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Module 4 (Quantum Mechanics)

❑ Electromagnetic (EM) Wave: Coupled electric and magnetic oscillations that move with the speed of light and 

exhibit typical wave behavior.

❑We regard EM wave as waves because under suitable circumstances they exhibit diffraction, interference and 

polarization (wave nature).

❑ Similarly, we shall see under other circumstances, EM waves behave as though they consist of streams of particles.

❑ It was found that the wave nature of light cannot explain several phenomena like black body radiation, 

photoelectric effect, Compton effect, etc.

❑ The first sign appeared while trying to understand “black body” radiation.

❑ All bodies absorb and emit radiations (may or may not be in the visible range).

❑ At thermal equilibrium of a body with its surroundings, must absorb and radiate energy at the same rate, so as to 

keep the temperature constant. 
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Module 4 (Quantum Mechanics)

❑ A black body absorbs ALL radiations that are incident on it.

❑ At thermal equilibrium of a body with its surroundings, it must absorb and emit 

energy at the same rate.

❑ In lab, we can have a hollow object with a very small hole – radiation enters the 

cavity through the hole – it is trapped by reflection back and forth until it is 

absorbed – cavity wall is constantly emitting and absorbing radiation. This can be 

approximated as the black body radiation.

❑ As per classical theory, a blackbody should radiate electromagnetic waves of ALL 

frequencies, and the energy associated with the radiation INCREASES with 

increase in frequency.

Ferry’s black body
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Module 4 (Quantum Mechanics)

The Ultraviolet Catastrophe – Failure of Classical Physics

❑ Consider a one-dimensional cavity

❑ The standing wave must form nodes at two ends: at 𝑥 = 0 and at 𝑥 = 𝑎

❑ Different kinds of oscillations that satisfy this boundary condition are called the different 

“modes” of the radiation

❑ Let us calculate the no. of modes having frequencies in the range 𝜈, 𝜈 + 𝑑𝜈 ≡ 𝑁 𝜈 𝑑𝜈   

❑ Now, 𝜈 = 𝑐/𝜆, where 𝜆 = (2𝑎)/𝑛, where 𝑛 = 1,2, ….   [𝑎 = 𝑛𝜆/2] 

❑ Using 𝜈 = 𝑐/𝜆 and 𝜆 = (2𝑎)/𝑛, we get, 𝜈 =
𝑐𝑛

2𝑎
 , or, 𝑛 =

2𝑎

𝑐
𝜈    =>  Δ𝑛 =

2𝑎

𝑐
Δ𝜈 

❑ However, a light wave has two polarization directions. 

❑ Hence actual Δ𝑛 = 2 ×
2𝑎

𝑐
Δ𝜈 =

4𝑎

𝑐
Δ𝜈 

❑ So, we get, 𝑑𝑛 = 𝑁 𝜈 𝑑𝜈 =
4𝑎

𝑐
𝑑𝜈. (In the limit Δ𝑛 → 0 𝑎𝑛𝑑 Δ𝜈 → 0) => 𝑁 𝜈 =

4𝑎

𝑐
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Module 4 (Quantum Mechanics)

The Ultraviolet Catastrophe – Failure of Classical Physics

❑ No. of modes having frequencies in the range 𝜈, 𝜈 + 𝑑𝜈 ≡ 𝑁 𝜈 𝑑𝜈. Now, 𝜈 = 𝑐/𝜆, where 𝜆 = (2𝑎)/𝑛, where 𝑛 =

1,2, ….   [𝑎 = 𝑛𝜆/2]. 

❑ Using 𝜈 = 𝑐/𝜆 and 𝜆 = (2𝑎)/𝑛, we get, 𝜈 =
𝑐𝑛

2𝑎
 , or, 𝑛 =

2𝑎

𝑐
𝜈  => Δ𝑛 =

2𝑎

𝑐
Δ𝜈. However, a light wave has two 

polarization directions. Hence actual Δ𝑛 = 2 ×
2𝑎

𝑐
Δ𝜈 =

4𝑎

𝑐
Δ𝜈. So, we get, 𝑑𝑛 = 𝑁 𝜈 𝑑𝜈 =

4𝑎

𝑐
𝑑𝜈. In the limit 

Δ𝑛 → 0 𝑎𝑛𝑑 Δ𝜈 → 0, 𝑁 𝜈 =
4𝑎

𝑐
.
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Module 4 (Quantum Mechanics)

The Ultraviolet Catastrophe – Failure of Classical Physics

❑ Now generalize to three-dimensional cavity: 

❑ For a cubic cavity of side “𝑎”, 𝑁 𝜈 𝑑𝜈 =
8𝜋𝑎3

𝑐3 𝜈2 𝑑𝜈.

❑ Considering the volume, 𝑉 (=  𝑎3), we rewrite 𝑁 𝜈 𝑑𝜈 =
8𝜋𝑉

𝑐3 𝜈2 𝑑𝜈. This gives the total no. of modes in the cavity.

❑What is the total energy?

❑ Average energy per mode can be shown to be 𝑘𝐵𝑇, where 𝑘𝐵 is the Boltzmann constant = 1.38 × 10-23 J/K and 𝑇 is 

the temperature of the cavity (can be derived from the Equipartition Theorem of Statistical Mechanics).

❑ Every degree of freedom that appears quadratically in the total energy contributes an average energy of
1

2
𝑘𝐵𝑇 at 

equilibrium. 

❑ For simple harmonic oscillator, 𝐸 =
1

2
𝑘𝑥2 +

1

2
𝑚𝑣2, So < 𝐸 > =

1

2
𝑘𝐵𝑇 +

1

2
𝑘𝐵𝑇 =  𝑘𝐵𝑇
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Module 4 (Quantum Mechanics)

The Ultraviolet Catastrophe – Failure of Classical Physics

❑ For a three-dimensional cubic cavity of side “𝑎”, 𝑁 𝜈 𝑑𝜈 =
8𝜋𝑎3

𝑐3 𝜈2 𝑑𝜈.   (Solve it!)

❑ Considering the volume, V (= a3), we rewrite 𝑁 𝜈 𝑑𝜈 =
8𝜋𝑉

𝑐3 𝜈2 𝑑𝜈. This gives the total no. of modes in the cavity.

❑What is the total energy?

❑ Average energy per mode can be shown to be 𝑘𝐵𝑇, where 𝑘𝐵 is the Boltzmann constant = 1.38 × 10-23 J/K and 𝑇 is 

the temperature of the cavity (can be derived from the Equipartition Theorem of Statistical Mechanics).

❑ (Considering energy per mode as 𝑘𝐵𝑇), the Total energy (in 𝜈 and 𝜈+𝑑𝜈) =  𝑘𝐵𝑇 × 𝑁 𝜈 𝑑𝜈 =
8𝜋𝑉

𝑐3 𝜈2 𝑘𝐵𝑇 𝑑𝜈

❑ Total energy density, 𝑢 𝜈  can be calculated by dividing the total energy by volume and d𝜈.

❑ Total energy per unit volume in the frequency range 𝜈, 𝜈+𝑑𝜈 is  𝑢 𝜈 𝑑𝜈 =
1

𝑉
 ×

8𝜋𝑉

𝑐3 𝜈2 𝑘𝐵𝑇 𝑑𝜈 = (
8𝜋𝑘𝐵𝑇

𝑐3 )𝜈2𝑑𝜈,    

or, the energy density per unit frequency range, 𝑢 𝜈 = (
8𝜋𝑘𝐵𝑇

𝑐3 )𝜈2.
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Module 4 (Quantum Mechanics)

The Ultraviolet Catastrophe – Failure of Classical Physics

❑ Total energy per unit volume in the frequency range 𝜈, 𝜈+𝑑𝜈 is  𝑢 𝜈 𝑑𝜈 =
8𝜋𝑘𝐵𝑇

𝑐3 𝜈2𝑑𝜈. This is known as the 

Rayleigh-Jeans formula.

❑ 𝑢(𝜈) is the energy density (total energy per unit 

volume per unit frequency range) =
8𝜋𝑘𝐵𝑇

𝑐3 𝜈2. 

❑ Energy density 𝑢(𝜈) is therefore parabolic in nature.

❑ The expression says, as the frequency 𝜈 increases 

toward the ultraviolet end of the spectrum, energy 

density should increase as 𝜈2. Hence, 𝑢 𝜈 →

∞ as 𝜈 → ∞.

❑ But, experiments show 𝑢 𝜈 → 0 as 𝜈 → ∞.

❑ This discrepancy is known as ultraviolet catastrophe of 

classical physics.

PH24101: Physics (B.Tech. I)



Recap

❑ Definition of a black body.

❑Mode counting in a cavity: we chose 1D cavity for simplicity.

❑ No. of modes present in the 1D cavity in the frequency range 𝜈, 𝜈+𝑑𝜈 is 𝑁 𝜈 𝑑𝜈 =
4𝑎

𝑐
𝑑𝜈. An extra factor of 2 is 

present due to two polarization states of the radiations. (Boundary condition: each mode has nodes at the walls of 

the cavity).

❑ This result can be generalized to 3D cavity: 𝑁 𝜈 𝑑𝜈 =
8𝜋𝑉

𝑐3 𝜈2 𝑑𝜈. 

❑ Energy for each mode is 𝑘𝐵𝑇 on average (from Equipartition Theorem).

❑ Total energy in the frequency range 𝜈 and d𝜈, 𝑁 𝜈 𝑑𝜈 ×  𝑘𝐵𝑇 =
8𝜋𝑉

𝑐3 𝜈2 𝑘𝐵𝑇 𝑑𝜈

❑ Dividing by 𝑉, we get total energy per unit volume in the frequency range 𝜈, 𝜈+𝑑𝜈: 𝑢 𝜈 𝑑𝜈 = (
8𝜋𝑘𝐵𝑇

𝑐3 )𝜈2𝑑𝜈, or, the 

energy per unit volume per unit frequency range, 𝑢 𝜈 = (
8𝜋𝑘𝐵𝑇

𝑐3 )𝜈2, which is parabolic in nature.

Black body radiation
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Module 4 (Quantum Mechanics)
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Module 4 (Quantum Mechanics)

The Ultraviolet Catastrophe – Failure of Classical Physics

❑ Total energy per unit volume in the frequency range 𝜈, 𝜈+𝑑𝜈 is  𝑢 𝜈 𝑑𝜈 =
8𝜋𝑘𝐵𝑇

𝑐3 𝜈2𝑑𝜈. This is known as the 

Rayleigh-Jeans formula.

❑ 𝑢(𝜈) is the energy density (total energy per unit volume per 

unit frequency range) =
8𝜋𝑘𝐵𝑇

𝑐3 𝜈2. 

❑ Energy density 𝑢(𝜈) is therefore parabolic in nature.

❑ At short wavelength (high 𝜈), classical theory gives incorrect 

results. The expression says, as the frequency 𝜈 increases 

toward the ultraviolet end of the spectrum, energy density 

should increase as 𝜈2. Hence, 𝑢 𝜈 → ∞ as 𝜈 → ∞.

❑ But, experiments show that  𝑢 𝜈 → 0 as 𝜈 → ∞.

❑ This discrepancy is known as ultraviolet catastrophe of 

classical physics.
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Planck’s theory of black body radiation

❑ Treated energy as a discrete variable. Planck proposed that the energy can take only certain discrete values: 𝐸 = 0,

Δ𝐸, 2Δ𝐸, 3Δ𝐸, … … … .

