
10/6/2023

1

DATA TYPES &
TOKENS

DATA TYPES &
TOKENS

Unit -I CS101 PPS @Sumit

1

by
Dr. Sumit Srivastava

Dept. of Computer Science & Engineering

C: Characteristics

 C takes a middle path between low-level assembly
language….

 Direct access to memory layout through pointer manipulation

 Concise syntax, small set of keywords

 … and a high-level programming language like Java:

 Block structure

 Some encapsulation of code, via functions

 Type checking (pretty weak)

CS101 PPS @Sumit

2

Separate Compilation
3

 A C program consists of source code in one or more files

 Each source file is run through the preprocessor and compiler,
resulting in a file containing object code

 Object files are tied together by the linker to form a single executable
program

Source code
file1.c

Preprocessor/
Compiler

Object code
file1.o

Source code
file2.c

Preprocessor/
Compiler

Object code
file2.o

Linker
Libraries

Executable code
a.out

Separate Compilation

CS 3090: Safety Critical Programming in C

4

 Advantage: Quicker compilation
 When modifying a program, a programmer typically edits

only a few source code files at a time.

 With separate compilation, only the files that have been
edited since the last compilation need to be recompiled
when re-building the program.

 For very large programs, this can save a lot of time.

The Preprocessor
5

 The preprocessor takes your source code and – following certain
directives that you give it – tweaks it in various ways before
compilation.

 A directive is given as a line of source code starting with the #
symbol

 The preprocessor works in a very crude, “word-processor” way,
simply cutting and pasting –
it doesn’t really know anything about C!

Your
source
code

Preprocessor

Enhanced and
obfuscated
source code

Compiler

Object
code

Steps in executing a code

CS101 PPS @Sumit

6

 Write the code (source code)

 Compile the source code

 If errors, then go back to edit and correct and repeat compiling

 If no errors, then compiler has generated the machine code

(object code)

 Run the (object) code and so get the results

1 2

3 4

5 6

Sum
it S

riv
as

tav
a

10/6/2023

2

C Program Phases

CS101 PPS @Sumit

7

 Editor - code by programmer

 Compiling using gcc:
 Preprocess – expand the programmer’s code

 Compiler – create machine code for each file

 Linker – links with libraries and all compiled objects to
make executable

 Running the executable:
 Loader – puts the program in memory to run it

 CPU – runs the program instructions

Typical C Development Environment

CS101 PPS @Sumit

8

Programming Errors in C

CS101 PPS @Sumit

9

Compiler Object code Linker

Library

HLL
program

Executable
code

Compilation Process in C

CS101 PPS @Sumit

10

Compilation Process in C

CS101 PPS @Sumit

11

Preprocessor

• The source code is the code which is written in a text editor and the

source code file is given an extension ".c".

• This source code is first passed to the preprocessor, and then

the preprocessor expands this code.

• After expanding the code, the expanded code is passed to the

compiler.

Compilation Process in C

CS101 PPS @Sumit

12

Compiler

• The code which is expanded by the preprocessor is passed

to the compiler. The compiler converts this code into

assembly code.

• Or we can say that C compiler converts the pre-processed code

into assembly code.

7 8

9 10

11 12

Sum
it S

riv
as

tav
a

10/6/2023

3

Compilation Process in C

CS101 PPS @Sumit

13

Assembler

•The assembly code is converted into object code by using an assembler.

The name of the object file generated by the assembler is the same as

the source file.

•The extension of the object file in DOS is '.obj,' and in UNIX, the

extension is 'o'. If the name of the source file is 'hello.c', then the name

of the object file would be 'hello.obj

Compilation Process in C

CS101 PPS @Sumit

14

Linker

• linker links the object code of our program with the object code of the

library files and other files.

•The output of the linker is the executable file. The name of the

executable file is the same as the source file but differs only in their

extensions.

Compilation Process in C

CS101 PPS @Sumit

15

Example: Hello.c

#include <stdio.h>

int main()

{

printf("Hello BIT");

return 0;

}

Structure of C Program

CS101 PPS @Sumit

16

 C program involves the following sections:

• Documentations (Documentation Section)

• Preprocessor Statements (Link Section)

• Global Declarations (Definition Section)

• The main() function

• Local Declarations

• Program Statements & Expressions

• User Defined Functions

Programming in C

CS101 PPS @Sumit

17

Programming in C

CS101 PPS @Sumit

18

13 14

15 16

17 18

Sum
it S

riv
as

tav
a

10/6/2023

4

Programming in C

CS101 PPS @Sumit

19

First C Program

CS101 PPS @Sumit

20

/*My first c program*/

#include<stdio.h>

Void main()

{

printf("Hello, World!\n");

}

Structure of C Program

CS101 PPS @Sumit

21

/* Comments */ - Comments are a way of explaining what makes a program. The

compiler ignores comments and used by others to understand the code.

