
12/4/2023

1

ARRAY IN C

Sumit Srivastav @ BIT Mesra

Dr. Sumit Srivastava

Dept. of CSE, BIT Mesra Ranchi 

Email:- sumit@bitmesra.ac.in

Why do we need arrays?

 We can use normal variables (v1, v2, v3, ..) when we have

small number of objects,

but if we want to store large number of instances, it

becomes difficult to manage them with normal variables.

The idea of array is to represent many instances in one

variable.

Array

3Sumit Srivastav @ BIT Mesra

 An array is a collection of data elements that are of the

same type (e.g., a collection of integers, collection of

characters, collection of doubles).

 Arrays are referred to as structured data types. An array is

defined as finite, ordered collection of homogenous data,

stored in contiguous memory locations.

24-01-2019

Arrays

An array is an ordered list of values

0     1     2     3     4     5     6     7     8     9

79   87   94   82   67   98   87   81   74   91

An array of size N is indexed from zero to N-1

scores

The entire array
has a single name

Each value has a numeric index

This array holds 10 values that are indexed from 0 to 9

1 2

3 4



12/4/2023

2

Arrays

A particular value in an array is referenced using the array

name followed by the index in brackets

For example, 

the expression

scores[2]

refers to the value 94 (the 3rd value in the array)

That expression represents a place to store a single integer and can 
be used wherever an integer variable can be used

Declaration of an Array

Syntax of Array Declaration

data_type array_name [size];
or

data_type array_name [size1] [size2]...[sizeN];

where N is the number of dimensions.

Declaration of an Array

The C arrays are static in nature, i.e., they are allocated memory at the 
compile time.

Declaring an Array

data-type variable-name[size];

Example

int arr[10]; Right

int m;

int array[m];  Wrong

5 6

7 8



12/4/2023

3

Declaring an Array

#include<stdio.h>

main()

{

int n;

scanf("%d", &n);

printf("n=%d\n",n);

int a[n];

printf("%d",sizeof(a));

}

#include<stdio.h>

#define MAX 100

main()

{
int a[MAX];

printf("%d",sizeof(a));

}

Example of Array Declaration

// C Program to illustrate the array declaration
#include <stdio.h>

int main()
{

// declaring array of integers
int arr_int[5];
// declaring array of characters
char arr_char[5];

return 0;
}

Initialization of an Array

 When the array is declared or allocated memory, the elements of the

array contain some garbage value. So, we need to initialize the array

to some meaningful value.

 There are multiple ways in which we can initialize an array in C.

1. Array Initialization with Declaration

2. Array Initialization with Declaration without Size

3. Array Initialization after Declaration (Using Loops)

Array Initialization with Declaration

Use an initializer list to initialize multiple elements of the array.

An initializer list is the list of values enclosed within braces { }
separated b a comma.

data_type array_name [size] = {value1, value2, ... valueN};

9 10

11 12



12/4/2023

4

Array Initialization with Declaration

data_type array_name [size] = {value1, value2, ... valueN};

Array Initialization with Declaration without Size

 If we initialize an array using an initializer list, we can skip

declaring the size of the array as the compiler can

automatically deduce the size of the array in these cases.

 The size of the array in these cases is equal to the number of

elements present in the initializer list as the compiler can

automatically deduce the size of the array.

data_type array_name[] = {1,2,3,4,5};
The size of the above arrays is 5 which is automatically deduced by the compiler.

Array Initialization after Declaration (Using Loops)

 We initialize the array after the declaration by assigning the

initial value to each element individually.

 We can use for loop, while loop, or do-while loop to assign

the value to each element of the array.

for (int i = 0; i < N; i++)
{

array_name[i] = valuei;
}

Example of Array Initialization 
#include <stdio.h>

int main()
{

// array initialization using initialier list
int arr[5] = { 10, 20, 30, 40, 50 };

// array initialization using initializer list without specifying 
size

int arr1[] = { 1, 2, 3, 4, 5 };

// array initialization using for loop
float arr2[5];
for (int i = 0; i < 5; i++) {

arr2[i] = (float)i * 2.1;
}
return 0; }

13 14

15 16



12/4/2023

5

Access the Elements of an Array

To access an array element, refer to its index number.