❑ Planck realized that in order to explain the experimental black body radiation curve, the energy “packets” must be 

proportional to the frequency of the radiation: Δ𝐸 ∝ 𝜈     =>    Δ𝐸 = ℎ𝜈 , where ℎ is the Planck’s constant.

❑ He found the average energy per energy packet is  < 𝐸 𝜈 > =
ℎ𝜈

𝑒

ℎ𝜈
𝑘𝐵𝑇−1

 (instead of 𝑘𝐵𝑇).
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Module 4 (Quantum Mechanics)

Planck’s theory of black body radiation

Derivation

❑Where 𝐸𝑛 = 𝑛ℎ𝜈 = 𝑛 Δ𝐸  ( 𝑛 =

 0, 1, 2, 3, … . .)

❑ 𝑃 𝐸𝑛  is the probability of having 

energy 𝐸𝑛. 

< 𝐸 > =
σ𝑛=0

∞ 𝐸𝑛𝑃 𝐸𝑛

σ𝑛=0
∞ 𝑃 𝐸𝑛

 

෍

𝑛=0

∞

𝑃 𝐸𝑛 = 1 < 𝐸 > = ෍

𝑛=0

∞

𝐸𝑛𝑃 𝐸𝑛So,
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Module 4 (Quantum Mechanics)

Planck’s theory of black body radiation

Derivation

❑Where 𝐸𝑛 = 𝑛ℎ𝜈 = 𝑛 Δ𝐸 and 𝑃 𝐸𝑛  is the probability of having energy 𝐸𝑛.  

❑ From Statistical Mechanics, one can show that 

(Thermal or Boltzmann probability distribution of energies)

< 𝐸 > = ෍

𝑛=0

∞

𝐸𝑛𝑃 𝐸𝑛
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Module 4 (Quantum Mechanics)

Planck’s theory of black body radiation

Derivation

❑ Therefore

❑Where 𝐸𝑛 = 𝑛ℎ𝜈 = 𝑛 Δ𝐸 and 𝑃𝑛 𝐸  is 

the probability of having energy 𝐸𝑛. 

(Replacing 𝐸𝑛 = 𝑛ℎ𝜈) 

In order to do the summation, replace 𝛼 =
ℎ𝜈

𝑘𝐵𝑇
 

< 𝐸 > = ෍

𝑛=0

∞

𝐸𝑛𝑃 𝐸𝑛
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Module 4 (Quantum Mechanics)

Planck’s theory of black body radiation

Derivation
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Module 4 (Quantum Mechanics)

Planck’s theory of black body radiation

Derivation

Use

So,
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Module 4 (Quantum Mechanics)

Planck’s theory of black body radiation

Derivation

< 𝐸 > = 𝑘𝐵𝑇𝛼
𝜕

𝜕𝛼
ln 1 − 𝑒−𝛼 = 𝑘𝐵𝑇𝛼

𝑒−𝛼

1 − 𝑒−𝛼
=  𝑘𝐵𝑇

𝛼𝑒−𝛼

1 − 𝑒−𝛼

Multiply numerator & denominator by 𝑒𝛼:

< 𝐸 > = 𝑘𝐵𝑇
𝛼

𝑒𝛼  − 1

Remember, 𝛼 =
ℎ𝜈

𝑘𝐵𝑇
. Hence, < 𝐸 > =

ℎ𝜈

𝑒

ℎ𝜈
𝑘𝐵𝑇 − 1

Now, the no. of modes in the range 𝜈, 𝜈+𝑑𝜈 is  𝑁 𝜈 𝑑𝜈 =
8𝜋𝑉

𝑐3 𝜈2 𝑑𝜈.

PH24101: Physics (B.Tech. I)
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Module 4 (Quantum Mechanics)

Planck’s theory of black body radiation

Derivation
< 𝐸 > =

ℎ𝜈

𝑒
ℎ𝜈

𝑘𝐵𝑇  −  1

Now, the no. of modes in the range 𝜈, 𝜈+𝑑𝜈 is  𝑁 𝜈 𝑑𝜈 =
8𝜋𝑉

𝑐3 𝜈2 𝑑𝜈.

Therefore,  𝑢 𝜈 𝑑𝜈 =
1

𝑉
 ×

8𝜋𝑉

𝑐3 𝜈2 𝑑𝜈 × < 𝐸 > 

                                    =
1

𝑉
 ×

8𝜋𝑉

𝑐3 𝜈2 𝑑𝜈 ×
ℎ𝜈

𝑒

ℎ𝜈
𝑘𝐵𝑇 − 1

                                     =
8𝜋ℎ

𝑐3

𝜈3 𝑑𝜈

𝑒ℎ𝜈/𝑘𝐵𝑇 − 1
  

=> Reproduces the experimental curve

Planck radiation formula,  𝑢 𝜈 𝑑𝜈 =
8𝜋ℎ

𝑐3

𝜈3 𝑑𝜈

𝑒ℎ𝜈/𝑘𝐵𝑇 − 1
  

PH24101: Physics (B.Tech. I)



Thus, at low frequencies Planck’s formula becomes

Which is Rayleigh-Jeans formula.

Black body radiation
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Module 4 (Quantum Mechanics)

Planck’s theory of black body radiation

Derivation

𝑢 𝜈 𝑑𝜈 =
8𝜋ℎ

𝑐3

𝜈3 𝑑𝜈

𝑒ℎ𝜈/𝑘𝐵𝑇  −  1

At high frequencies, ℎ𝜈 ≫ 𝑘𝐵𝑇 and 𝑒ℎ𝜈/𝑘𝐵𝑇 → ∞, which means 𝑢 𝜈 𝑑𝜈 → 0.

At low frequencies, ℎ𝜈 ≪ 𝑘𝐵𝑇 and 
ℎ𝜈

𝑘𝐵𝑇
≪ 1 
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Module 4 (Quantum Mechanics)

❑ Blackbody radiation – Example Problems

❑ For the first case, you have 𝜈1 = 660 𝐻𝑧 = 660 𝑠𝑒𝑐−1.

❑ Calculate the corresponding energy ℎ𝜈1 in Joule.

❑ Now compare the value with the vibrational energy 0.04 𝐽.

❑ For the second case, you have 𝜈2 = 5 × 1014 𝑠𝑒𝑐−1.

❑ Calculate the corresponding energy ℎ𝜈2 in Joule.

❑ Convert it in electron-volt (eV) unit.

❑ Now compare.

PH24101: Physics (B.Tech. I)



Photoelectric Effect (not in syllabus)
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Module 4 (Quantum Mechanics)

Recall Planck’s theory of black body radiation

Energy of light is discrete and comes in packets of energy. Such packets represent particles called “photons”.

❑ Hertz Experiment (1886-87): He noticed that sparks occurred more readily in the air gap of his transmitter when 

ultraviolet light was directed at one of the metal balls.

❑ The cause was electrons emitted when the frequency of the light was sufficiently high. This phenomenon is known 

as the photoelectric effect and the emitted electrons are called photoelectrons.

❑ It is one of the ironies that the same work to demonstrate that light consists of electromagnetic waves also gave 

the first hint that this was not the whole story.

PH24101: Physics (B.Tech. I)
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Module 4 (Quantum Mechanics)

Recall Planck’s theory of black body radiation

Energy of light is discrete and comes in packets of energy. Such packets represent particles called “photons”.

❑ Experiment: 

❑ An evacuated tube containing two electrodes (cathode and 

anode) – connected to a source of variable voltage.

❑ Now, shine the light.

❑ The incident light knocked out electrons from the cathode in 

the discharge tube – photoelectrons.

❑ Now, you have two situations:

❑ If 𝑉 > 0, the electrons accelerate.

❑ If 𝑉 < 0, the emitted will decelerate.

− +

Quartz window
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Module 4 (Quantum Mechanics)

Recall Planck’s theory of black body radiation

Energy of light is discrete and comes in packets of energy. Such packets represent particles called “photons”.

❑ If 𝑉 > 0, the electrons accelerate.

❑ If 𝑉 < 0, the emitted electrons will decelerate.

❑ At a certain value 𝑉 =  −𝑉0, current stops. => 𝑉0 is called the 

stopping potential. 

❑ Note: 𝑉0 depends on frequency and not on intensity (not expected 

classically). Change in intensity DOES NOT change 𝑉0. Light energy 

depends on frequency, not on intensity.

PH24101: Physics (B.Tech. I)
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Module 4 (Quantum Mechanics)

Recall Planck’s theory of black body radiation

Energy of light is discrete and comes in packets of energy. Such packets represent particles called “photons”.

❑ Einstein’s explanation:

❑ Suppose, 𝑊0 is the energy required to knock an electron.

❑ From the energy conversion, we get, ℎ𝜈 = 𝑊0 +
1

2
𝑚𝑒𝑣2

❑ At 𝑉 = 𝑉0, Kinetic Energy = 0. So,
1

2
𝑚𝑒𝑣2 = 𝑒𝑉0

❑ From the energy conversion, we get, ℎ𝜈 = 𝑊0 +
1

2
𝑚𝑒𝑣2

❑ So, we get, ℎ𝜈 = 𝑊0 +
1

2
𝑚𝑒𝑣2 = 𝑊0 + 𝑒𝑉0

❑ This gives 𝜈 =
𝑊0+𝑒𝑉0

ℎ
  => 𝜈 vs. 𝑉0 will give a straight line.

Notice: 𝑉0 depends on frequency and not on intensity.
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Light – Both wave and particle 
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Module 4 (Quantum Mechanics)

❑ Recall Planck’s theory of black body radiation: Energy of light is discrete and comes in packets of energy. Such 

packets represent particles called “photons”.

❑ According to the wave theory, light waves leave a source with their energy spread out continuously through the 

wave pattern. According to the quantum theory, light consists of individual photons, each small enough to be 

absorbed by a single electron. 

❑ Yet, despite the particle picture of light it presents, the quantum theory needs the frequency of the light to 

describe the photon energy.
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Module 4 (Quantum Mechanics)

❑ So far: the wave theory of light explains diffraction and interference, which the quantum theory cannot account 

for, and, quantum theory explains the photoelectric effect, which the wave theory cannot account for.

❑ The photoelectric effect provides convincing evidence that photons of light can transfer energy to electrons. Is the 

inverse process also possible? That is, can part or all of the kinetic energy of a moving electron be converted into a 

photon? The inverse photoelectric effect.

❑ X-rays (consist of high-energy photons) and X-ray Diffraction

❑ Compton Effect (Further confirmation of the photon model)
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❑ Recall: According to the quantum theory of light, photons behave like particles except for their lack of rest mass.

❑ Compton effect is the scattering of photons by free electrons in the target material. 

❑ In photoelectric effect, a photon is completely absorbed and an electron is emitted.

❑ In Compton effect, the photon is NOT completely absorbed, but scattered by the electron.

❑ Compton allowed X-rays of wavelength 𝜆 to fall on a graphite target, and the intensity of the scattered rays were 

measured as a function of their wavelengths. 

❑ An X-ray photon strikes an electron (assumed to be initially at rest in the laboratory coordinate system) and is 

scattered away from its original direction of motion while the electron receives an impulse and begins to move. 

❑ We can think of the photon as losing an amount of energy in the collision that is the same as the kinetic energy KE 

gained by the electron, although actually separate photons are involved.

❑ He found peaks in the intensity of scattered rays at two different values of their wavelength: 𝜆1 = 𝜆 (original X-ray 

wavelength), and 𝜆1 = 𝜆′ > 𝜆.
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❑ Momentum of incident photon:

❑ 𝐸 = ℎ𝜈 = 𝑚0
2𝑐4 + 𝑝2𝑐2, where the rest mass of photon, 𝑚0 = 0.

