were created 

in that scope are destroyed.

▪ C supports the following control statements.

1. break statement: Terminates the loop or switch statement and transfers 

execution to the statement immediately following the loop or switch.

2. continue statement: Causes the loop to skip the remainder of its body 

and immediately retest its condition prior to reiterating.

3. goto statement: Transfers control to the labeled statement.
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https://www.tutorialspoint.com/cprogramming/c_break_statement.htm
https://www.tutorialspoint.com/cprogramming/c_continue_statement.htm
https://www.tutorialspoint.com/cprogramming/c_goto_statement.htm


Break Statment

▪ Break :

The break statement in C has the following two usage:

1. in loops

2. in switch – case

➢ The break statement stops the current iteration of loop and exit 

(When a break statement is encountered inside a loop, the loop is 

immediately terminated and the program control resumes at the next 

statement following the loop).

➢ Break, only terminates the current loop in which it occurs.

➢ It can be used to terminate a case in switch.
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Break Statement

Syntax Flow Diagram
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break;

➢ If you are using nested loops, the break 

statement will stop the execution of the 

innermost loop and start executing the 

next line of code after the block.



Break: Example

1. Hello

2. Hello

3. Hello

Program Output
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#include < stdio.h >

    int main( ) 

   { 

     int i; 

     for (i=1; i<10; i++)

       { 

            if(i==4)

                { 

            break; 

                 } 

            printf("%d. Hello",i);

        }

       return 0; 

     } 



Break: Example

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 15

Output
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#include <stdio.h>

 

int main () {

   /* local variable definition */

   int a = 10;

   /* while loop execution */

   while( a < 20 ) {

   

      printf("value of a: %d\n", a);

      a++;

  

      if( a > 15) {

         /* terminate the loop using break statement */

         break;

      }

   }

 

   return 0;

}



Continue Statement

 The continue statement stops the current iteration of loop and 

continue the next iteration.

CS101 PPS @Sumit

26



Continue Statement

 The continue statement stops the current iteration of loop and 

continue the next iteration.

 The continue statement in works somewhat like the break statement. 

Instead of forcing termination, it forces the next iteration of the loop 

to take place, skipping any code in between.
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Continue Statement

 For the for loop, continue statement causes the conditional test 

and increment portions of the loop to execute. 

 For the while and do...while loops, continue statement causes 

the program control to pass to the conditional tests.
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Continue : Example

Syntax Flow Diagram
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continue;



Continue : Example

1. Hello

2. Hello

3. Hello

5. Hello

6. Hello

8. Hello

9. Hello

Program Output

30
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#include < stdio.h >

     int main( )

    {

     int i; 

      for (i=1; i<10; i++)

          { 

             if (i==4 || i==7)

               {

                  continue; 

                }

              printf("%d. Hello",i);

            }

       return 0;

      } 



Continue : Example

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 16

value of a: 17

value of a: 18

value of a: 19

Output

31
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#include <stdio.h> 

int main () {

       /* local variable definition */ 

      int a = 10; 

      /* do loop execution */ 

       do { 

                if( a == 15) { 

                     /* skip the iteration */

                    a = a + 1; 

                    continue; 

                 }

                printf("value of a: %d\n", a);

                a++;

            }while( a < 20 ); 

            return 0; 

         } 



goto Statement 

▪ A goto statement in C programming provides an unconditional jump 

from the 'goto' to a labeled statement in the same function.

▪ NOTE − Use of goto statement is highly discouraged in any 

programming language because it makes difficult to trace the control 

flow of a program, making the program hard to understand and hard 

to modify. 
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goto Statement 

Syntax Flow Diagram

33

CS101 PPS @Sumit

goto label;

 ..

 . 

label: statement; 

Here label can be any plain text except C 

keyword, and it can be set anywhere in the C 

program above or below to goto statement.



goto Statement 

Syntax Flow Diagram
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goto label;

 ..

 . 

label: statement; 

Here label can be any plain text except C 

keyword, and it can be set anywhere in the C 

program above or below to goto statement.



goto statement: Example

 Output:

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 16

value of a: 17

value of a: 18

value of a: 19

35
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#include <stdio.h> 

int main () {

       /* local variable definition */ 

      int a = 10; 

      /* do loop execution */ 

       LOOP:do { 

                if( a == 15) { 

                     /* skip the iteration */

                    a = a + 1; 

                    goto LOOP; 

                        }

                printf("value of a: %d\n", a);

                a++;

            }while( a < 20 ); 

            return 0; 

         } 



Input / Output in C36
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Input / Output in C

printf: This function is used to display output to the output screen. 

The general syntax of this function is as follows.

printf("format string",var_list);

TYPE FORMATTERS:
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DATA_TYPE                    FORMATTER 

----------------------------------------------------- 

 int                              %d %X %x %o %u %p 

 float                           %f 

 double                       %lf %Lf 

 char                            %c 

 string                          %s 



Input / Output in C

TYPE FORMATTERS Escape Sequence
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DATA_TYPE      FORMATTER 

---------------------------------------

 int                %d %X %x %o %u %p 

 float              %f 

 double           %lf %Lf 

 char               %c 

 string            %s 

SEQ                      DETAIL

 ------------------------

  \n                   New Line

  \t                    Tab

  \b                   Back Space

  \f                   Form Feed 

  \r                   Carriage Return 

  \a                  Alarm 

  \\                  Back Slash 

   \"                Double Quote 



Input / Output in C

scanf: This function allows us to enter data from keyboard that 

will be formatted in a certain way. 

The general form of scanf ( ) statement is as follows:

                        scanf ("format string",var_address);
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Input / Output in C

Enter value a: 17

Enter value b: 23

User Input is:

A=17 & B=23

Example OUTPUT

40
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#include < stdio.h > 

    int main( ) 

   { 

    int a, b;

    printf ("Enter value a: ");

    scanf ("%d", &a); 

    printf ("Enter value b: ");

    scanf ("%d", &b); 

    printf ("User Input is:\n"); 

    printf ("A=%d & B=%d", a, b); 

    return 0; 

   } 



Input / Output in C

 getchar: This function allows us to enter character from 

keyboard. 

 The general form of getchar( ) statement is as follows:

                              char ch = getchar( );

CS101 PPS @Sumit

41



Input / Output in C

Enter Any Char: F

Input is: F

Example OUTPUT
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#include< stdio.h >

 int main( ) 

{ 

char choice; 

printf("Enter Any Char: "); 

choice = getchar();

printf("Input is: %c",choice); 

return 0; 

} 



THANK      YOU
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