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Syllabus 

Module-1: Physical Optics
Polarization, Malus’ Law, Brewster’s Law, Double Refraction, Interference in thin films (Parallel films), Interference in wedge-shaped layers, Newton’s rings, Fraunhofer 
diffraction by single slit, Double slit. Elementary ideas of fibre optics and application of fibre optic cables. [8] 

Module-2: Electromagnetic Theory
Gradient, Divergence and Curl, Statement of Gauss theorem & Stokes theorem, Gauss’s law, Applications, Concept of electric potential, Relationship between E and V, 
Polarization of dielectrics, dielectric constant, Boundary conditions for E & D, Gauss’s law in magnetostatics, Ampere’s circuital law, Boundary conditions for B & H, 
Equation of continuity, Displacement current, Maxwell’s equations. [8] 

Module-3: Special Theory of Relativity
Introduction, Inertial frame of reference, Galilean transformations, Postulates, Lorentz transformations and its conclusions, Length contraction, time dilation, velocity 
addition, Mass change, Einstein's mass energy relation. [6] 

Module-4: Quantum Mechanics
Planck's theory of black-body radiation, Compton effect, Wave particle duality, De Broglie waves, Davisson and Germer's experiment, Uncertainty principle, Brief idea of 
Wave Packet, Wave Function and its physical interpretation, Schrodinger equation in one-dimension, free particle, particle in an infinite square well. [9] 

Module-5: Modern Physics
Laser – Spontaneous and stimulated emission, Einstein's A and B coefficients, Population inversion, Light amplification, Basic laser action, Ruby and He-Ne lasers, 
Properties and applications of laser radiation, Nuclear Physics- Binding Energy Curve, Nuclear Force, Liquid drop model, Introduction to Shell model, Applications of 
Nuclear Physics, Concept of Plasma Physics, and its applications. [9]

Text books: 
1: A. Ghatak, Optics, 4th Edition, Tata Mcgraw Hill, 2009 
2: Mathew N.O. Sadiku, Elements of Electromagnetics, Oxford University Press ( 2001) 
3: Arthur Beiser, Concept of Modern Physics, 6th edition 2009, Tata McGraw- Hill 
4. F. F. Chen, Introduction to Plasma Physics and controlled Fusion, Springer, Edition 2016.

Reference books: 1: Fundamentals of Physics, Halliday, Walker and Resnick
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Module – 2: Electromagnetic Theory

Gradient, Divergence and Curl, Statement of Gauss theorem & Stokes theorem, Gauss’s law, Applications, 

Concept of electric potential, Relationship between E and V, Polarization of dielectrics, dielectric constant, 

Boundary conditions for E & D, Gauss’s law in magnetostatics, Ampere’s circuital law, Boundary conditions 

for B & H, Equation of continuity, Displacement current, Maxwell’s equations. [8] 

Text Book: Mathew N.O. Sadiku, Elements of Electromagnetics, Oxford University Press (Seventh Edition, 2018) 

Reference Book: David J. Griffiths, Introduction to Electrodynamics, Pearson (Fourth Edition, 2014) 

Module 2

Class structure: 4 Lectures including 1 Tutorial per week. (8  hours ~ 2 weeks for this module!)
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Date: 26.09.2023

Lecture: 1
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Module 2 (Electromagnetic Theory)

❑Mathematical preliminaries
- Gradient, Divergence, Curl and their applications

- Gauss theorem

- Stokes theorem



Ultrashort Introduction to Calculus

Dr. Anupam Roy 6

PH113: Physics (B.Tech. I)
Module 2 (Electromagnetic Theory)

❑A fundamental question in classical physics:

❑A car/particle/object is moving (= changing its 

position with time). 

❑Can we predict where the car/particle/object 

will be in some time instance in future?

▪ X-axis: time (equal intervals)

▪ Y-axis: position of the car

▪ X(t) is a function.

❑Quantifiable information can be obtained!!

▪ General scenario: it covers different distance in the same time intervals.

▪ Natural guess (almost all of you): it SPEEDS UP or SLOWS DOWN at 
different times..
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❑Ultrashort intro to Calculus
- If equal distance covered in equal 

intervals of time: velocity, 𝑣= constant, 
and acceleration, a = 0.

- Positive a ?
- Negative a ?