❑ 𝐸 = 𝑝𝑐 ⟹  𝑝 =
𝐸

𝑐
  (momentum).

0
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❑ Conservation of momentum along 𝑥-direction (along the direction of the original photon)

❑ Equation 1:
ℎ𝜈

𝑐
=

ℎ𝜈′

𝑐
𝐶𝑜𝑠𝜑 + 𝑝𝑒𝐶𝑜𝑠𝜃 ⟹ 𝑝𝑒𝑐 𝐶𝑜𝑠𝜃 = ℎ𝜈 − ℎ𝜈′ 𝐶𝑜𝑠𝜑

❑ Conservation of momentum along 𝑦-direction (along the direction perpendicular to the original photon)

❑ Equation 2:     0 =
ℎ𝜈′

𝑐
 𝑆𝑖𝑛𝜑 − 𝑝𝑒 𝑆𝑖𝑛𝜃 ⟹  𝑝𝑒𝑐 𝑆𝑖𝑛𝜃 = ℎ𝜈′ 𝑆𝑖𝑛𝜑

❑ The initial photon momentum is ℎ𝜈/𝑐, the scattered 

photon momentum is ℎ𝜈′/𝑐, and the initial and final 

electron momenta are respectively 0 and 𝑝𝑒. 

❑ Use the conservation of momentum (Initial 

momentum = final momentum)

PH24101: Physics (B.Tech. I)



Compton Effect

Dr. Anupam Roy 31

Module 4 (Quantum Mechanics)

❑ Along x-direction: Equation 1:
ℎ𝜈

𝑐
=

ℎ𝜈′

𝑐
𝐶𝑜𝑠𝜑 + 𝑝𝑒𝐶𝑜𝑠𝜃 ⟹ 𝑝𝑒𝑐 𝐶𝑜𝑠𝜃 = ℎ𝜈 − ℎ𝜈′ 𝐶𝑜𝑠𝜑

❑ Along y-direction: Equation 2:     0 =
ℎ𝜈′

𝑐
 𝑆𝑖𝑛𝜑 − 𝑝𝑒 𝑆𝑖𝑛𝜃 ⟹  𝑝𝑒𝑐 𝑆𝑖𝑛𝜃 = ℎ𝜈′ 𝑆𝑖𝑛𝜑

PH24101: Physics (B.Tech. I)



Compton Effect

Dr. Anupam Roy 32

Module 4 (Quantum Mechanics)

❑ Next, we equate the two expressions for the total energy of a particle.

❑ 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐸𝑛𝑒𝑟𝑔𝑦 =  𝐸𝑝ℎ𝑜𝑡𝑜𝑛 +  𝐸𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛 = ℎ𝜈 + 𝑚0𝑐2  (𝑚0 = rest mass of electron, electron is at rest initially)

❑ 𝐹𝑖𝑛𝑎𝑙 𝐸𝑛𝑒𝑟𝑔𝑦 = ℎ𝜈′ + 𝑚0
2𝑐4 + 𝑝𝑒

2𝑐2

❑ Using conservation of energy: Initial Energy = Final Energy
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❑ Equation 3 (conservation of momentum): 𝑝𝑒
2𝑐2 = (ℎ𝜈)2 + (ℎ𝜈′)2 −2 ℎ𝜈 ℎ𝜈′ 𝐶𝑜𝑠𝜑

❑ Equation 4 (conservation of energy): 𝑝𝑒
2𝑐2 = (ℎ𝜈)2 + (ℎ𝜈′)2 −2 ℎ𝜈 ℎ𝜈′ + 2𝑚0𝑐2 ℎ𝜈 − ℎ𝜈′
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❑ We have,  𝜆′ − 𝜆 =
ℎ

𝑚0𝑐
(1 − 𝐶𝑜𝑠𝜑)  [𝜑 is the scattering angle]

❑ It gives change in wavelength due to scattering at an angle 𝜙 by a 

particle of rest mass 𝑚0.

❑ Define the Compton wavelength as:  𝜆𝐶 =
ℎ

𝑚0𝑐

❑ And, we have:  𝜆′ − 𝜆 = 𝜆𝐶(1 − 𝐶𝑜𝑠𝜑)

❑ The Compton wavelength gives the scale of the wavelength change of the incident photon. The Compton effect is 

the chief means by which x-rays lose energy when they pass through matter.

❑ From the equation  𝜆′ − 𝜆 = 𝜆𝐶(1 − 𝐶𝑜𝑠𝜑), we note that the greatest wavelength change possible corresponds 

to 𝜑 = 180°, when the wavelength change will be twice the Compton wavelength 𝜆𝐶 . 

❑ For an electron, 𝜆𝐶 =2.426 pm. The maximum wavelength change in the Compton effect is 4.852 pm. Changes of 

this magnitude or less can be observed using X-rays.
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❑ We have,  𝜆′ − 𝜆 =
ℎ

𝑚0𝑐
(1 − 𝐶𝑜𝑠𝜑) [𝜑 is the scattering angle]

❑ Compton wavelength,  𝜆𝐶 =
ℎ

𝑚0𝑐
  and, we have:  𝜆′ − 𝜆 = 𝜆𝐶(1 − 𝐶𝑜𝑠𝜑)

❑ So, 𝜆′ > 𝜆    (This cannot be explained classically) 

❑ One peak is obtained at  𝜆1 = 𝜆 (scattered photon has the same wavelength as 

that of the incident photon)

❑ Other peak is obtained at 𝜆2 = 𝜆′ > 𝜆  (scattered photon has smaller wavelength) 

❑ Peak at unshifted wavelength 𝜆: Once the outer electron (loosely bound) has been 

removed from the atom, the remaining electrons remain tightly bound, so the 

incident X-ray beam cannot remove them easily. In this case, during the collision, 

the entire atom moves (instead of a single electron). So 𝑚0 becomes very large 

(~4 orders of magnitude), since rest mass of atom is very large => 𝜆′ ≃ 𝜆 
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❑ Compton effect – Example Problems

❑ Incident wavelength, 𝜆 = 10 𝑝𝑚 and scattering angle, 𝜙 = 45°.

❑ Calculate the scattered wavelength, 𝜆′.

❑ Use the Compton effect expression:

❑ 𝜆′ − 𝜆 =
ℎ

𝑚0𝑐
(1 − 𝐶𝑜𝑠𝜑) = 𝜆𝐶(1 − 𝐶𝑜𝑠𝜑)

❑ For the second case, 𝜆′ − 𝜆 is maximum when 𝜙 = 180°.

❑ For the third case, maximum recoil kinetic energy is        

𝐾𝐸𝑚𝑎𝑥 = ℎ𝜈 − ℎ𝜈′ = ℎ𝑐
1

𝜆
−

1

𝜆′  
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❑ Blackbody radiation

❑ Rayleigh-Jeans formula

❑ The ultraviolet catastrophe of classical physics

❑ Planck’s theory of blackbody radiation

❑ Photoelectric effect (not in syllabus)

❑ Compton effect

Textbook: Arthur Beiser – Concepts of Modern Physics
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Module -4 : Quantum Mechanics

Planck's theory of black-body radiation, Compton effect, Wave particle duality, De Broglie waves, Davisson and 

Germer's experiment, Uncertainty principle, Brief idea of Wave Packet, Wave Function and its physical interpretation, 

Schrodinger equation in one-dimension, free particle, particle in an infinite square well. [9] 

Text book: T3: Arthur Beiser (AB), Concept of Modern Physics, 6th edition 2009, Tata McGraw- Hill 

Reference book: R1: Fundamentals of Physics, Halliday, Walker and Resnick 
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❑ We know about this phenomenon for light (which has both particle-like and wave-like properties). 

❑ Louis de Broglie suggested in 1924 that any moving objects have both wave as well as particle-like characters [in 

1929 de Broglie received the Nobel Prize].

❑ For a photon of light of frequency 𝜈 has the momentum,  𝑝 =
ℎ𝜈

𝑐
=

ℎ

𝜆
       [Recall: 𝜆𝜈 = 𝑐]

❑ So, we have 𝜆 =
ℎ

𝑝
    (where 𝜆 = wavelength, 𝑝 = momentum, ℎ = Planck’s constant)

❑ Louis de Broglie suggested that this relation is applicable to material particles as well. 

❑ Consider a particle of mass 𝑚0 moving with velocity 𝑣. Momentum of the particle is 𝑝 = 𝛾𝑚0𝑣 and its de Broglie 

wavelength is  𝜆 =
ℎ

𝛾𝑚
0
𝑣
      [Recall: 𝛾 is the relativistic factor: 𝛾 =

1

1−𝑣2/𝑐2 
]

❑ The greater the particle’s momentum, the shorter its wavelength 𝜆.
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❑ Example Problem:

❑ Find the de Broglie wavelengths of a golf ball of mass 46 gm moving with a velocity of 30 m/s. 

❑ Find the same for an electron moving velocity of 107 m/s.  

❑ Solution:

❑ Problem 1: 𝛾 ≈ 1. So,  𝜆 =
ℎ

𝑝
=

ℎ

𝑚
0
𝑣

=
6.63 × 10−11

0.046 ×30
 m. 𝜆 ≈ 4.8 × 10−34 m   => The wavelength 𝜆 of the golf ball is 

so small compared with its dimension of the ball – so, it is not possible to detect the wave nature.

❑ Problem 2: In case of an electron, 𝜆 ≈ 7.3 × 10−11 m   => The wavelength is comparable with the dimensions of 

atoms (for example, radius of the hydrogen atom is 5.3 × 10−11 m). Thus, the wave nature is possible to detect. 

The wave character of moving electrons is the key to understanding atomic structure and behavior.
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❑ Experimental verification of existence of de Broglie waves

❑ In 1927 Clinton Davisson and Lester Germer in the United States and G. P. Thomson in England independently 

confirmed de Broglie’s hypothesis.

❑ They demonstrated that electron beams are diffracted when they are scattered by the regular atomic arrays of 

crystals.

❑ Let’s look at the experiment of 

Davisson and Germer (because its 

interpretation is more direct).
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❑ Davisson and Germer Experiment – Confirmation of de Broglie hypothesis 

❑ They were studying the scattering of electrons from a Nickel target. 

❑ The electron gun consisted of a heated filament that released electrons. Electrons 

fell on a nickel crystal, and scattered beam is detected by the electron detector.

❑ Initially, they found that the scattered electrons emerge in all directions and the 

intensity depended minimally on either the scattering angle (𝜑) or the energy. This 

is what we should expect from Classical physics. 

❑ During the experiment, an accident occurred that allowed air to enter their 

apparatus and oxidize the Nickel surface. To remove the oxide to pure nickel, the 

target was baked (heated at high temperature). After this treatment, they 

resumed the measurement.

❑ Now the results were very different! 

Electron gun

𝜑
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❑ Davisson and Germer Experiment – Confirmation of de Broglie Hypothesis 

❑ What was the surprising result?

❑ After the target sample was baked, there was a strong dependence on both 𝜑 

and the energy. 

❑ Instead of a continuous variation of scattered electron intensity with angle 𝜑, 

distinct maxima and minima were observed whose positions depended upon 

the electron energy (or, the potential difference, 𝑉)! (𝑉 is the voltage used to 

accelerate the electrons).

Electron gun

𝜑
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❑ Davisson and Germer Experiment – Confirmation of de Broglie Hypothesis 

❑ Scattering of electrons from a Nickel target after baking: What was the surprise?