Access the Elements of an Array

To access an array element, refer to its index number.

 Array indexes start with 0: [0] is the first element. [1] is the
second element, etc.

 This statement accesses the value of the first element [0] in
myNumbers:

 Example

int myNumbers[] = {25, 50, 75, 100};

printf("%d", myNumbers[0]);

// Outputs 25

Example

Output: 

Element at arr[2]: 35

Element at arr[4]: 55

Element at arr[0]: 15

#include <stdio.h>

int main() {

// array declaration and initialization
int arr[5] = { 15, 25, 35, 45, 55 };

// accessing element at index 2 i.e 3rd element
printf("Element at arr[2]: %d\n", arr[2]);

// accessing element at index 4 i.e last element
printf("Element at arr[4]: %d\n", arr[4]);

// accessing element at index 0 i.e first element
printf("Element at arr[0]: %d", arr[0]);

return 0; }

Change an Array Element

To change the value of a specific element, refer to the index
number.

array_name[i] = new_value;

 Example

int myNumbers[] = {25, 50, 75, 100};

myNumbers[0] = 33;

printf("%d", myNumbers[0]);

// Now outputs 33 instead of 25

17 18

19 20



12/4/2023

6

Set Array Size

Another common way to create arrays, is to specify the
size of the array, and add elements later .

 Example

// Declare an array of four integers:

int myNumbers[4];

// Add elements

myNumbers[0] = 25;

myNumbers[1] = 50;

myNumbers[2] = 75;

myNumbers[3] = 100;

Set Array Size (Example)
#include <stdio.h>

int main() {
// Declare an array of four integers:
int myNumbers[4];

// Add elements to it
myNumbers[0] = 25;
myNumbers[1] = 50;
myNumbers[2] = 75;
myNumbers[3] = 100;

printf("%d\n", myNumbers[0]);

return 0;
}

// Outputs 25

Array Traversal

 Traversal is the process in which we visit every element of 

the data structure. 

 For C array traversal, we use loops to iterate through each 

element of the array.

for (int i = 0; i < N; i++) 
{

array_name[i];
}

Array Traversal using for Loop

Array Traversal

21 22

23 24



12/4/2023

7

Loop Through an Array

You can loop through the array elements with the for loop.

 The following example outputs all elements in the myNumbers
array.

 Example

int myNumbers[] = {25, 50, 75, 100};

int i;

for (i = 0; i < 4; i++) {

printf("%d\n", myNumbers[i]);

}

Loop Through an Array

You can loop through the array elements with the for loop.

 The following example outputs all elements in the
myNumbers array.

 Example

int myNumbers[] = {25, 50, 75, 100};

int i;

for (i = 0; i < 4; i++) {

printf("%d\n", myNumbers[i]);

}

// Outputs 25, 50,75,100

Example
// C Program to demonstrate the use of array
#include <stdio.h>

int main()
{

// array declaration and initialization
int arr[5] = { 10, 20, 30, 40, 50 };

// modifying element at index 2
arr[2] = 100;

// traversing array using for loop
printf("Elements in Array: ");
for (int i = 0; i < 5; i++) {

printf("%d ", arr[i]);
}

return 0; }

Example

// C Program to demonstrate the use of 
array
#include <stdio.h>

int main()
{

// array declaration and 
initialization

int arr[5] = { 10, 20, 30, 40, 50 };

// modifying element at index 2
arr[2] = 100;

// traversing array using for loop
printf("Elements in Array: ");

for (int i = 0; i < 5; i++) {
printf("%d ", arr[i]);

}

return 0; }

Output
Elements in Array: 10 20 100 40 50 

25 26

27 28



12/4/2023

8

Benefits of Using Array in C 
An array is crucial in C language, providing several benefits to 
programmers. 