Also take a look at:
 
https://www.engineersedge.com/physics/ac
celeration-animation.htm

https://www.engineersedge.com/physics/acceleration-animation.htm
https://www.engineersedge.com/physics/acceleration-animation.htm
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❑Velocity and Acceleration

- Δ𝑥(𝑡) = distance covered in the time interval Δ𝑡.

- 𝑣(𝑡)  =  Δ𝑥(𝑡)/Δ𝑡 = "rate of change in position" = velocity/speed. This informs us about how fast or 
slow the car is moving. 𝑣 is a function of time, 𝑣(𝑡).

- Tangent at that time.

- a(t) =  Δ𝑣(𝑡)/Δ𝑡 = "rate of change in velocity" = acceleration. This informs us about how quickly the 
drive is changing his/her speed. Also a is function of time, a(t).

- Tangent to the velocity profile at that time.

- In the limit Δt --> 0, a better approximation to the function is generally possible – the notion of 
derivative.

- Lim Δt --> 0 : Δx/Δt --> del x(t)/ del t = v(t)

-            Δx/Δt --> del v(t)/ del t = a(t)
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Module 2 (Electromagnetic Theory)

❑Velocity and Acceleration
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❑Derivatives of some standard functions
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❑Derivatives of some standard functions

Many more functions, look 'em up …
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❑Higher Order Derivatives

- a(t) =
 Δ𝑣 𝑡

Δ𝑡
=

𝑑𝑣

𝑑𝑡
=

𝑑

𝑑𝑡

𝑑𝑥

𝑑𝑡
=

𝑑2𝑥

𝑑𝑡2

- a is a second order derivative of 𝑥(𝑡).
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❑Scalar and Vector Fields

❑ Consider the temperature distribution in the room: 𝑇(𝑥, 𝑦, 𝑧)

❑ At each point in the room, Temperature (𝑇) is known.

❑ This is an example of a scalar field since 𝑇 is a scalar quantity.

❑ Similarly, consider the (average) flow of air particles in the room quantified by the (average) 
velocity of air particles : 𝒗(𝑥, 𝑦, 𝑧)

❑ At each point in the room, the velocity (𝒗) is known.

❑ This is an example of a vector field since 𝒗 is a vector quantity.

❑ To compute the derivatives/integral of a vector field, one needs to do this for each component

❑ For a function of multiple variable, we need multivariate calculus.



Introduction

Dr. Anupam Roy 14

PH113: Physics (B.Tech. I)
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❑   Ordinary derivatives                   v/s               Partial derivatives

-The swirly-d (symbol: ∂, called "del“) is used to distinguish partial derivatives from ordinary single-variable 
derivatives.

- Concerns single-variable functions.

- Measures the rate of change with respect 
to one variable.

- Denoted as dy/dx.

- Applied to multivariable functions.

- Measures the rate of change with respect to one 
variable while holding others constant.

- Denoted as ∂f/∂x, ∂f/∂y, etc.

Treat the "other" variable as a "constant" !

-Total derivative of a function:
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❑Gradient (grad):

❑ Definition: The gradient is a vector operator that represents the rate of change of a scalar field.

❑Mathematical Expression:

𝛁𝑓 =
𝜕𝑓

𝜕𝑥
𝒊 +

𝜕𝑓

𝜕𝑦
𝒋 +

𝜕𝑓

𝜕𝑧
𝒌

❑ Operates on a scalar field, produces a vector function.

❑ Interpretation: The gradient points in the direction of the steepest increase of the scalar 

field. In temperature mapping, 𝑇(𝑥, 𝑦, 𝑧), the gradient of temperature indicates the direction of 

maximum temperature increase.

❑ Useful in optimization/ML/AI problem: the widely used gradient descent algorithm.
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❑Gradient (grad):

❑ Consider the temperature of a room 𝑇(𝑥, 𝑦, 𝑧). Variation in temperature is given by: 

❑ 𝑑𝑇 =
𝜕𝑇

𝜕𝑥
𝑑𝑥 +

𝜕𝑇

𝜕𝑦
𝑑𝑦 +

𝜕𝑇

𝜕𝑧
𝑑𝑧 

           =
𝜕𝑇

𝜕𝑥
𝒊 +

𝜕𝑇

𝜕𝑦
𝒋 +

𝜕𝑇

𝜕𝑧
𝒌  . 𝑑𝑥 𝒊 + 𝑑𝑦 𝒋 + 𝑑𝑧 𝒌

           = 𝜵𝑇 . 𝑑𝒍

Where, 𝜵𝑇 ≡
𝜕𝑇

𝜕𝑥
𝒊 +

𝜕𝑇

𝜕𝑦
𝒋 +

𝜕𝑇

𝜕𝑧
𝒌          [i.e., 𝜵 ≡

𝜕

𝜕𝑥
𝒊 +

𝜕

𝜕𝑦
𝒋 +

𝜕

𝜕𝑧
𝒌]

and the line element 𝑑𝒍 = 𝑑𝑥 𝒊 + 𝑑𝑦 𝒋 + 𝑑𝑧 𝒌.
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❑Gradient (grad):