❑ For different values of 𝑉, Davisson and Germer plotted 𝐼 vs 𝜑 graph. The 

maximum intensity was found for 𝑉 = 54 volts and 𝜑= 50°. 

Electron gun

𝜑
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❑ Davisson and Germer Experiment – Confirmation of de Broglie hypothesis 

❑ So far……

❑ Scattering of electrons from a Nickel target (before baking): They found very little dependence of detector current 

(𝐼) on either the voltage ‘𝑉’ or the angle ‘𝜑’. As expected from Classical physics.

❑ Scattering of electrons from a Nickel target after baking: Surprising result!!!

❑ Instead of a continuous variation of scattered electron intensity with angle 𝜑, distinct maxima and minima were 

observed whose positions depended upon the electron energy (or, the potential difference, 𝑉)! 

❑ For different values of 𝑉, Davisson and Germer plotted 𝐼 vs 𝜑 graph. The maximum intensity was found for 𝑉 = 54 

volts and 𝜑 = 50°. 

❑ Two important questions: What is the reason for this new effect? Why did it not appear until after the nickel target 

was baked?
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❑ Davisson and Germer Experiment – Confirmation of de Broglie hypothesis 

❑ What is the reason for this new effect? Why did it not appear until after the nickel target was baked?

❑ de Broglie’s hypothesis suggested that electron waves were being diffracted by the target, much as x-rays are 

diffracted by planes of atoms in a crystal. 

❑ The peaks could only be explained as a constructive interference of waves scattered by the periodically arranged 

atoms of the crystal.

❑ Heating the block of nickel at high temperature causes the many smaller crystal grains to form into a single large 

crystal, all of whose atoms are arranged in a regular lattice.

❑ Any crystal has atoms that are arranged in planes called Bragg planes. These planes are all parallel to each other. 

The scattered beam is said to have undergone Bragg reflections from these planes.

❑ Let us see whether we can verify that de Broglie waves are responsible for the findings of Davisson and Germer.
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❑ Davisson and Germer Experiment – Confirmation of de Broglie Hypothesis 

❑ Let us see whether we can verify that de Broglie waves are 

responsible for the findings of Davisson and Germer.

❑ In a particular case, a beam of 54 eV electrons was directed 

perpendicularly at the nickel target and a sharp maximum in 

the electron distribution occurred at an angle of 50° with 

the original beam. 

❑ The angles of incidence and scattering relative to the family 

of Bragg planes shown in Figure are both 65°. 

❑ The distance between two Bragg planes is 𝑑 = 0.091 nm 

(This was measured from X-ray diffraction).

54 eV 
electrons 
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❑ Davisson and Germer Experiment – Confirmation of de Broglie Hypothesis 

❑ Let us see whether we can verify that de Broglie waves are 

responsible for the findings of Davisson and Germer.

❑ The Bragg equation for maxima in the diffraction pattern is 

2𝑑 𝑆𝑖𝑛𝜃 = 𝑛𝜆

❑ Here 𝑑 = 0.091 nm and 𝜃 = 65°. For 𝑛 = 1, the de Broglie 

wavelength 𝜆 of the diffracted electrons is 𝜆 = 2𝑑 𝑆𝑖𝑛𝜃 = 2 ×

0.091 𝑛𝑚 × 𝑆𝑖𝑛65° = 0.165 𝑛𝑚

❑ Now we use de Broglie’s formula 𝜆 =
ℎ

𝑝
=

ℎ

𝛾𝑚
0
𝑣

 to find the 

expected wavelength of the electrons. 
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❑ Davisson and Germer Experiment – Confirmation of de Broglie Hypothesis 

❑ Using the Bragg diffraction, [for 𝑑 = 0.091 nm, 𝜃 = 65°, and 𝑛 = 1], the de Broglie wavelength 𝜆 of the diffracted 

electrons is 𝜆 = 2𝑑 𝑆𝑖𝑛𝜃 = 2 × 0.091 𝑛𝑚 × 𝑆𝑖𝑛65° = 0.165 nm 

❑ Now we use de Broglie’s formula 𝜆 =
ℎ

𝑝
=

ℎ

𝛾𝑚
0
𝑣
 to find the expected wavelength of the electrons. 

❑ Electron kinetic energy of 54 eV is small compared with its rest energy 𝑚0𝑐2 of 0.51 MeV, so we consider 𝛾 = 1.

❑ Hence, electron momentum 𝑝 = 𝑚𝑣 = 2𝑚𝐸  [Recall: Kinetic Energy, 𝐸 =
1

2
𝑚𝑣2]

❑ Use, 𝐸 = 54 eV= 54 × 1.6 × 10−19 J

❑ Use, 𝑚 = 9.1 × 10−31 kg

❑ Then, 𝑝 = 2𝑚𝐸 = 4.0 × 10−24  kg.m/s
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❑ Davisson and Germer Experiment – Confirmation of de Broglie Hypothesis 

❑ (Remember the physical phenomena corresponding to waves and particles)

❑ Using Bragg diffraction condition, the de Broglie wavelength 𝜆 of the diffracted electrons is 𝜆 = 2𝑑 𝑆𝑖𝑛𝜃 = 2 ×

0.091 𝑛𝑚 × 𝑆𝑖𝑛65° = 0.165 nm [In this case, 𝑑 = 0.091 nm, 𝜃 = 65° and 𝑛 = 1.]  

❑ Using de Broglie’s formula, the electron wavelength is 𝜆 =
ℎ

𝑝
=

6.63 × 10−34 𝐽.𝑠

4.0 × 10−24 𝑘𝑔.𝑚/𝑠
= 0.166 𝑛𝑚 

❑ de Broglie hypothesis gives the correct value of 𝜆 for which constructive interference is obtained at 𝜃 = 65° and 𝑉 = 

54 volts. Davisson-Germer experiment thus directly verifies de Broglie’s hypothesis of the wave nature of moving 

bodies.
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❑ Davisson and Germer Experiment – Confirmation of de Broglie Hypothesis 

❑ Problem 

An electron has a de Broglie wavelength of λ = 2.0 pm. Find its kinetic energy in keV.

Hint: 𝑝 =
ℎ

𝜆
=

ℎ𝜈

𝑐
     => 𝑝𝑐 =

ℎ𝑐

𝜆
 = 6.20 × 105 eV  [1eV = 1.6 ×10-19 J] 

𝑚0𝑐2 = 511 keV

𝐸 = 𝑚𝑐2 = 𝑝𝑐 2 + (𝑚0𝑐2)2 =?

Kinetic Energy, KE = 𝐸 − 𝑚0𝑐2 = 292 keV.
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Textbook: Arthur Beiser – Concepts of Modern Physics

❑ Blackbody radiation

❑ Rayleigh-Jeans formula

❑ The ultraviolet catastrophe of classical physics

❑ Planck’s theory of blackbody radiation

❑ Photoelectric effect (not in syllabus)

❑ Compton effect

❑ Wave particle duality – de Broglie waves

❑ Confirmation of de Broglie hypothesis: Davisson and Germer Experiment
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Module -4 : Quantum Mechanics

Planck's theory of black-body radiation, Compton effect, Wave particle duality, De Broglie waves, Davisson and 

Germer's experiment, Uncertainty principle, Brief idea of Wave Packet, Wave Function and its physical interpretation, 

Schrodinger equation in one-dimension, free particle, particle in an infinite square well. [9] 

Text book: T3: Arthur Beiser (AB), Concept of Modern Physics, 6th edition 2009, Tata McGraw- Hill 

Reference book: R1: Fundamentals of Physics, Halliday, Walker and Resnick 

PH24101: Physics (B.Tech. I)



Uncertainty Principle

Dr. Anupam Roy 55

Module 4 (Quantum Mechanics)

❑ This principle, discovered by Werner Heisenberg in 1927, is one of the most 

significant of physical laws

❑ Classically, we can find the exact trajectory of a particle.

❑ However, measuring both 𝑥 and 𝑝 with infinite precision is impossible in quantum 

mechanics.

❑ It is impossible to know both the exact position and exact momentum of an object 

at the same time.

❑ ∆𝑥 ∆𝑝𝑥  ≥
ℏ

2
    (where, ∆𝑥 is uncertainty in position and ∆𝑝𝑥 is uncertainty in x-

component of momentum, ℏ = ℎ/2𝜋)

❑ If position is precise, momentum is very imprecise, and vice versa.

PH24101: Physics (B.Tech. I)



Uncertainty Principle

Dr. Anupam Roy 56

Module 4 (Quantum Mechanics)

❑ This principle, discovered by Werner Heisenberg in 1927, is one of the most significant of physical laws

❑ Consider the slit width is ‘𝑎’. 

❑ Consider electron wavelength to be 𝜆.

❑ Most of the electrons strike the screen within the central maximum.

❑ A rough estimate of the uncertainty in the electron position in the y-

direction, ∆𝑦 = 𝑎.

❑ Let’s estimate (rough) of the uncertainty in the electron momentum ∆𝑝𝑦.

❑ For a small diffraction angle (𝜃),
𝑝𝑦

𝑝𝑥
= 𝑡𝑎𝑛𝜃 ≃ 𝜃.  

❑ So, 𝑝𝑦 ≃ 𝑝𝑥𝜃 

❑ Now, −
𝜆

𝑎
< 𝜃 < +

𝜆

𝑎

❑ Proof (elementary) of uncertainty principle – Single slit electron diffraction

❑ Using 𝑝𝑦 ≃ 𝑝𝑥𝜃, we can rewrite as −
𝜆

𝑎
<

𝑝𝑦

𝑝𝑥
<

+
𝜆

𝑎

❑ So, uncertainty in 𝑝  is ∆𝑝 ≳ 𝑝
𝜆
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❑ This principle, discovered by Werner Heisenberg in 1927, is one of the most significant of physical laws

❑ Consider the slit width is ‘𝑎’, so uncertainty in 𝑦 is ∆𝑦 = 𝑎.

❑ We have, 𝑝𝑦 ≃ 𝑝𝑥𝜃

❑ Uncertainty in 𝑝𝑦 is    ∆𝑝𝑦 ≳  𝑝𝑥
𝜆

𝑎

❑ Using de Broglie hypothesis, 𝜆 =
ℎ

𝑝
≃

ℎ

𝑝𝑥
  (for small 𝜃, 𝑝𝑦 << 𝑝𝑥)

❑ Hence, ∆𝑝𝑦 ≳  𝑝𝑥
1

𝑎

ℎ

𝑝𝑥
 ≳

ℎ

𝑎
 ≳

ℎ

∆𝑦

❑ Thus, ∆𝑦 ∆𝑝𝑦 ≳ ℎ 

❑ Similarly, ∆𝑥 ∆𝑝𝑥 ≥ ℎ 

❑ Proof (elementary) of uncertainty principle – Single slit electron diffraction
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❑ This principle, discovered by Werner Heisenberg in 1927, is one of the most significant of physical laws

❑ Heisenberg’s uncertainty relations:

❑ ∆𝑥 ∆𝑝𝑥 ≥
ℏ

2

❑ ∆𝑦 ∆𝑝𝑦 ≥
ℏ

2

❑ ∆𝑧 ∆𝑝𝑧 ≥
ℏ

2

• These equations state that the product of the uncertainty ∆𝑥 in the position of an 

object at some instant and the uncertainty ∆𝑝𝑥 in its momentum component in the 

𝑥 direction at the same instant is equal to or greater than
ℏ

2
.