#include<stdio.h> - This is a preprocessor command. That notifies the compiler to

include the header file stdio.h in the program before compiling the source-code.

Void – the function returns null

main() - The main() is the main function where program execution begins. Every C

program must contain only one main function.

Braces - Two curly brackets "{...}" are used to group all statements.

printf() - It is a function in C, which prints text on the screen.

Structure of C Program

CS101 PPS @Sumit

22

Input and Output Statements

CS101 PPS @Sumit

23

• printf() is used to display the output and scanf() is used

to read the inputs.

• printf() and scanf() functions are declared in “stdio.h”

header file in C library.

• All syntax in C language including printf() and scanf()

functions are case sensitive

Sample C Program

CS101 PPS @Sumit

24

#include <stdio.h>

main()
{

printf (“\n Our first look at a C program \n”);
}

Header file includes functions
for input/output

Main function is executed when
you run the program. (Later we will
see how to pass its parameters)

Curly braces within which
statements are executed one
after another.

Statement for
printing the sentence
within double quotes
(“..”). ‘\n’ denotes end
of line.

Our first look at a C program

19 20

21 22

23 24

Sum
it S

riv
as

tav
a

10/6/2023

5

Sample C Program

CS101 PPS @Sumit

25

#include <stdio.h>
main()

{
int a, b, c;
a = 10;
b = 20;
c = a + b;
printf (“\n The sum of %d and %d is %d\n”,

a,b,c);
}

Integers variables declared
before their usage.

Control character for printing
value of a in decimal digits.

The sum of 10 and 20 is 30

Sample C Program

CS101 PPS @Sumit

26

#include <stdio.h>

/* FIND THE LARGEST OF THREE NUMBERS */

main()
{

int a, b, c;
scanf (“%d %d %d”, &a, &b, &c);
if ((a>b) && (a>c)) /* Composite condition check */

printf (“\n Largest is %d”, a);
else

if (b>c) /* Simple condition check */
printf (“\n Largest is %d”, b);

else
printf (“\n Largest is %d”, c);

}

Sample C Program

CS101 PPS @Sumit

27

float myfunc (float r)
{

float a;
a = PI * r * r;
return (a); /* return result */

}

#include <stdio.h>
#define PI 3.1415926

/* Compute the area of a circle */
main()

{
float radius, area;
float myfunc (float radius);

scanf (“%f”, &radius);
area = myfunc (radius);
printf (“\n Area is %f \n”, area);

}

Preprocessor statement.
Replace PI by 3.1415926
before compilation.

Example of a function
Called as per need from
Main programme.

Function called.

SOME TERMINOLOGIES28

CS101 PPS @Sumit

Some Terminologies

 Algorithm / Flowchart

A step-by-step procedure for solving a particular problem.

Should be independent of the programming language.

 Program

A translation of the algorithm/flowchart into a form that can be
processed by a computer.

Typically written in a high-level language like C, C++, Java,
etc.

CS101 PPS @Sumit

29

Variables and Constants

 Most important concept for problem solving using computers.

 All temporary results are stored in terms of variables and constants.

The value of a variable can be changed.

The value of a constant do not change.

 Where are they stored?

 In main memory.

CS101 PPS @Sumit

30

25 26

27 28

29 30

Sum
it S

riv
as

tav
a

10/6/2023

6

Variables and Constants

 How does memory look like (logically)?

As a list of storage locations, each having a unique address.

Variables and constants are stored in these storage locations.

Variable is like a house, and the name of a variable is like the
address of the house.

Different people may reside in the house, which is like the
contents of a variable.

CS101 PPS @Sumit

31

Address and Values

Memory Map

CS101 PPS @Sumit

33

Address 0
Address 1
Address 2
Address 3
Address 4
Address 5
Address 6

Address N-1

Every variable is
mapped to a
particular memory
address

Variables in Memory

CS101 PPS @Sumit

34

10

20

21

105

Memory location
allocated to a variable X

X = 10

X = 20

X = X + 1

X = X * 5

Instruction executed

T
i

m
e

Variables in Memory

CS101 PPS @Sumit

35

20

20

18

18

Variable

X Y

X = 20

Y = 15

X = Y + 3

Y = X / 6

Instruction executed

?

