LOOPS IN C

by
Dr. Sumit Srivastava
Dept. of Computer Science & Engineering

I Unit -11 CS101 PPS @Sumit

Loops in C Programming

2]
= A loop statement allows us to execute a statement or group of
statements multiple times.

= |t repeats some portion of the program either a specified number of
times or until a particular condition is being satisfied.

= Types of Iterative/Looping statements:
«» for loop
“» while loop

+» do-while-loop

CS101 PPS @Sumit

Loops in C Programming
_ 3|

‘ j
[conditional r;ud;I

If condition
15 true

If condition
is falsa
prowessapps.in

CS101 PPS @Sumit

For loop in C
S
o A for loop is a repetition control structure that allows you

to efficiently write a loop that needs to execute a specific

number of times.

O Syntax:

for (initialization; condition; updation)

{
body;

CS101 PPS @Sumit

For loop
s !

T

Initialization

True
Condition -] Loop's Body

F alse

For loop
e !

o expressionl is an initialization, expression2 is the conditional

expression and expression3 is an updation.

o In the for loop, expressionl is used to initialize the variable,
expression2 is evaluated and if the condition is true, then the body
of for loop will be executed and then the statements under

expression3 will be executed.

o This process is repeated as long as the for loop condition is true,
once the condition is false control will return to the statements

following the for loop and execute those statements.

CS101 PPS @Sumit

Example:
2

using for loop.

1. Hello

#include< stdio.h > :2% :e::o
I I . Aello
Int main() 4. Hello
{.) 5. Hello
Int i1;

for(i=1; i<=5; i++)

{

printf("%d. Hello!M\n",i);

}

return O;
}

CS101 PPS @Sumit

While loop in C

s J
o Similar to for Loop, while statement creates a loop that repeats until

the test expression becomes false.

o A while loop is also known as an entry loop because in a while loop
the condition is tested first then the statements underbody of the

while loop will be executed.

o If the while loop condition is false for the first time itself then the

statements under the while loop will not be executed even once.

While loop in C

Initialization:
¢
while(condition) } h

{ { conditional code

updation: o

If-::cnr-dtan

} is falsa

prowessapps.in

CS101 PPS @Sumit

While (condition)
I

Statement 1;
Statement 2;

]

false

—————m————— true

skatement n;
} body of while loop

exit

While loop in C: Example
S

WAP to print hello 5 times

using while. Output
#include <stdio.h > 1. Hello
Int main () 2. Hello
{int i=1: 3. Hello
while(i<=5) 4. Hello
{ 5. Hello
printf("%d. Hello!M\n",i); 1++;
¥
return O;
¥

CS101 PPS @Sumit

do... while loop
o2 4

o Like while loop, do-while is also an iterative statement, but it tests

the condition at the end of the loop body.

o The do-while is also known as an exit loop because in the do-while
loop, the statements will be executed first and then the condition is

checked.

o If the condition of the while loop is true then the body of the loop
will be executed again and again until the condition is false. Once
the condition is false, the control will transfer outside the do-while

loop and execute statements followed soon after the do-while loop.

do... while loop

Begin

Initialization:
do -

{

body;
updation; Loop True

} condition

while(condition);

prowessa pps.in

do... while loop

A

do body of the loop

{
Statement 1;
Statement 2;

while (conditien);

Statement n;

do... while loop (Example)
JEE I S

using do while.

}) 1. Hell
#include < stdio.h > ello
int main() 2. Hello
{ 3. Hello
inti=1; 4. Hello
do 5. Hello

{

printf(*%d. Hello!"\n",I);
++;

¥
while(i<=5);

return O;
¥

CS101 PPS @Sumit

nested loops in C
o6 4
o C programming allows to use one loop inside another loop.

o loop nesting Is that you can put any type of loop inside any
other type of loop. For example, a 'for' loop can be inside a

‘while' loop or vice versa.

CS101 PPS @Sumit

nested for loop in C
S S

0 The syntax for a nested for loop statement in C 1s as follows —

for (init; condition; increment){

for (init; condition; increment) {
statement(s);

¥

statement(s);

¥

CS101 PPS @Sumit

nested while loop
S S

0 The syntax for a nested while loop statement 1s as follows —

while(condition) {

while(condition) {
statement(s);

}

statement(s);

}

CS101 PPS @Sumit

nested do...while loop
SEC 2 S

o The syntax for a nested do...while loop statement 1s as follows —

do {
statement(s);

do {
statement(s);
}while(condition);

}while(condition)

CS101 PPS @Sumit

CS101 PPS @Sumit

Loop Control Statements
o2y

= Loop control statements change execution from its normal sequence.