• If we arrange matters so that ∆𝑥 is small, corresponding to a narrow wave group, 

then ∆𝑝𝑥 will be large. If we reduce ∆𝑝𝑥 in some way, a broad wave group is 

inevitable and ∆𝑥 will be large.

❑ Demonstrated this relation using a single slit electron diffraction.

❑ Another uncertainty relation: ∆𝐸 ∆𝑡 ≥
ℏ

2
   (∆𝐸 and ∆𝑡 are the uncertainties in the energy of a particle and in time, 

respectively.)
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❑ This principle, discovered by Werner Heisenberg in 1927, is one of the most significant of physical laws

❑ If there are 𝑛 waves in ∆𝑥, then ∆𝑥 = 𝑛𝜆.

❑ For a different wave with wavelength 𝜆 + Δ𝜆, ∆𝑥 = 𝑛 − Δ𝑛  (𝜆 + Δ𝜆).

❑ Hence, 𝑛 − Δ𝑛 𝜆 + Δ𝜆 = 𝑛𝜆

 => 𝑛𝜆 − 𝜆Δ𝑛 + 𝑛Δ𝜆 − Δ𝑛Δ𝜆 = 𝑛𝜆

 => 𝑛Δ𝜆 = 𝜆Δ𝑛      (ignoring the term Δ𝑛Δ𝜆)

 =>
Δ𝜆

𝜆
=

Δ𝑛

𝑛
 

❑ Now, 𝑝 =
ℎ

𝜆
   => Δ𝑝 = −

ℎ

𝜆2  Δ𝜆   =>
Δ𝑝

𝑝
=

ℎ

𝜆2 Δ𝜆

ℎ

𝜆

=
Δ𝜆

𝜆

❑ Derivation

Δ𝑥

𝑛 waves
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❑ This principle, discovered by Werner Heisenberg in 1927, is one of the most significant of physical laws

❑ If there are 𝑛 waves in ∆𝑥, then ∆𝑥 = 𝑛𝜆.

❑
Δ𝜆

𝜆
=

Δ𝑛

𝑛
 

❑ Now, 𝑝 =
ℎ

𝜆
   => Δ𝑝 = −

ℎ

𝜆2  Δ𝜆   =>
Δ𝑝

𝑝
=

ℎ

𝜆2 Δ𝜆

ℎ

𝜆

=
Δ𝜆

𝜆

❑ Now, if uncertainty in the no. of waves in ∆𝑥 is ∆𝑛 ≥ 1, then
Δ𝜆

𝜆
≥

1

𝑛
 

❑ So,
Δ𝑝

𝑝
≥

1

𝑛
 

❑ So, Δ𝑝 ≥
𝑝

𝑛

❑ Derivation

❑ From two relations in red, ∆𝑥 Δ𝑝 ≥ 𝑛𝜆
𝑝

𝑛
= 𝜆𝑝 = ℎ.

❑ Hence, ∆𝑥 ∆𝑝𝑥 ≥ ℎ

Δ𝑥

𝑛 waves
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❑ This principle, discovered by Werner Heisenberg in 1927, is one of the most significant of physical laws
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❑ This principle, discovered by Werner Heisenberg in 1927, is one of the most significant of physical laws
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❑ This principle, discovered by Werner Heisenberg in 1927, is one of the most significant of physical laws
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Module -4 : Quantum Mechanics

Planck's theory of black-body radiation, Compton effect, Wave particle duality, De Broglie waves, Davisson and 

Germer's experiment, Uncertainty principle, Brief idea of Wave Packet, Wave Function and its physical interpretation, 

Schrodinger equation in one-dimension, free particle, particle in an infinite square well. [9] 

Text book: T3: Arthur Beiser (AB), Concept of Modern Physics, 6th edition 2009, Tata McGraw- Hill 

Reference book: R1: Fundamentals of Physics, Halliday, Walker and Resnick 
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❑ Every object has an associated ‘wave’. This wave is described by a function called the ‘wavefunction’.

❑ In water waves, the quantity that varies periodically is the height of the water surface.

❑ In sound waves, it is pressure that varies. 

❑ In light waves, electric and magnetic fields vary. 

❑ Recall: de Broglie wave is associated with each particle.

❑ What is it that varies in the case of matter waves? 

❑ The quantity whose variations make up matter waves is called the wavefunction, denoted as Ψ.

❑ Since all matter is made of constituent particles, every object has a corresponding “wavefunction” that is formed 

due to the superposition of all the waves of its constituent particles.
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❑ Every object has an associated ‘wave’. This wave is described by a function called the ‘wavefunction’.

❑ Any object has a large number of constituent particles, each having its own wave. They superpose to give to the waveform of 

the entire object. This wavefunction is denoted by Ψ.

❑ The value of the wavefunction associated with a moving body at the particular point 𝑥, 𝑦, 𝑧 in space at the time 𝑡 is related to 

the likelihood of finding the body there at the time.

❑ Consider one-dimension case: The particle can exist only in the region where Ψ(𝑥) is non-zero.

❑ So, Ψ(𝑥) must be related to the probability of finding the particle in a certain region.

❑ However, the wavefunction Ψ itself has no direct physical significance. Why?

PH24101: Physics (B.Tech. I)



Wavefunction

Dr. Anupam Roy 68

Module 4 (Quantum Mechanics)

❑ Every object has an associated ‘wave’. This wave is described by a function called the ‘wavefunction’.

❑ The wavefunction Ψ itself has no direct physical significance. Why?

❑ The probability that something be in a certain place at a given time must lie between 0 (the object is definitely not there) and 1 

(the object is definitely there). An intermediate probability, say 0.2, means that there is a 20% chance of finding the object. 

❑ But the amplitude of a wave can be negative as well as positive, and a negative probability is meaningless. Hence Ψ by itself 

cannot be an observable quantity.

❑ This objection does not apply to |Ψ 𝑥 |2, the square of the absolute value of the wavefunction, known as probability density. 

❑ |Ψ 𝑥 |2 is known as probability density: The probability of experimentally finding the body described by the wave function 

Ψ(𝑥) at the point 𝑥 at the time 𝑡 is proportional to the value of |Ψ 𝑥 |2 
there at 𝑡.

❑ A large value of |Ψ 𝑥 |2 means the strong possibility of the body’s presence, while a small value of |Ψ 𝑥 |2 means the slight 

possibility of its presence. As long as |Ψ 𝑥 |2 is not actually zero somewhere, there is a definite chance, however small, of 

detecting it there. This interpretation was first made by Max Born in 1926.
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❑ Every object has an associated ‘wave’. This wave is described by a function called the ‘wavefunction’.

❑ |Ψ 𝑥 |2 is known as probability density: The probability of experimentally finding the body described by the wave function 

Ψ(𝑥) at the point 𝑥 at the time 𝑡 is proportional to the value of |Ψ 𝑥 |2 
there at 𝑡.

❑ The probability of finding the particle in the region (𝑥, 𝑥 + 𝑑𝑥)  is given by: 𝑃 𝑥, 𝑥 + 𝑑𝑥 ≡ 𝑃 𝑥 𝑑𝑥 = Ψ 𝑥 2𝑑𝑥 =

Ψ∗(𝑥) Ψ 𝑥  𝑑𝑥  (where Ψ∗(𝑥) is the complex conjugate)

❑ Since wavefunctions are in general complex [i.e., Ψ 𝑥 = 𝐴 𝑥 + 𝑖𝐵(𝑥)], they are not physically measurable objects. (Note: 

The probability, Ψ 𝑥 2 = Ψ∗(𝑥) Ψ 𝑥  is always a positive real quantity, as required). How?

❑ As wavefunctions are in general complex, we can write: Ψ 𝑥 = 𝐴 𝑥 + 𝑖𝐵(𝑥)  (where A and B are real functions)

❑ So, the complex conjugate, Ψ∗ 𝑥 = 𝐴 𝑥 − 𝑖𝐵(𝑥)

❑ Hence, Ψ 𝑥 2 = Ψ∗ 𝑥 Ψ 𝑥 = 𝐴2 − 𝑖2𝐵2 = 𝐴2 + 𝐵2   (since 𝑖2 = −1)     ⇒     Ψ∗(𝑥) Ψ 𝑥  is always a positive real quantity.

❑ Ψ 𝑥  is not a measurable quantity, but 𝑃 𝑥 ≡ Ψ 𝑥 2 is measurable. Ψ 𝑥 , however, can be derived analytically by solving 

the Schrödinger equation.
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❑ Every object has an associated ‘wave’. This wave is described by a function called the ‘wavefunction’.

❑ At 𝑥1, 𝑃 𝑥1, 𝑥1 + 𝑑𝑥 ≡ 𝑃 𝑥1 𝑑𝑥 = Ψ 𝑥1
2𝑑𝑥

❑ At 𝑥2, 𝑃 𝑥2, 𝑥2 + 𝑑𝑥 ≡ 𝑃 𝑥2 𝑑𝑥 = Ψ 𝑥2
2𝑑𝑥

❑ Since Ψ 𝑥1
2𝑑𝑥 > Ψ 𝑥2

2𝑑𝑥, the probability of finding the particle in the 

range 𝑥1, 𝑥1 + 𝑑𝑥  is larger.

❑ Before we start the actual calculation of Ψ 𝑥 , we can establish certain requirements it must always fulfill. 

❑ Since Ψ 𝑥 2 is proportional to the probability density 𝑃(𝑥) of finding the body described by Ψ 𝑥 , the integral of Ψ 𝑥 2 

over all space must be finite. The body is somewhere, after all.

❑ If, ׬−∞

∞
Ψ 𝑥 2 𝑑𝑥 = 0   => the particle does not exist, and the integral obviously cannot be ∞ and still mean anything.

❑ Furthermore, Ψ 𝑥 2  cannot be negative or complex because of the way it is defined.

❑ The only possibility left is that the integral be a finite quantity if  Ψ 𝑥  is to describe properly a real body. 
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❑ Normalization

❑ Since Ψ 𝑥 2 is proportional to the probability density 𝑃(𝑥) of finding the body described by Ψ 𝑥 , the integral of Ψ 𝑥 2 

over all space must be finite. The body is somewhere, after all.

❑ ∞−׬

∞
Ψ 𝑥 2 𝑑𝑥 ≠ 0   and Ψ 𝑥 2  cannot be negative or complex because of the way it is defined.

❑ The only possibility left is that the integral be a finite quantity if  Ψ 𝑥  is to describe properly a real body. 

❑ The total probability of finding a particle in the range 𝑥 ∈ −∞, ∞  must be 1 (i.e., 100%)

❑ σ𝑥 𝑃 𝑥, 𝑥 + 𝑑𝑥 = 1 ⟹ ∞−׬

∞
𝑃 𝑥 𝑑𝑥 = 1 ⟹ ∞−׬ 

∞
Ψ 𝑥 2 𝑑𝑥 = 1   (This is in case of 1-D)
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❑ Normalization
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❑ Every object has an associated ‘wave’. This wave is described by a function called the ‘wavefunction’.

❑ Any object has a large number of constituent particles, each having its own wave. They superpose to give to the waveform of the entire object. 

This wavefunction is denoted by Ψ(𝑥).

❑ The particle can exist only in the region where Ψ(𝑥) is non-zero. So, Ψ(𝑥) must be related to the probability of finding the particle in a certain 

region. 

❑ However, Ψ(𝑥) by itself cannot be an observable quantity. (Why? Because the amplitude of a wave can be negative as well as positive, and a 

negative probability is meaningless.)