15

15

3

T
i

m
e

Variables in Memory

CS101 PPS @Sumit

36

void main()

{

int a = 4,b =7 , c;

c = a + b;

printf(“ sum is %d” ,c);

}

junk

4 a

c

b7

31 32

33 34

35 36

Sum
it S

riv
as

tav
a

10/6/2023

7

Variables in Memory

CS101 PPS @Sumit

37

void main()

{

int a = 4,b =7 , c;

c = a + b;

printf(“ sum is %d” ,c);

}

4 a

c

b7

11

Variables in Memory

CS101 PPS @Sumit

38

void main()

{

int a = 4,b =7 , c;

c = a + b;

printf(“ sum is %d” ,c);

}

4 a

c
b7

11

Sum is

Variables in Memory

CS101 PPS @Sumit

39

void main()

{

int a = 4,b =7 , c;

c = a + b;

printf(“ sum is %d” ,c);

}

4 a

c
b7

11

Sum is 11

CS101 PPS @Sumit

40

void main()

{

int a = 4,b = 7, c;

c = a + b;

printf(“ %d + %d is %d “,a,b,c);

} junk

0

47 a

c

b

04

117

11

4 + 7 = 11

Memory Layout of C Programs

A typical memory representation of a C program consists of the
following sections.
1.Text segment (i.e. instructions)- contains executable
instructions.
2.Initialized data segment- contains the global variables and
static variables that are initialized by the programmer.
3.Uninitialized data segment (bss)- often called the “bss”
segment “block started by symbol.” contains all global
variables and static variables that are initialized to zero or do not
have explicit initialization in source code.
4.Heap- Heap is the segment where dynamic memory allocation
usually takes place. The heap area begins at the end of the BSS
segment and grows to larger addresses from there. Eg malloc,
calloc
5.Stack- Stack segment is used to store all local variables and is
used for passing arguments to the functions along with the
return address of the instruction which is to be executed after
the function call is over. Stack grows downwards.

41

CS101 PPS @Sumit

Memory Layout of C Programs

CS101 PPS @Sumit

42

37 38

39 40

41 42

Sum
it S

riv
as

tav
a

10/6/2023

8

Memory Layout of C Programs

 Example:

CS101 PPS @Sumit

43

The size command is used to check the sizes (in bytes) of these different memory segments

Naming Variables

 Variables in C may be given representations containing multiple
characters. But there are rules for these representations.

 Variable names in C

 May only consist of letters, digits, and underscores

 May be as long as you like, but only the first 31 characters are
significant

 May not begin with a number

 May not be a C reserved word (keyword)

Naming Conventions

 C programmers generally agree on the following conventions for
naming variables.

 Begin variable names with lowercase letters

 Use meaningful identifiers

 Separate “words” within identifiers with underscores or mixed
upper and lower case.

 Examples: surfaceArea surface_Area
surface_area

 Be consistent!

Global and Local Variables
46

CS101 PPS @Sumit

z Global Variables
ç These variables are declared outside

all functions.

ç Life time of a global variable is the

entire execution period of the

program.

ç Can be accessed by any function

defined below the declaration, in a

file.

/* Compute Area and Perimeter of a circle */
#include <stdio.h>
float pi = 3.14159; /* Global */

main() {
float rad; /* Local */

printf(“Enter the radius “);
scanf(“%f” , &rad);

if (rad > 0.0) {
float area = pi * rad * rad;
float peri = 2 * pi * rad;

printf(“Area = %f\n” , area);
printf(“Peri = %f\n” , peri);

}
else
printf(“Negative radius\n”);

printf(“Area = %f\n” , area);
}

/* Compute Area and Perimeter of a circle */
#include <stdio.h>
float pi = 3.14159; /* Global */

main() {
float rad; /* Local */

printf(“Enter the radius “);
scanf(“%f” , &rad);

if (rad > 0.0) {
float area = pi * rad * rad;
float peri = 2 * pi * rad;

printf(“Area = %f\n” , area);
printf(“Peri = %f\n” , peri);

}
else
printf(“Negative radius\n”);

printf(“Area = %f\n” , area);
}

Global and Local Variables
47

CS101 PPS @Sumit

z Local Variables
ç These variables are declared inside

some functions.

ç Life time of a local variable is the

entire execution period of the function

in which it is defined.

ç Cannot be accessed by any other

function.