When execution leaves a scope, all automatic objects that were created
In that scope are destroyed.

= C supports the following control statements.

1.

break statement: Terminates the loop or switch statement and transfers

execution to the statement immediately following the loop or switch.

continue statement: Causes the loop to skip the remainder of its body

and immediately retest its condition prior to reiterating.

goto statement: Transfers control to the labeled statement.

CS101 PPS @Sumit

https://www.tutorialspoint.com/cprogramming/c_break_statement.htm
https://www.tutorialspoint.com/cprogramming/c_continue_statement.htm
https://www.tutorialspoint.com/cprogramming/c_goto_statement.htm

Break Statment
222 4
= Break :
The break statement in C has the following two usage:
1. in loops
2. In switch — case

» The break statement stops the current iteration of loop and exit

(When a break statement is encountered inside a loop, the loop is
Immediately terminated and the program control resumes at the next
statement following the loop).

> Break, only terminates the current loop in which it occurs.

> It can be used to terminate a case in switch.

CS101 PPS @Sumit

Break Statement

break:

conditional
code

If condition
is true

» If you are using nested loops, the break

condition

statement will stop the execution of the

innermost loop and start executing the If condition

next line of code after the block. Is false

CS101 PPS @Sumit

Break: Example
o2+ 4

#incluc!e < stdio.h > 1. Hello
{lnt main() 2 Hello
inti 3. Hello
for (i=1; i<10; i++)
{
If(i==4)
{
break:
}
printf(*%d. Hello",i);
}
return O;

} CS101 PPS @Sumit

Break: Example
25 !

#include <stdio.h>
Output
int main () {

/* local variable definition */ value of a: 10
=108 value of a; 11
/* while loop execution */ value of a: 12
while(a < 20
(A value of a: 13
printf("value of a: %d\n", a); value of a: 14
a++;
value of a: 15
if(a>15) {
[* terminate the loop using break statement */
break;
}
}
return 0; 1 PPS @Sumit

}

Continue Statement
26 |

o The continue statement stops the current iteration of loop and

continue the next iteration.

CS101 PPS @Sumit

Continue Statement
27

o The continue statement stops the current iteration of loop and

continue the next iteration.

o The continue statement in works somewhat like the break statement.
Instead of forcing termination, it forces the next iteration of the loop

to take place, skipping any code in between.

CS101 PPS @Sumit

Continue Statement
28 |

o For the for loop, continue statement causes the conditional test

and increment portions of the loop to execute.

o For the while and do...while loops, continue statement causes

the program control to pass to the conditional tests.

CS101 PPS @Sumit

Continue : Example
-2 1

continue;

conditional

code

If condition continue
is true

condition

If condition
is false

CS101 PPS @Sumit

Continue : Example
2304

#include < stdio.h > 1 Hello
Ot mai
{m e 2. Hello
e 3. Hello
for (i=1; i<10; i++)
{ 5. Hello
=D 6. Hello
{
continue; 3 Hello
¥
printf("%d. Hello",i); 9. Hello
}
return O;
}

CS101 PPS @Sumit

Continue : Example
JECE N S

#include <stdio.h>
int main () { Output

/* local variable definition */

inta=10: value of a: 10
/* do loop execution */ value of a: 11
do { value of a: 12
if(a==15) { value of a: 13
/[* skip the iteration */
aza+1: value of a;: 14
continue;
) value of a: 16

printf("value of a: %d\n", a); value of a: 17

at+; value of a;: 18
Ywhile(a< 20); value of a: 19
return 0; $101 PPS @Sumit

}

goto Statement
2324

= A goto statement in C programming provides an unconditional jump

from the 'goto’ to a labeled statement in the same function.

= NOTE — Use of goto statement is highly discouraged in any
programming language because it makes difficult to trace the control
flow of a program, making the program hard to understand and hard

to modify.

CS101 PPS @Sumit

goto Statement

goto label;

label 1 statement 1

label 2 statement 2

label: statement;

. label 3 statement 3
Here label can be any plain text except C

keyword, and it can be set anywhere in the C
program above or below to goto statement.