1. Faster Access to Elements
As each element is assigned an individual index number in an array, random 
and direct access to elements in an array becomes easier and faster. You can 
also manipulate elements without hassle, making arrays a preferred choice 
for apps that need to retrieve data quickly. 

2. Improved Functionality
It is easy to manipulate arrays with pointers as using them, you can perform 
otherwise-complex operations, such as swapping elements, conveniently. 
This enhances its functionality and makes it a top choice for programmers. 

Benefits of Using Array in C 
3. Better Memory Usage
The use of array in C offers a more efficient way to store data in memory. 
As arrays hold elements in contiguous locations, computers can find and 
retrieve data in no time. Thus, reducing the amount of memory used to store 
data, which comes in handy while working with massive datasets.

4. Easy Declaration and Initialization
To declare an array in C, you simply need to specify the data type, array 
name, and the number of elements it will store. It allows you to initialize 
arrays during declaration, saving a great deal of time and energy. 

5. Simplified Operations 
Arrays simplify complex operations involving multiple data elements. It 
enhances productivity, ensures time efficiency, and enhances the whole 
process. Storing the salary of 100 employees or marks of 100 students in a 
class and calculating the average is a cakewalk with arrays. 

Benefits of Using Array in C 
Some more advantages of the C array are as follows:

• It is easy to apply the search process.

• As arrays create a single array of multiple elements at once, you need to 
use fewer lines of code. This results in cleaner and more optimized code.

• Involves low overhead.

• You can traverse elements using a single loop.

• Sorting code is easier as you have to write just a few lines of code.

• It is easy to convert arrays into pointers, enabling passing arrays to 
functions as returning arrays from functions.

Benefits of Using Array in C 
• You can access elements in any order in O(1) time.

• A more efficient way to store multiple values of the same type.

• In C, you can use various built-in functions, such as searching and 
sorting, to manipulate arrays.

• As C supports multiple-dimension arrays, it is useful to represent 
complex data structures like matrices.

29 30

31 32



12/4/2023

9

Disadvantages of Array in C 
Along with numerous advantages, arrays also have a few drawbacks. Here 
are a few limitations of arrays in C that you should know:
No Built-in Bounds Checking
If a program tries to access an out-of-bound element in an array, it can lead 
to a runtime error or crash the program.
Inflexible Structure
Arrays are static in nature, so data can’t be resized based on user 
requirements. Data size and type stored in an array are predetermined, 
restricting flexibility and adaptability.
Restricted Data Type
Arrays store only one type of data at a time, i.e., homogenous data. So, if 
you want to store multiple data types, you need to create several arrays or 
data structures. For example, in the char data type, you can only store 
characters. If you try to store other data types, such as integers, it will show 
an error.

Disadvantages of Array in C 
Insertion and Deletion are Costly
Insertion and deletion operations in an array are complicated because it is 
essential to traverse the array and rearrange elements after the operation. 
This process can be costlier and more challenging.
Limited Size
The size of the array or number of elements is fixed and can’t be changed 
during runtime once allocated. So, if a program requires to store more data 
than the assigned size, a new array with a larger size must be allocated, and 
then the data is copied to it. This is quite time-consuming and inefficient.
Memory Wastage
Elements are assigned memory even when it’s not used. This wastes a lot of 
memory, which can be a concern for programs involving large amounts of 
data.

Use of Array in C

Here are some common uses of arrays in C:
Grouping related data
Arrays allow you to group related data items of the same type together. For
example, you can use an array to store a list of integers, characters, or any
other data type.
Sequential access
Arrays provide a way to access elements sequentially using index values.
This allows you to iterate over the array elements easily using loops, such as
for or while loops.
Efficient storage
Arrays allocate a contiguous block of memory for storing elements, making
memory management more efficient. Elements in an array can be accessed
directly by their index, without the need for searching or traversing data
structures.