❑ Variation in temperature 𝑇(𝑥, 𝑦, 𝑧) of a room is given by:  𝑑𝑇 = 𝜵𝑇 . 𝑑𝒍 

❑ Geometrical interpretation: 𝑑𝑇 = 𝜵𝑇 . 𝑑𝒍 = 𝜵𝑇 𝑑𝒍  𝑐𝑜𝑠𝜃

❑ If 𝑑𝒍  is fixed, then maximum variation in 𝑇(𝑥, 𝑦, 𝑧) is when 𝜃 = 0  (i.e., 𝑐𝑜𝑠𝜃 = 1)

❑ So, 𝑑𝑇 is maximum along the direction of 𝜵𝑇. 

❑ Under this condition (i.e., 𝜃 = 0), 𝜵𝑇 =
𝑑𝑇

𝑑𝒍
 

❑ Suppose you are on a hilltop. Look for the direction of steepest ascent. It gives the direction of 

the gradient. The value of the slope along this direction gives the magnitude of the gradient.
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❑Gradient Identities:

Examples:

1. For 𝑓(𝑥, 𝑦) = 𝑥 + 3𝑦2, ∇𝑓 = 𝒊 + 6𝑦 𝒋

2. For 𝑓(𝑥, 𝑦) = sin 𝑥 𝑒𝑦, ∇𝑓 = cos 𝑥 𝑒𝑦 𝒊 + sin 𝑥 𝑒𝑦  𝒋

where
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❑Gradient (grad):

❑ Solve: The position of a point is given by 𝒓 = 𝑥 𝒊 + 𝑦 𝒋 + 𝑧 𝒌. Find 𝜵r.

❑ Note: Here 𝑟 = |𝒓| = √(𝑥2 + 𝑦2 + 𝑧2) and 𝜵 ≡
𝜕

𝜕𝑥
𝒊 +

𝜕

𝜕𝑦
𝒋 +

𝜕

𝜕𝑧
𝒌

❑ Hence 𝜵𝑟 =
𝜕𝑟

𝜕𝑥
𝒊 +

𝜕𝑟

𝜕𝑦
𝒋 +

𝜕𝑟

𝜕𝑧
𝒌

❑ Now,
𝜕𝑟

𝜕𝑥
=

𝑥

√(𝑥2+𝑦2+𝑧2)
=

𝑥

𝑟
. 

❑ Similarly,
𝜕𝑟

𝜕𝑦
=

𝑦

𝑟
  and

𝜕𝑟

𝜕𝑧
=

𝑧

𝑟

❑ Finally, we get  𝜵𝑟 =
𝑥

𝑟
𝒊 +

𝑦

𝑟
𝒋 +

𝑧

𝑟
𝒌 =

𝒓

𝑟
= ො𝒓



Introduction

Dr. Anupam Roy 20

PH113: Physics (B.Tech. I)
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❑Divergence (div):

❑ Definition: The divergence is a scalar operator that measures the spread or dispersion of a 

vector field from a point. 

❑Mathematical Expression:

𝛁 .  𝐅 =
𝜕𝐹𝑥

𝜕𝑥
+

𝜕𝐹𝑦

𝜕𝑦
+

𝜕𝐹𝑧

𝜕𝑧

❑ Operates (dot product) on a vector, produces a scalar function. (Dot product for Divergence! )

❑ Interpretation: Rate of outward/inward flow of the vector field (flux through a surface) at the 

point where divergence is evaluated. Positive divergence indicates a source (outward flow), 

while negative divergence indicates a sink (inward flow).
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Module 2 (Electromagnetic Theory)

❑Divergence Identities:

Examples:

1. For 𝑭(𝑥, 𝑦) = 6𝑥2 𝒊 + 4𝑦 𝒋, 𝑑𝑖𝑣(𝑭) = 12𝑥 + 4

2. For 𝑭 𝑥, 𝑦, 𝑧 = 𝑥2 𝒊 + 2𝑧 𝒋 − 𝑦 𝒌, 𝑑𝑖𝑣(𝑭)  =  2𝑥
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❑Curl:

❑ Definition: The curl is a vector operator that measures the rotation or circulation of a vector 

field at a point. 