CS101 PPS @Sumit

goto Statement

goto label;

label 1 statement 1

label 2 statement 2

label: statement;

. label 3 statement 3
Here label can be any plain text except C

keyword, and it can be set anywhere in the C
program above or below to goto statement.

CS101 PPS @Sumit

goto statement: Example
23 q

#include <stdio.h>

int main () { 0 Output:
value of a: 10
/* local variable definition */

inta=10: value of a: 11
/* do loop execution */ value of a: 12
LOOP:do { value of a: 13
if(a==15){ value of a: 14

/[* skip the iteration */ i
Ao il value of a: 16
90;? LOOP; value of a: 17
value of a;: 18

rintf("value of a: %d\n", a);

o (behn” 2 value of a: 19

Ywhile(a < 20);
return O; PPS @Sumit

}

I

Input / Output in C

CS101 PPS @Sumit

Input / Output in C
37y

printf: This function is used to display output to the output screen.
The general syntax of this function is as follows.

printf("format string",var_list);

TYPE FORMATTERS:

DATA_TYPE

float
double
char
string

FORMATTER

%d %X %X %0 %u %p
%f
%If %Lf

%cC

%S

CS101 PPS @Sumit

Input / Output in C

TYPE FORMATTERS Escape Sequence

DATA TYPE FORMATTER SEQ

int %d %X %X %0 %u %p W
float 0f \
double %If %L f \o
char %cC \f
string %s \r
\a
\
-

CS101 PPS @Sumit

DETAIL

New Line
Tab
Back Space
Form Feed
Carriage Return
Alarm
Back Slash
Double Quote

Input / Output in C
o3 J

scanf: This function allows us to enter data from keyboard that

will be formatted in a certain way.
The general form of scanf () statement is as follows:

scanf (“format string",var_address);

CS101 PPS @Sumit

Input / Output in C

es

Enter value a: 17

#include < stdio.h > Enter value b: 23

Int main()

1

inta, b; User Input is:
printf ("Enter value a: "); A=17 & B=23

scanf ("%d", &a);

printf ("Enter value b: ");

scanf ("%d", &b);

printf ("User Input is:\n");
printf ("A=%d & B=%d", a, b);
return O;

¥

CS101 PPS @Sumit

Input / Output in C
24y
o getchar: This function allows us to enter character from

keyboard.

o The general form of getchar() statement is as follows:

char ch = getchar();

CS101 PPS @Sumit

Input / Output in C

I S

: : Enter Any Char: F
#include< stdio.h > - d
int main() Input is: F

{

char choice;
printf("Enter Any Char: ");
choice = getchar();
printf("Input is: %c",choice);
return O;

¥

CS101 PPS @Sumit

THANK YOU

CS101 PPS @Sumit

	Slide 1: Loops IN c
	Slide 2: Loops in C Programming
	Slide 3: Loops in C Programming
	Slide 4: For loop in C
	Slide 5: For loop
	Slide 6: For loop
	Slide 7: Example:
	Slide 8: While loop in C
	Slide 9: While loop in C
	Slide 10
	Slide 11: While loop in C: Example
	Slide 12: do... while loop
	Slide 13: do... while loop
	Slide 14: do... while loop
	Slide 15: do... while loop (Example)
	Slide 16: nested loops in C
	Slide 17: nested for loop in C
	Slide 18: nested while loop
	Slide 19: nested do...while loop
	Slide 20: Loop Control Statements
	Slide 21: Loop Control Statements
	Slide 22: Break Statment
	Slide 23: Break Statement
	Slide 24: Break: Example
	Slide 25: Break: Example
	Slide 26: Continue Statement
	Slide 27: Continue Statement
	Slide 28: Continue Statement
	Slide 29: Continue : Example
	Slide 30: Continue : Example
	Slide 31: Continue : Example
	Slide 32: goto Statement
	Slide 33: goto Statement
	Slide 34: goto Statement
	Slide 35: goto statement: Example
	Slide 36: Input / Output in C
	Slide 37: Input / Output in C
	Slide 38: Input / Output in C
	Slide 39: Input / Output in C
	Slide 40: Input / Output in C
	Slide 41: Input / Output in C
	Slide 42: Input / Output in C
	Slide 43: THANK YOU