❑ This objection does not apply to |Ψ 𝑥 |2, the square of the absolute value of the wavefunction, which is known as probability density: The 

probability of experimentally finding the body described by the wave function Ψ(𝑥) at the point 𝑥 at the time 𝑡 is proportional to the value of 

|Ψ 𝑥 |2 
there at 𝑡.

❑ Since wavefunctions are in general complex [i.e., Ψ 𝑥 = 𝐴 𝑥 + 𝑖𝐵(𝑥)], they are not physically measurable objects. (Note: The probability,

Ψ 𝑥 2 = Ψ∗(𝑥) Ψ 𝑥  is always a positive real quantity, and is measurable). Ψ 𝑥 , however, can be derived analytically by solving the 

Schrödinger equation.
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❑ Normalization

❑ Before we start the actual calculation of Ψ 𝑥 , we can establish certain requirements it must always fulfill. 

❑ Since Ψ 𝑥 2 is proportional to the probability density 𝑃(𝑥) of finding the body described by Ψ 𝑥 , the integral of Ψ 𝑥 2 

over all space must be finite. The body is somewhere, after all.

❑ If, ׬−∞

∞
Ψ 𝑥 2 𝑑𝑥 = 0   => the particle does not exist, and the integral obviously cannot be ∞ and still mean anything.

❑ Furthermore, Ψ 𝑥 2  cannot be negative or complex because of the way it is defined.

❑ The only possibility left is that the integral be a finite quantity if  Ψ 𝑥  is to describe properly a real body. 

❑ The total probability of finding a particle in the range 𝑥 ∈ −∞, ∞  must be 1 (i.e., 100%)

❑ σ𝑥 𝑃 𝑥, 𝑥 + 𝑑𝑥 = 1 ⟹ ∞−׬

∞
𝑃 𝑥 𝑑𝑥 = 1 ⟹ ∞−׬ 

∞
Ψ 𝑥 2 𝑑𝑥 = 1 

❑ In 3-D,    ׮−∞

∞
|Ψ 𝑥, 𝑦, 𝑧 |2 𝑑𝑥 𝑑𝑦 𝑑𝑧 = 1
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❑ Linearity and Superposition

❑ Wavefunctions add, but not the Probabilities

❑ Schrödinger’s equation is linear in the wave function Ψ. 

❑ This means – the equation has terms that contain Ψ and its derivatives, but no terms independent of Ψ or that involve higher 

powers of Ψ or its derivatives. 

❑ Hence, a linear combination of solutions of Schrödinger’s equation for a given system is also itself a solution. 

❑ If, Ψ1 and Ψ2 are two wavefunctions that satisfy the equation (solutions of the equation), then Ψ = 𝑎1Ψ1 +  𝑎2Ψ2 is also a 

solution (𝑎1 and 𝑎2 are constants).

❑ This is nothing but the superposition principle. The wavefunctions Ψ1 and Ψ2 obey the superposition principle (just like other 

waves do). So, the interference effects can occur for wavefunctions just as they can for light, sound, water, and EM waves.
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❑ Linearity and Superposition

❑ Wavefunctions add, but not the Probabilities

❑ The diffraction pattern arises from the superposition 

of the wavefunctions Ψ1 and Ψ2 of the electrons that 

have passed through slits 1 and 2: Ψ = Ψ1 +  Ψ2. 

❑ If slit 1 only is open, the intensity varies with the 

corresponding probability density, 𝑃1 = Ψ1
2 =

Ψ1
∗ Ψ1.

❑ Similarly, for slit 2, 𝑃2 = Ψ2
2 = Ψ2

∗ Ψ2.

❑ We might expect that opening both slits would give 

an electron intensity variation described by 𝑃1 + 𝑃2.

❑ However, this is not the case because in quantum 

mechanics wave functions add, not probabilities.

❑ The probability density at the screen is therefore: 
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❑ Expectation Values

❑ How to extract information from a wave function

❑ Expectation value of the position of the single particle is
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❑ Well-Behaved Wave Functions

❑ We now know that the wavefunction (Ψ) must be normalizable. Every acceptable wave function can be normalized 

by multiplying it by an appropriate constant (we’ll see it later). 

❑ Besides being normalizable, Ψ must be continuous and single-valued, since the probability, P can have only one 

value at a particular place and time. 

❑ Momentum considerations require that the partial derivatives
𝜕Ψ

𝜕𝑥
,

𝜕Ψ

𝜕𝑦
,

𝜕Ψ

𝜕𝑧
 be finite, continuous, and single-valued.

❑ Only wavefunctions with all these properties can yield physically meaningful results when used in calculations – 

they are the “well-behaved” wavefunctions.

❑ Note: These rules are not always obeyed in model situations where we approximate the actual ones. For instance, 

wavefunctions of a particle in a box with infinitely hard walls do not have continuous derivatives at the walls (Ψ = 0 

outside the box). But in the real world, walls are never infinitely hard. So, there is no sharp change in Ψ at the walls 

and the derivatives are continuous.
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❑ Probability

❑ Solve it

❑ A particle limited to the 𝑥 axis has the wavefunction Ψ = 𝑎𝑥 between 𝑥 = 0 and 𝑥 = 1; Ψ = 0 elsewhere. Find 

the probability that the particle can be found between 𝑥 = 0.45 and 𝑥 = 0.55. 

❑ Also find the expectation value < 𝑥 > of the particle’s position.
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Module -4 : Quantum Mechanics

Planck's theory of black-body radiation, Compton effect, Wave particle duality, De Broglie waves, Davisson and 

Germer's experiment, Uncertainty principle, Brief idea of Wave Packet, Wave Function and its physical interpretation, 

Schrodinger equation in one-dimension, free particle, particle in an infinite square well. [9] 

Text book: T3: Arthur Beiser (AB), Concept of Modern Physics, 6th edition 2009, Tata McGraw- Hill 

Reference book: R1: Fundamentals of Physics, Halliday, Walker and Resnick 
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❑ Schrödinger Equation is a wave equation in the variable Ψ. 

❑ Fundamental equation of quantum mechanics in the same sense that the second law of motion is the fundamental equation of 

Newtonian mechanics. 

❑ For a free particle (no external force), there is a constant momentum 𝑝 and hence a constant energy 𝐸.

❑ The wavefunction is of the form of a plane wave: Ψ 𝑥, 𝑡 = 𝐴 𝑒𝑖(𝑘𝑥−𝜔𝑡)

❑ Remember: 𝐸 = ℎ𝜈 =
ℎ

2𝜋
2𝜋𝜈 = ℏ𝜔

❑ Using de Broglie hypothesis: 𝑝 =
ℎ

𝜆
=

ℎ

2𝜋/𝑘
=

ℎ

2𝜋
𝑘 = ℏ𝑘

❑ Since, 𝜔 and 𝑘 are constants for Ψ 𝑥, 𝑡 , so are 𝐸 and 𝑝.

❑ Hence, Ψ 𝑥, 𝑡 = 𝐴 𝑒𝑖(𝑘𝑥−𝜔𝑡) can be written as Ψ 𝑥, 𝑡 = 𝐴 𝑒𝑖(𝑝𝑥−𝐸𝑡)/ℏ 

This equation describes the wave equivalent 

of a free particle of total energy 𝐸  and 

momentum 𝑝 moving in the +𝑥 direction.

PH24101: Physics (B.Tech. I)



Schrödinger Equation in one-dimension

Dr. Anupam Roy 82

Module 4 (Quantum Mechanics)

❑ Schrödinger Equation is a wave equation in the variable Ψ. 

❑ The wavefunction for a free particle  Ψ 𝑥, 𝑡 = 𝐴 𝑒𝑖(𝑝𝑥−𝐸𝑡)/ℏ 

❑ Now, apply the operator −𝑖
𝜕

𝜕𝑥
 on Ψ 𝑥, 𝑡 , we get:  −𝑖ℏ

𝜕Ψ

𝜕𝑥
= −𝑖ℏ

𝑖𝑝

ℏ
 𝐴𝑒

𝑖 𝑝𝑥−𝐸𝑡

ℏ = 𝑝Ψ

❑ Apply the operator 𝑖
𝜕

𝜕𝑡
 on Ψ 𝑥, 𝑡 , we get:  𝑖ℏ

𝜕Ψ

𝜕𝑡
= 𝐸Ψ

❑ Remember: −𝑖
𝜕

𝜕𝑥
 ≡  Ƹ𝑝    (such that Ƹ𝑝 Ψ = 𝑝 Ψ). Momentum operator Ƹ𝑝 whose eigen values are 𝑝. 

❑ Remember: 𝑖
𝜕

𝜕𝑡
 ≡  ෡𝐻    (such that ෡𝐻 Ψ = 𝐸 Ψ). Hamiltonian or energy operator ෡𝐻 whose eigen values are 𝐸.

❑ For a free particle, 𝐸 =
𝑝2

2𝑚
  needs to be imposed.
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❑ Schrödinger Equation is a wave equation in the variable Ψ. 

❑ Remember: −𝑖
𝜕

𝜕𝑥
 ≡  Ƹ𝑝    (momentum operator) and  𝑖

𝜕

𝜕𝑡
 ≡  ෡𝐻    (Hamiltonian or energy operator)

❑ For a free particle, 𝐸 =
𝑝2

2𝑚
  needs to be imposed.

❑ −𝑖ℏ
𝜕Ψ

𝜕𝑥
= 𝑝Ψ ⇒  −𝑖ℏ

𝜕

𝜕𝑥

2
Ψ = 𝑝2Ψ ⇒  −ℏ2 𝜕2Ψ

𝜕𝑥2 = 𝑝2Ψ 

❑ 𝑖ℏ
𝜕Ψ

𝜕𝑡
= 𝐸Ψ

❑ Now 𝐸 =
𝑝2

2𝑚
 ⇒ 𝐸Ψ =

𝑝2

2𝑚
Ψ ⇒       Now replace the equations encircled:  𝐸Ψ = 𝑖ℏ

𝜕Ψ

𝜕𝑡
   and    𝑝2Ψ = −ℏ2 𝜕2Ψ

𝜕𝑥2

❑ 𝑖ℏ
𝜕Ψ

𝜕𝑡
= −

ℏ2

2𝑚

𝜕2Ψ

𝜕𝑥2  This is the Schrödinger Equation for a free particle in one-dimension 
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❑ Schrödinger Equation is a wave equation in the variable Ψ. 

❑ 𝑖ℏ
𝜕Ψ

𝜕𝑡
= −

ℏ2

2𝑚

𝜕2Ψ

𝜕𝑥2                   ⇒ This is the Schrödinger equation for a free particle. This is correct only for freely moving 

particles.

❑ However, we are most interested in situations where the motion of a particle is subject to various restrictions. What happens in 

presence of a potential?

❑ For a free particle, 𝐸 =
𝑝2

2𝑚
 , but, in presence of a potential, we have, 𝐸 =

𝑝2

2𝑚
+ 𝑉(𝑥, 𝑡)

❑ 𝐸Ψ = (
𝑝2

2𝑚
+ 𝑉)Ψ

❑ 𝑖ℏ
𝜕Ψ

𝜕𝑡
= −

ℏ2

2𝑚

𝜕2Ψ

𝜕𝑥2  + 𝑉Ψ

❑ 𝑖ℏ
𝜕Ψ(𝑥,𝑡)

𝜕𝑡
= −

ℏ2

2𝑚

𝜕2Ψ 𝑥,𝑡

𝜕𝑥2  + 𝑉(𝑥, 𝑡)Ψ(𝑥, 𝑡)

❑ Note: Ψ and
𝜕Ψ

𝜕𝑥
 must be continuous for

𝜕2Ψ

𝜕𝑥2  to exist.