ç In general variables declared inside a

block are accessible only in that

block.

/* Compute Area and Perimeter of a
circle */

#include <stdio.h>
float pi = 3.14159; /* Global */

main() {
float rad; /* Local */

printf(“Enter the radius “);
scanf(“%f” , &rad);

if (rad > 0.0) {
float area = pi * rad * rad;
float peri = 2 * pi * rad;

printf(“Area = %f\n” , area);
printf(“Peri = %f\n” , peri);

}
else
printf(“Negative radius\n”);

printf(“Area = %f\n” , area);
}

/* Compute Area and Perimeter of a
circle */

#include <stdio.h>
float pi = 3.14159; /* Global */

main() {
float rad; /* Local */

printf(“Enter the radius “);
scanf(“%f” , &rad);

if (rad > 0.0) {
float area = pi * rad * rad;
float peri = 2 * pi * rad;

printf(“Area = %f\n” , area);
printf(“Peri = %f\n” , peri);

}
else
printf(“Negative radius\n”);

printf(“Area = %f\n” , area);
}

Data Types

 Data types are the type of data stored in a C program.

 It can be defined as a set of values with similar predefined

characteristics. And All the values in a data type have the same

properties.

 Data types are used while defining a variable or functions in C.

 A data type is an attribute that tells a computer how to interpret the

value.

 It determines how much space it occupies in storage and how the bit

pattern stored is interpreted.
CS101 PPS @Sumit

48

43 44

45 46

47 48

Sum
it S

riv
as

tav
a

10/6/2023

9

Data Types

 Data types are classified as follows...

 Primary data types (Basic data types OR Predefined data types)

 Derived data types (Secondary data types OR User-defined

data types)

 Enumeration data types

 Void data type

CS101 PPS @Sumit

49

Data Types

CS101 PPS @Sumit

50

Primary Data Types

 Primary data types are also known as the fundamental data types

because they are predefined, or they already exist in the C language.

 The C programming language has four primitive or primary data

types as :int, char, float, and double.

CS101 PPS @Sumit

51

Data Types

 Integer – We use these for storing various whole numbers, such as

5, 8, 67, 2390, etc.

 Character – It refers to all ASCII character sets as well as the single

alphabets, such as ‘x’, ‘Y’, etc.

 Double – These include all large types of numeric values that do

not come under either floating-point data type or integer data type.

 Floating-point – These refer to all the real number values or

decimal points, such as 40.1, 820.673, 5.9, etc.

CS101 PPS @Sumit

52

Data Type Modifiers in C

 Modifiers are C keywords that modify the meaning of fundamental

data types

 The modifiers in help in making the primary or primitive data types

much more specific.

 We use these along with all the basic data types for categorizing

them further.

 C Programming Language has four data type modifiers as: long,

short, signed, unsigned.

CS101 PPS @Sumit

53

Data Types

 Different data types can also hold integers in a variety of ranges.

These values may differ from one compiler to the next.

 On the 32-bit architecture, the ranges are listed below, along with

the memory requirements and format specifiers.

CS101 PPS @Sumit

54

49 50

51 52

53 54

Sum
it S

riv
as

tav
a

10/6/2023

10

Format specifier

• The Format specifier is a string used in the formatted input
and output functions.

• The format string determines the format
of the input and output.

• The format string always starts with a '%' character.

EXAMPLE:

%d - int

%f - float

%c - char

CS101 PPS @Sumit

56

Derived Data Types in C

CS101 PPS @Sumit

57

1.Array Type: They are a collection of data stored together as a single unit
and indexed according to the associated value or index. Here, one or more
elements can be arranged under a common name.
2.Pointers: They reference other variables by storing their address in memory.
Note that multiple pointers can point to the same object, but they will always
have separate addresses
3.Structures Types: They are composed of many fields declared within the
same block of memory that may contain different types or values. Structure
types are accessed via dot notation (e.g., struct_name .field_name).
4.Unions: They allow users to combine two different sets of values into one
variable, with only one set being active at any given time due to limited
resources.
5.Functions: These allow grouping logic statements representing calculations
or sequences, which can then be referred to through their name without having
re-write every time it needs to use

Enumerated Data Types

 Enumerated data types in C define variables that can only take on

predefined values.

 These values are stored as constants, and the variable must be

assigned one or more of these constant values upon its declaration.

 This is useful when working with sequences such as days of the

week, months in a year, etc.

CS101 PPS @Sumit

58

Void Data Types

 In C programming, the void data type is an empty data type with no

value and cannot be directly assigned to a variable.