❑Mathematical Expression:

𝛁 × 𝐅 =
𝜕𝐹𝑧

𝜕𝑦
−

𝜕𝐹𝑦

𝜕𝑧
 𝒊 +

𝜕𝐹𝑥

𝜕𝑧
−

𝜕𝐹𝑧

𝜕𝑥
 𝒋 +

𝜕𝐹𝑦

𝜕𝑥
−

𝜕𝐹𝑥

𝜕𝑦
 𝒌

❑ Operates on a vector field, produces a vector field. (Cross product for Curl! )

❑ Interpretation: Determines the circulation of a vector field. The curl vector points in the 

direction of the axis of rotation and its magnitude represents the strength of rotation.
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❑Curl Identities:

Examples:

1. For 𝑭 𝑥, 𝑦, 𝑧 =  𝑦3 𝒊 + 𝑥𝑦 𝒋 – 𝑧 𝒌, 𝑐𝑢𝑟𝑙 𝑭 = 𝑦 − 3𝑦2  
𝒌

2. For 𝑭 𝑥, 𝑦, 𝑧 = 𝑥 𝒊 + 𝑦 𝒋 + 𝑧 𝒌 = 𝒓, 𝑐𝑢𝑟𝑙(𝒓) = 0

3. For 𝒗 = −𝑦 𝒊 + 𝑥 𝒋, 𝑐𝑢𝑟𝑙 𝒗 = 2
 
𝒌

4. For 𝒗 = 𝑥 𝒋, 𝑐𝑢𝑟𝑙 𝒗 = 𝒌
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Module 2 (Electromagnetic Theory)

❑Laplacian:

𝛻2𝑓 = 𝛁 . 𝛁𝑓 =
𝜕

𝜕𝑥
𝒊 +

𝜕

𝜕𝑦
𝒋 +

𝜕

𝜕𝑧
𝒌 .

𝜕𝑓

𝜕𝑥
𝒊 +

𝜕𝑓

𝜕𝑦
𝒋 +

𝜕𝑓

𝜕𝑧
𝒌  

                               =
𝜕2𝑓

𝜕𝑥2 +
𝜕2𝑓

𝜕𝑦2 +
𝜕2𝑓

𝜕𝑧2  

❑ Identities: 

❑ Operates on a scalar field, produces a scalar function.
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❑Laplacian:

𝛻2𝑓 = 𝛁 . 𝛁𝑓 =
𝜕

𝜕𝑥
𝒊 +

𝜕

𝜕𝑦
𝒋 +

𝜕

𝜕𝑧
𝒌 .

𝜕𝑓

𝜕𝑥
𝒊 +

𝜕𝑓

𝜕𝑦
𝒋 +

𝜕𝑓

𝜕𝑧
𝒌  =

𝜕2𝑓

𝜕𝑥2 +
𝜕2𝑓

𝜕𝑦2 +
𝜕2𝑓

𝜕𝑧2  

❑ Example: 𝑓 𝑥, 𝑦, 𝑧 =  𝑥2 + 𝑦2 + 𝑧2, calculate ∇2𝑓.

❑ Step by step:
𝜕𝑓

𝜕𝑥
= 2𝑥,

𝜕𝑓

𝜕𝑦
= 2𝑦,

𝜕𝑓

𝜕𝑧
= 2𝑧

❑
𝜕

𝜕𝑥

𝜕𝑓

𝜕𝑥
=

𝜕

𝜕𝑥
2𝑥 = 2. Similarly,

𝜕

𝜕𝑦

𝜕𝑓

𝜕𝑦
=

𝜕

𝜕𝑧

𝜕𝑓

𝜕𝑧
=2

❑ Therefore,  𝛻2𝑓 ==
𝜕2𝑓

𝜕𝑥2 +
𝜕2𝑓

𝜕𝑦2 +
𝜕2𝑓

𝜕𝑧2 = 2 + 2 + 2 = 6.
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❑DCG:

Curl of a radial outward/inward vector is always zero!

(will be useful in talking about conservative nature of 𝑬)
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❑Fundamental theorem of calculus:

❑Integration as area under the curve:
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❑Integration: Inverse of Derivative
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❑Vector Integration:

❑ Extends the concept of integration to vector-valued functions.