Use of Array in C

Data manipulation
Arrays provide a convenient way to manipulate and process a collection of 
data. You can perform various operations on array elements, such as 
sorting, searching, filtering, and performing mathematical computations.
Efficient algorithms
Many algorithms and data structures rely on arrays for their implementation. 
Arrays are fundamental building blocks for data structures like stacks, 
queues, and matrices. They also play a crucial role in sorting and searching 
algorithms.
Compact representation
Arrays offer a compact and memory-efficient representation for storing 
large amounts of data. They allow you to access and manipulate large 
datasets without consuming excessive memory.

33 34

35 36



12/4/2023

10

Multidimensional Arrays

A multidimensional array is basically an array of arrays.

Two-Dimensional Arrays

A Two-Dimensional array or 2D array in C is an array that has 

exactly two dimensions. 

 They can be visualized in the form of rows and columns organized 

in a two-dimensional plane.

 Syntax of 2D Array in C

array_name[size1] [size2];

Here,
•size1: Size of the first dimension.
•size2: Size of the second dimension.

Two-Dimensional Arrays

A 2D array is also known as a matrix (a table of rows and columns).

 To create a 2D array of integers, take a look at the following example:

int matrix[2][3] = { {1, 4, 2}, {3, 6, 8} };

The first dimension represents the number of rows [2], while the
second dimension represents the number of columns [3]. The values are
placed in row-order, and can be visualized like this:

Access the Elements of a 2D Array

To access an element of a two-dimensional array, specify the 

index number of both the row and column.

• Example

int matrix[2][3] = { {1, 4, 2}, {3, 6, 8} };

printf("%d", matrix[0][2]);

// Outputs 2

This statement accesses the value of the element in the first 
row (0) and third column (2) of the matrix array.

37 38

39 40



12/4/2023

11

Change Elements in a 2D Array

To change the value of an element, refer to the index number of 

the element in each of the dimensions.

• Example

int matrix[2][3] = { {1, 4, 2}, {3, 6, 8} };
matrix[0][0] = 9;

printf("%d", matrix[0][0]);

// Now outputs 9 instead of 1

This statement change the value of the element in the first 
row (0) and first column (0).

Loop Through a 2D Array

To loop through a multi-dimensional array, you need one loop 

for each of the array's dimensions.

• Example
int matrix[2][3] = { {1, 4, 2}, {3, 6, 8} };

int i, j;

for (i = 0; i < 2; i++) {

for (j = 0; j < 3; j++) {

printf("%d\n", matrix[i][j]);

}

}

Loop Through a 2D Array

Example
#include <stdio.h>

int main() {
int matrix[2][3] = { {1, 4, 2}, {3, 6, 8} };

int i, j;
for (i = 0; i < 2; i++) {
for (j = 0; j < 3; j++) {
printf("%d\n", matrix[i][j]);

}
}

return 0;
}

// Output: 1 4 2 3 6 8

Example
/ C Program to illustrate 2d array
#include <stdio.h>

int main() {

// declaring and initializing 2d array
int arr[2][3] = { 10, 20, 30, 40, 50, 60 };

printf("2D Array:\n");
// printing 2d array
for (int i = 0; i < 2; i++) {

for (int j = 0; j < 3; j++) {
printf("%d ",arr[i][j]);

}
printf("\n");

}

return 0; }

Output

2D Array:

10 20 30 

40 50 60 

41 42

43 44



12/4/2023

12

Examples

/* Valid declaration*/

int abc[2][2] = {1, 2, 3 ,4 }  

/* Valid declaration*/ 

int abc[][2] = {1, 2, 3 ,4 }  

/* Invalid declaration – you must specify second dimension*/

int abc[][] = {1, 2, 3 ,4 }   

/* Invalid because of the same reason  mentioned above*/

int abc[2][] = {1, 2, 3 ,4 }

45