    This is the general form of time-dependent 
Schrödinger equation for any particle in one-dimension 
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❑ Schrödinger Equation is a wave equation in the variable Ψ. 

❑ The Schrödinger equation for a free particle: 𝑖ℏ
𝜕Ψ

𝜕𝑡
= −

ℏ2

2𝑚

𝜕2Ψ

𝜕𝑥2

❑ For a free particle, 𝐸 =
𝑝2

2𝑚
 , but, in presence of a potential, we have, 𝐸 =

𝑝2

2𝑚
+ 𝑉(𝑥, 𝑡)

❑ General form of time-dependent Schrödinger equation for any particle in one-dimension 

❑ 𝑖ℏ
𝜕Ψ(𝑥,𝑡)

𝜕𝑡
= −

ℏ2

2𝑚

𝜕2Ψ 𝑥,𝑡

𝜕𝑥2  + 𝑉(𝑥, 𝑡)Ψ(𝑥, 𝑡)

❑ Note: Schrödinger’s equation cannot be derived from other basic principles of physics; it is a basic principle in itself.

❑ In three dimensions the time-dependent form of Schrödinger’s equation is

❑ 𝑖ℏ
𝜕Ψ

𝜕𝑡
= −

ℏ2

2𝑚
[

𝜕2Ψ

𝜕𝑥2 +
𝜕2Ψ

𝜕𝑦2 +
𝜕2Ψ

𝜕𝑧2 ]  + 𝑉Ψ

❑ Note: in 3D, particle’s potential energy 𝑉 is some function of 𝑥, 𝑦, 𝑧, and 𝑡.
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❑ Schrödinger Equation is a wave equation in the variable Ψ. 

❑ In presence of a potential, we have, 𝐸 =
𝑝2

2𝑚
+ 𝑉(𝑥, 𝑡)

❑ Time-dependent Schrödinger equation in one-dimension:    𝑖ℏ
𝜕Ψ(𝑥,𝑡)

𝜕𝑡
= −

ℏ2

2𝑚

𝜕2Ψ 𝑥,𝑡

𝜕𝑥2  + 𝑉(𝑥, 𝑡)Ψ(𝑥, 𝑡)

❑ In three dimensions the time-dependent form of Schrödinger’s equation is

❑ 𝑖ℏ
𝜕Ψ

𝜕𝑡
= −

ℏ2

2𝑚
[

𝜕2Ψ

𝜕𝑥2 +
𝜕2Ψ

𝜕𝑦2 +
𝜕2Ψ

𝜕𝑧2 ]  + 𝑉Ψ

❑ Note: in 3D, particle’s potential energy 𝑉 is some function of 𝑥, 𝑦, 𝑧, and 𝑡.

❑ Any restrictions that may be present on the particle’s motion will affect the potential energy function 𝑉. 

❑ Once 𝑉 is known, Schrödinger’s equation may be solved for the wavefunction Ψ of the particle, from which its 

probability density |Ψ|2 may be determined for a specified 𝑥, 𝑦, 𝑧, 𝑡.
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❑ Schrödinger Equation is a wave equation in the variable Ψ. 

❑ Any restrictions on the particle’s motion will affect the potential energy 𝑉. Once 𝑉 is known, Schrödinger’s eqn. may be solved 

for the wavefunction Ψ of the particle, from which its probability density |Ψ|2 may be determined for a specified 𝑥, 𝑦, 𝑧, 𝑡.

❑ In presence of a potential, we have, 𝐸 =
𝑝2

2𝑚
+ 𝑉(𝑥, 𝑡)

❑ Recall: −𝑖ℏ
𝜕Ψ

𝜕𝑥
= 𝑝Ψ ⇒  −ℏ2 𝜕2Ψ

𝜕𝑥2 = 𝑝2Ψ and     𝑖ℏ
𝜕Ψ

𝜕𝑡
= 𝐸Ψ

❑ So, time dependent form of Schrödinger equation gives    𝑖ℏ
𝜕Ψ(𝑥,𝑡)

𝜕𝑡
= −

ℏ2

2𝑚

𝜕2Ψ 𝑥,𝑡

𝜕𝑥2  + 𝑉(𝑥, 𝑡)Ψ(𝑥, 𝑡) = 𝐸Ψ 𝑥, 𝑡

❑ Rearrange:
𝜕2Ψ 𝑥,𝑡

𝜕𝑥2  +
2𝑚

ℏ2 [𝐸 − 𝑉 𝑥, 𝑡 ]Ψ 𝑥, 𝑡 = 0 

❑ If 𝑉(𝑥, 𝑡) ≡ 𝑉(𝑥), we get the time-independent form of Schrödinger equation in 1D:

❑
𝜕2Ψ 𝑥

𝜕𝑥2  +
2𝑚

ℏ2 [𝐸 − 𝑉 𝑥 ]Ψ 𝑥 = 0 
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Module -4 : Quantum Mechanics

Planck's theory of black-body radiation, Compton effect, Wave particle duality, De Broglie waves, Davisson and 

Germer's experiment, Uncertainty principle, Brief idea of Wave Packet, Wave Function and its physical interpretation, 

Schrodinger equation in one-dimension, free particle, particle in an infinite square well. [9] 

Text book: T3: Arthur Beiser (AB), Concept of Modern Physics, 6th edition 2009, Tata McGraw- Hill 

Reference book: R1: Fundamentals of Physics, Halliday, Walker and Resnick 
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❑ Schrödinger Equation is a wave equation in the variable Ψ. 

❑ The wavefunction for a free particle  Ψ 𝑥, 𝑡 = 𝐴 𝑒𝑖(𝑝𝑥−𝐸𝑡)/ℏ 

❑ Apply the momentum operator −𝑖
𝜕

𝜕𝑥
 on Ψ 𝑥, 𝑡 , we get:  −𝑖ℏ

𝜕Ψ

𝜕𝑥
= −𝑖ℏ

𝑖𝑝

ℏ
 𝐴𝑒

𝑖 𝑝𝑥−𝐸𝑡

ℏ = 𝑝Ψ

❑ Apply the energy operator 𝑖
𝜕

𝜕𝑡
 on Ψ 𝑥, 𝑡 , we get:  𝑖ℏ

𝜕Ψ

𝜕𝑡
= 𝐸Ψ

❑ −𝑖ℏ
𝜕Ψ

𝜕𝑥
= 𝑝Ψ ⇒  −𝑖ℏ

𝜕

𝜕𝑥

2
Ψ = 𝑝2Ψ ⇒ −ℏ2 𝜕2Ψ

𝜕𝑥2 = 𝑝2Ψ 

❑ 𝑖ℏ
𝜕Ψ

𝜕𝑡
= 𝐸Ψ

❑ For a free particle, 𝐸 =
𝑝2

2𝑚
  needs to be imposed. So, 𝐸 =

𝑝2

2𝑚
 ⇒  𝐸Ψ =

𝑝2

2𝑚
Ψ

❑ 𝑖ℏ
𝜕Ψ

𝜕𝑡
= −

ℏ2

2𝑚

𝜕2Ψ

𝜕𝑥2   This is the Schrödinger Equation for a free particle in 1-D
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❑ Schrödinger Equation is a wave equation in the variable Ψ. 

❑ The Schrödinger equation for a free particle: 𝑖ℏ
𝜕Ψ

𝜕𝑡
= −

ℏ2

2𝑚

𝜕2Ψ

𝜕𝑥2

❑ For a free particle, 𝐸 =
𝑝2

2𝑚
 , but, in presence of a potential, we have, 𝐸 =

𝑝2

2𝑚
+ 𝑉(𝑥, 𝑡)

❑ Recall: −𝑖ℏ
𝜕Ψ

𝜕𝑥
= 𝑝Ψ ⇒  −ℏ2 𝜕2Ψ

𝜕𝑥2 = 𝑝2Ψ and     𝑖ℏ
𝜕Ψ

𝜕𝑡
= 𝐸Ψ

❑ Time-dependent form of Schrödinger equation gives    𝑖ℏ
𝜕Ψ(𝑥,𝑡)

𝜕𝑡
= −

ℏ2

2𝑚

𝜕2Ψ 𝑥,𝑡

𝜕𝑥2  + 𝑉 𝑥, 𝑡 Ψ 𝑥, 𝑡 = 𝐸Ψ 𝑥, 𝑡

❑ Rearrange:
𝜕2Ψ 𝑥,𝑡

𝜕𝑥2  +
2𝑚

ℏ2 [𝐸 − 𝑉 𝑥, 𝑡 ]Ψ 𝑥, 𝑡 = 0 

❑ If 𝑉(𝑥, 𝑡) ≡ 𝑉(𝑥), we get the time-independent form of Schrödinger equation in 1D:

❑
𝜕2Ψ 𝑥

𝜕𝑥2  +
2𝑚

ℏ2 [𝐸 − 𝑉 𝑥 ]Ψ 𝑥 = 0 
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❑ Now we shall see the Schrödinger equation in certain situation: a particle trapped in a 

box with infinitely hard walls. We’ll focus on the one-dimension case.

❑ How boundary conditions and normalization determine wavefunctions

❑ Let’s consider that the particle’s motion is restricted to traveling along the 𝑥-axis 

between 𝑥 = 0 and 𝑥 = 𝐿 by infinitely hard walls. 
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❑ Now we shall see the Schrödinger equation in certain situation: a particle in an infinite square well (1-D)

❑ How boundary conditions and normalization determine wavefunctions

❑ Consider that the particle’s motion is restricted between 𝑥 = 0 and 𝑥 = 𝐿 by infinitely hard walls. 

❑ A particle does not lose energy when it collides with such walls, so that its total energy stays constant. 

❑ The potential energy 𝑉 of the particle is infinite on both sides of the box, while 𝑉 is a constant inside the box. It is 

convenient to assume 𝑉 = 0 in the box. 

❑ Because the particle cannot have 

an infinite amount of energy, it 

cannot exist outside the box, and so 

its wavefunction Ψ = 0 for 𝑥 ≤ 0 

and 𝑥 ≥ 𝐿 . 
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❑ Schrödinger eqn. in certain situation: a particle trapped in a box with infinitely hard walls. We’ll focus on the 1-D case.

❑ How boundary conditions and normalization determine wavefunctions

❑ So we can define three regions – Region I, Region II and Region III.

❑ For an infinite hard wall, Ψ = 0 in regions II & III. Probability of detecting the particle is zero in regions II & III.

❑ We consider the potential 𝑉  to be 

constant in Region I (between 𝑥 = 0 

and 𝑥 = 𝐿). 

❑ It is convenient to assume 𝑉 = 0 in 

Region I. 
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❑ How boundary conditions and normalization determine wavefunctions

❑ For Region II: Ψ = 0.

❑ For Region III: Ψ = 0.

❑ For Region I: Schrödinger equation in 1D can be expressed as:

𝜕2Ψ 𝑥

𝜕𝑥2  +
2𝑚𝐸

ℏ2 Ψ 𝑥 = 0   (𝑉 = 0 in this region).

❑ Schrödinger eqn. in certain situation: a particle trapped in a box with infinitely hard walls. We’ll focus on the 1-D case.

❑ Recall the time-independent form of Schrödinger equation in 1D:
𝜕2Ψ 𝑥

𝜕𝑥2  +
2𝑚

ℏ2 [𝐸 − 𝑉 𝑥 ]Ψ 𝑥 = 0

❑ We consider the potential 𝑉 to be constant in Region I. It is convenient to assume 𝑉 = 0 in Region I. 
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❑ Now we shall see the Schrödinger equation in certain situation: a particle in an infinite square well (1-D).