 It is commonly used in function declarations as a return type

indicating that the function does not return any values and that it

simply performs some task without producing any results.

 Void functions are sometimes referred to as "procedures," They

may take parameters but do not have a defined set of output values.

CS101 PPS @Sumit

59

C TOKENS60

CS101 PPS @Sumit

55 56

57 58

59 60

Sum
it S

riv
as

tav
a

10/6/2023

11

C Tokens

CS101 PPS @Sumit

61

 Tokens in C language are the smallest elements or the building

blocks used to construct a C program.

 A compiler breaks a program into the possible minor units known

as tokens and proceeds further to the various stages of the

compilation.

• Every meaningful character, word, or symbol in this C program is a C token.
Compiler groups together these characters of the program into tokens.

• The compilation process:
C Program ---> Group characters into C tokens ---> Translate tokens into target code.

C Tokens Types

CS101 PPS @Sumit

62

Keyword

CS101 PPS @Sumit

63

 Keywords in C language are the collection of pre-defined or

reserved words.

 These are case-sensitive and written in lower cases. Their meaning

and functionality are already known to the compiler.

 Each Keyword is meant to perform a specific function in a C

program.

 We can't use these keywords as variable names or function names .

 There are a total of 32 keywords supported by the C language:

Keyword

CS101 PPS @Sumit

64

Identifiers

CS101 PPS @Sumit

65

 It help to identify data and other objects in the program.

 Identifier in C language is used for naming functions, variables,

structures, unions, arrays, etc.

 The identifier is user-defined words. These identifiers can be

composed of uppercase, lowercase letters, digits, underscore.

 Identifiers in C are short and informative names that uniquely

identify variables or function names.

Rules for declaring identifiers:

CS101 PPS @Sumit

66

 Identifiers shouldn't begin with any numerical digit and hence, the

first character must be either an underscore or an alphabet.

 Identifiers are case-sensitive and hence, both lowercase and

uppercase letters are distinct.

 The length of identifiers shouldn't be more than 31 characters.

 Commas and blank spaces are not allowed while declaring an

identifier.

 we can't use keywords as identifiers.

61 62

63 64

65 66

Sum
it S

riv
as

tav
a

10/6/2023

12

Constant

CS101 PPS @Sumit

67

 Constants are the variables whose values are fixed and can not be

changed during the execution of a program.

 They are also known as literals.

 We can declare constants in C language using:

• const keyword Here, we are using the const keyword to declare

a variable and assigning a value to it that can not be modified

later. const variableName;

• #define pre-processor Here, we are using #define pre-processor

and constant ll will be an alias-name for long keyword.

Types of Constants in C Language

CS101 PPS @Sumit

68

Constants

Numeric
Constants

Character
Constants

stringsingle
character

floating-
point

integer

Types of Constants in C Language

CS101 PPS @Sumit

69

ExampleType of Constant

25.7, 87.4, 13.9, etc.Floating-point constant

20, 41, 94, etc.Integer constant

0x5x, 0x3y, 0x8z, etc.Hexadecimal constant

033, 099, 077, 011, etc.Octal constant

“c++”, “.net”, “java”, etc.String constant

‘p’, ‘q’, ‘r’, etc.Character constant

Constant

CS101 PPS @Sumit

70

 C Constants can be classified into two categories:

• Primary Constants

• Secondary Constants

 Primary constant

• A primary constant is, again, divided into these three types:

• Numeric

• Character

• Logical

• Numeric is subdivided into two types, Integer and Float.

• Character is subdivided into three types, Single Character, String and backslash

Constants

 A constant is a value or an identifier whose value cannot be altered

in a program.

Integer constants

 A integer constant is a numeric constant (associated with number)

without any fractional or exponential part. There are three types of

integer constants in C programming:

 decimal constant(base 10)

 octal constant(base 8)

 hexadecimal constant(base 16)

Constants

Floating-point constants
 A floating point constant is a numeric constant that has either a

fractional form or an exponent form. For example: 2.0,0.0000234,-
0.22E-5

Character constants
 A character constant is a constant which uses single quotation

around characters. For example: 'a', 'l', 'm', 'F'

String constants
 String constants are the constants which are enclosed in a pair of

double-quote marks. For example: "good" ,"x","Earth is round\n“
 C supports some character constants having a backslash in front of

it. The lists of backslash characters have a specific meaning known
to the compiler. They are also termed "Escape Sequences".