❑ How boundary conditions and normalization determine wavefunctions

❑ For Region II & III: Ψ = 0.

❑ For Region I: Schrödinger equation in 1D can be expressed as:
𝜕2Ψ 𝑥

𝜕𝑥2  +
2𝑚𝐸

ℏ2 Ψ 𝑥 = 0   (𝑉 = 0 in this region).

❑ Let 𝛼2 =
2𝑚𝐸

ℏ2 , so that 𝛼 =
2𝑚𝐸

ℏ2

❑ Schrödinger equation in 1D corresponding to Region I becomes:

❑
𝑑2Ψ 𝑥

𝑑𝑥2  + 𝛼2Ψ 𝑥 = 0   

❑ Partial derivative now can be removed, because Ψ is now a function of 𝑥 only. 
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❑ Now we shall see the Schrödinger equation in certain situation: a particle in an infinite square well (1-D).

❑ How boundary conditions and normalization determine wavefunctions

❑
𝑑2Ψ 𝑥

𝑑𝑥2  + 𝛼2Ψ 𝑥 = 0   

❑ This represents the simple harmonic motion. It has the solution of the form:

❑  Ψ 𝑥 = 𝐴 𝑆𝑖𝑛 𝛼𝑥 + 𝐵 𝐶𝑜𝑠(𝛼𝑥)  in Region I. 

❑ 𝐴 and 𝐵 are constants to be evaluated. How? 

❑ To evaluate 𝐴 and 𝐵, we use the boundary condition.

❑ At the boundaries, Ψ 𝑥 = 0  at 𝑥 = 0 

               at 𝑥 = 𝐿
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❑ Now we shall see the Schrödinger equation in certain situation: a particle in an infinite square well (1-D).

❑ How boundary conditions and normalization determine wavefunctions

❑
𝑑2Ψ 𝑥

𝑑𝑥2  + 𝛼2Ψ 𝑥 = 0     => this represents simple harmonic motion, the solution is of the form:

❑  Ψ 𝑥 = 𝐴 𝑆𝑖𝑛 𝛼𝑥 + 𝐵 𝐶𝑜𝑠(𝛼𝑥)

❑ To evaluate the constants 𝐴 and 𝐵, we use the boundary condition.

❑ At the boundaries, Ψ 𝑥 = 0  at 𝑥 = 0 

               at 𝑥 = 𝐿

❑ Ψ 𝑥 = 0  at 𝑥 = 0 gives 0 = 𝐴 × 0 + 𝐵 × 1 ⇒  𝐵 = 0

❑ Ψ 𝑥 = 0  at 𝑥 = 𝐿 gives 0 = 𝐴 𝑆𝑖𝑛 𝛼𝐿  ⇒  𝛼𝐿 = 𝑛𝜋 ⇒  𝛼 =
𝑛𝜋

𝐿
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❑ Now we shall see the Schrödinger equation in certain situation: a particle in an infinite square well (1-D).

❑ How boundary conditions and normalization determine wavefunctions

❑
𝑑2Ψ 𝑥

𝑑𝑥2  + 𝛼2Ψ 𝑥 = 0     => this represents simple harmonic motion, the solution is of the form:

❑  Ψ 𝑥 = 𝐴 𝑆𝑖𝑛 𝛼𝑥 + 𝐵 𝐶𝑜𝑠(𝛼𝑥)

❑ 1st boundary condition [Ψ 𝑥 = 0  at 𝑥 = 0] gives 𝐵 = 0

❑ 2nd boundary condition [Ψ 𝑥 = 0  at 𝑥 = 𝐿] gives 𝛼 =
𝑛𝜋

𝐿

❑ Hence, Ψ 𝑥 = 𝐴 𝑆𝑖𝑛 𝛼𝑥 = 𝐴 𝑆𝑖𝑛(
𝑛𝜋𝑥

𝐿
) 

❑ Now, 𝛼 =
2𝑚𝐸

ℏ2  ⇒
2𝑚𝐸

ℏ2 =
𝑛𝜋

𝐿

2
 ⇒  𝐸𝑛 =

𝑛2𝜋2ℏ2

2𝑚𝐿2
 ⇒ 𝐷𝑖𝑠𝑐𝑟𝑒𝑡𝑖𝑧𝑒𝑑 𝐸𝑛𝑒𝑟𝑔𝑦
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❑ Now we shall see the Schrödinger equation in certain situation: a particle in an infinite square well (1-D).

❑ How boundary conditions and normalization determine wavefunctions

❑
𝑑2Ψ 𝑥

𝑑𝑥2  + 𝛼2Ψ 𝑥 = 0     => the solution is of the form:  Ψ 𝑥 = 𝐴 𝑆𝑖𝑛 𝛼𝑥 = 𝐴 𝑆𝑖𝑛
𝑛𝜋𝑥

𝐿
 

❑ 𝐸𝑛 =
𝑛2𝜋2ℏ2

2𝑚𝐿2
 ⇒ 𝐷𝑖𝑠𝑐𝑟𝑒𝑡𝑖𝑧𝑒𝑑 𝐸𝑛𝑒𝑟𝑔𝑦  

❑ Remember, 𝑛 =  1, 2, 3, . . .

❑ 𝐸1 =
𝜋2ℏ2

2𝑚𝐿2

❑ 𝐸2 =
4𝜋2ℏ2

2𝑚𝐿2      and so on….

✓ From this relation, it is clear that the energy of the particle 

can have only certain values, which are the eigenvalues. 

✓ Each permitted energy is called an energy level, and the 

integer 𝑛 that specifies an energy level 𝐸𝑛 is called its 

quantum number. 

❑ 𝐸𝑛 =
𝑛2𝜋2ℏ2

2𝑚𝐿2 = 𝑛2 𝜋2ℏ2

2𝑚𝐿2
⇒ 𝐻𝑒𝑛𝑐𝑒, 𝐸𝑛 = 𝑛2𝐸1
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❑ Now we shall see the Schrödinger equation in certain situation: a particle in an infinite square well (1-D).

❑ How boundary conditions and normalization determine wavefunctions

✓ Unlike a free particle, a particle trapped in a box cannot have an arbitrary energy. It can have only certain specific 

energies and no others. 

✓ These energies depends on the mass of the particle and on the details of how it is trapped.

✓ Since 𝑛 = 1,2,3, …, particle trapped in a box cannot have zero energy! 

❑ 𝐸𝑛 =
𝑛2𝜋2ℏ2

2𝑚𝐿2 = 𝑛2 𝜋2ℏ2

2𝑚𝐿2
⇒ 𝐻𝑒𝑛𝑐𝑒, 𝐸𝑛 = 𝑛2𝐸1
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Module 4 (Quantum Mechanics)

❑ Now we shall see the Schrödinger equation in certain situation: a particle in an infinite square well (1-D).

❑ How boundary conditions and normalization determine wavefunctions

❑
𝑑2Ψ 𝑥

𝑑𝑥2  + 𝛼2Ψ 𝑥 = 0     => the solution is of the form:  Ψ 𝑥 = 𝐴 𝑆𝑖𝑛 𝛼𝑥 = 𝐴 𝑆𝑖𝑛
𝑛𝜋𝑥

𝐿

❑ Now, we need to determine the value of constant 𝐴. For this we use the normalization method.

❑ Recall: probability 𝑃 𝑑𝑥 = Ψ 𝑥 2𝑑𝑥, probability of finding the particle between 𝑥 and 𝑥 + 𝑑𝑥

❑ ∞−׬

∞
Ψ 𝑥 2 𝑑𝑥 = ∞−׬     ⟹      1

0
Ψ 𝑥 2 𝑑𝑥 + 0׬

𝐿
Ψ 𝑥 2 𝑑𝑥 + ׬𝐿

∞
Ψ 𝑥 2 𝑑𝑥 = 1

Region II Region IIIRegion I

0 0
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Module 4 (Quantum Mechanics)

❑ Now we shall see the Schrödinger equation in certain situation: a particle in an infinite square well (1-D).

❑ How boundary conditions and normalization determine wavefunctions

❑ Ψ 𝑥 = 𝐴 𝑆𝑖𝑛 𝛼𝑥 = 𝐴 𝑆𝑖𝑛
𝑛𝜋𝑥

𝐿

❑ ∞−׬

∞
Ψ 𝑥 2 𝑑𝑥 = 1 ⇒ 0׬ 

𝐿
Ψ 𝑥 2 𝑑𝑥 = 1 ⇒  𝐴2 0׬

𝐿
 𝑆𝑖𝑛2 𝑛𝜋𝑥

𝐿
𝑑𝑥 = 1

❑ Use the trigonometric identity 𝑆𝑖𝑛2𝜃 =
1

2
(1 − 𝐶𝑜𝑠2𝜃) 

❑ 𝐴2 0׬

𝐿
 𝑆𝑖𝑛2 𝑛𝜋𝑥

𝐿
𝑑𝑥 = 1 ⇒  

𝐴2

2
0׬

𝐿
𝑑𝑥 − 0׬

𝐿
𝐶𝑜𝑠

2𝑛𝜋𝑥

𝐿
 𝑑𝑥 = 1 

𝐴2

2
𝑥 −

𝐿

2𝑛𝜋
𝑆𝑖𝑛

2𝑛𝜋𝑥

𝐿
= 1

❑ Solving the above, we find that  𝐴 =
2

𝐿

❑ Hence, Ψ 𝑥 = 𝐴 𝑆𝑖𝑛
𝑛𝜋𝑥

𝐿
=

2

𝐿
 𝑆𝑖𝑛

𝑛𝜋𝑥

𝐿
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Module 4 (Quantum Mechanics)

❑ Schrödinger equation in certain situation: a particle in an infinite square well (1-D).

❑ How boundary conditions and normalization determine wavefunctions

Wave functions and probability densities of a particle 
confined to a box with rigid walls.

❑ Discretization or Quantization of Energy Levels

❑ Non-zero zero-point energy (Ground State) [𝐸𝑛 = 𝑛2𝐸1]

❑ Nodes: points (other than two end points) at which the 

wavefunction vanishes – ZERO probability to find a 

particle.

❑ Difference between adjacent Energy Levels:                 

ΔE= En+1 – En = (2n+1)E1.

𝑛 = 1

𝑛 = 2

𝑛 = 3

𝐸1 =
𝜋2ℏ2

2𝑚𝐿2

𝐸2 =
4𝜋2ℏ2

2𝑚𝐿2

𝐸3 =
9𝜋2ℏ2

2𝑚𝐿2
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Module 4 (Quantum Mechanics)

❑ How boundary conditions and normalization determine wavefunctions
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Module 4 (Quantum Mechanics)

❑ How boundary conditions and normalization determine wavefunctions
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Module 4

Module -4 : Quantum Mechanics

Planck's theory of black-body radiation, Compton effect, Wave particle duality, De Broglie waves, Davisson and 

Germer's experiment, Uncertainty principle, Brief idea of Wave Packet, Wave Function and its physical interpretation, 

Schrodinger equation in one-dimension, free particle, particle in an infinite square well. [9] 

Text book: T3: Arthur Beiser (AB), Concept of Modern Physics, 6th edition 2009, Tata McGraw- Hill 

Reference book: R1: Fundamentals of Physics, Halliday, Walker and Resnick 

PH24101: Physics (B.Tech. I)
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