67 68

69 70

71 72

Sum
it S

riv
as

tav
a

10/6/2023

13

Constants

Backslash constants

 C supports some character constants having a backslash in front of

it. The lists of backslash characters have a specific meaning known

to the compiler. They are also termed "Escape Sequences".

Logical Constant: Logical Constants in C consist of logical operators

and can take either of the two values: true or false.

 They are generally of two types:

 logical connectives

 quantifiers.

Constant

CS101 PPS @Sumit

74

 Secondary Constant

The secondary constant is divided into the following types:

• Arrays

• Structures

• Union

• Pointer

• Enum etc.

Special Characters in C

CS101 PPS @Sumit

75

 Special characters as the name suggests, are symbols in C language that

have special meaning and can not be used for any other purpose.

 Types of Special Characters in C

 Square brackets []: Used for single and multi-dimensional arrays.

 Simple brackets (): Used for function declaration.

 Curly braces { }: Used for opening and closing the code.

 The comma (,): Used to separate variables.

 Hash/pre-processor (#): Used for the header file.

 Asterisk (*): Used for Pointers.

 Tilde (~): Used for destructing the memory.

 Period (.): Used for accessing union members.

Operators in C

 The operators in C are the special symbols that we use for

performing various functions.

 Operands are those data items on which we apply the operators.

 We apply the operators in between various operands.

 We can classify the operators On the basis of the total number of

operands as:

• Unary Operator

• Binary Operator

• Ternary Operator

CS101 PPS @Sumit

76

Operators in C

Unary Operator

 It is applied to one single operand.

 For example: increment operator (++), decrement operator (--),

sizeof etc.

CS101 PPS @Sumit

77

Operators in C

Binary Operator

 It is applied between two operands.

 Here is a list of all the binary operators that we have in the C

language:

Relational Operators

Arithmetic Operators

Logical Operators

Shift Operators

Conditional Operators

Bitwise Operators

Misc Operator

Assignment Operator CS101 PPS @Sumit

78

73 74

75 76

77 78

Sum
it S

riv
as

tav
a

10/6/2023

14

Operators in C

Ternary Operator

 Using this operator would require a total of three operands. For

instance, we can use the ?: in place of the if-else conditions.

 Conditional Operator (?) is known as ternary operator.

 Example:

 int a = 10,b = 20,c;

 c = (a < b) ? a : b;

 //If a<b is true, then c will be assigned with the value of a else b

 printf("%d", c);

CS101 PPS @Sumit

79

Strings in C

 The strings in C always get represented in the form of an array of

characters.

 We have a ‘\0′ null character at the end of any string- thus, this null

character represents the end of that string.

 Double quotes enclose the strings, while the characters get

enclosed typically within various single characters.

 The number of characters in a string decides the size of that string.

CS101 PPS @Sumit

80

Strings in C

 There are different ways in which we can describe a string:

 char x[9] = “chocolate’; // Here, the compiler allocates a total of 9

bytes to the ‘x’ array.

 char x[] = ‘chocolate’; // Here, the compiler performs allocation of

memory during the run time.

 char x[9] = {‘c’,’h’,’o’,’c’,’o’,’l’,’a’,’t’,’e’,’\0′}; // Here, we are

representing the string in the form of the individual characters that

it has.

CS101 PPS @Sumit

81

Lectures on Numerical Methods82

Tokens in C (Summary)

 Keywords

 These are reserved words of the C language. For example int,
float, if, else, for, while etc.

 Identifiers

 An Identifier is a sequence of letters and digits, but must start
with a letter. Underscore (_) is treated as a letter. Identifiers are
case sensitive. Identifiers are used to name variables, functions
etc.

 Valid: Root, _getchar, __sin, x1, x2, x3, x_1, If

 Invalid: 324, short, price$, My Name

 Constants

 Constants like 13, ‘a’, 1.3e-5 etc.

Lectures on Numerical Methods83

Tokens in C (Summary)

 String Literals

 A sequence of characters enclosed in double quotes as “…”. For
example “13” is a string literal and not number 13. ‘a’ and “a”
are different.

 Operators

 Arithmetic operators like +, -, *, / ,% etc.

 Logical operators like ||, &&, ! etc. and so on.

 Special Characters

 Spaces, new lines, tabs, comments (A sequence of characters
enclosed in /* and */) etc. These are used to separate the
adjacent identifiers, kewords and constants.

THANK YOU

CS101 PPS @Sumit

84

79 80

81 82

83 84

Sum
it S

riv
as

tav
a