❑ Involves integrating vector quantities, such as displacement, force, or velocity.

❑ Essential in various fields, including physics, engineering, and mathematics.

❑ Notations:

▪ One dimensional integral between 𝑥0, 𝑥1

▪ One dimensional integral over a closed loop:  ∮ (integral sign with a circle)

▪ Surface or volume integrals: ∫∫ (double integral sign) or ∫ 𝑑𝑥𝑑𝑦, or

                                                       ∫∫∫ (double integral sign) or ∫ 𝑑𝑥𝑑𝑦𝑑𝑧
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❑Vector Integration:

❑ Example:

1. Area of a rectangle of sides 𝑎, 𝑏:

           ∫0

𝑎
∫0

𝑏
𝑑𝑥 𝑑𝑦 = ∫0

𝑎
𝑑𝑥 ∫0

𝑏
𝑑𝑦 = 𝑎𝑏 (Note: separation possible in this case, not so in general!)

2. Area of a circle: circle is defined as 𝑥2 + 𝑦2 = 𝑟2. 

         Note: only one effective variable (the other depends on it), separation of variables is not possible.

         Try solving it
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❑Fundamental theorem of Gradients

 Check this
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❑Gauss theorem (Divergence theorem) and its physical meaning

❑∫
𝑉

𝜵. 𝒗  𝑑𝜏 = ∮
𝑆

𝒗. 𝑑𝒂 

❑ Relates volume to surface integral (bulk-boundary correspondence!)

❑ Physical Meaning: 

▪ Gauss's Theorem relates the flux of a vector field 𝑣 through a closed surface S to the divergence 

of 𝑣 within the enclosed volume V.

▪ It tells us that the total flux leaving or entering a closed surface is equal to the net source or sink 

of the vector field inside the volume.

❑ Applications:

▪ Electric Flux: In electromagnetism, Gauss's theorem helps calculate electric flux through a 

closed surface due to charges within a volume, providing insights into electric fields and charge 

distributions.
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❑Stokes theorem and its physical meaning

❑∫
𝑆

𝜵 × 𝒗  .  𝑑𝒂 = ∮
𝐶

𝒗. 𝑑𝒍 

❑ Relates surface integrals to line integrals (bulk boundary correspondence, again!)

❑ Physical Meaning:

▪ Stokes' Theorem connects the circulation of a vector field 𝑣 around a closed curve C to the curl 

of 𝑣 over the surface S that the curve bounds.

▪ It helps us understand how circulation around a curve is related to the rotation of the vector 

field over the surface.

❑ Applications:

▪ Fluid Dynamics: Stokes' theorem is fundamental in fluid dynamics, where it relates the 

circulation of velocity around a closed path to the vorticity within the enclosed region, 

helping analyze fluid flow patterns.
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❑Show that

❑ ∇ . ∇ × 𝒗 = 0

❑ ∇ × ∇𝑓 = 0
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Next Class

Questions?
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Module – 2: Electromagnetic Theory

Gradient, Divergence and Curl, Statement of Gauss theorem & Stokes theorem, Gauss’s law, Applications, 

Concept of electric potential, Relationship between E and V, Polarization of dielectrics, dielectric constant, 

Boundary conditions for E & D, Gauss’s law in magnetostatics, Ampere’s circuital law, Boundary conditions 

for B & H, Equation of continuity, Displacement current, Maxwell’s equations. [8] 

Text Book: Mathew N.O. Sadiku, Elements of Electromagnetics, Oxford University Press (Seventh Edition, 2018) 

Reference Book: David J. Griffiths, Introduction to Electrodynamics, Pearson (Fourth Edition, 2014) 

Module 2

Class structure: 4 Lectures including 1 Tutorial per week. (8  hours ~ 2 weeks for this module!)
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❑Coulomb’s law

❑Force on a test charge 𝑄 due to a single point charge 𝑞, that is at rest a distance r away is given 

by Coulomb’s law:

❑ ത𝐹 =
1

4𝜋𝜀0

𝑄𝑞

r2  Ƹr [𝜖0 is the permittivity in free space]

❑Force is proportional to the product of the charges and inversely proportional to the square of 

the separation distance.

❑Note: r is the separation vector from 𝑟′ (the location of 𝑞) to 𝑟 (the location of 𝑄): r = 𝒓 − 𝒓′ 

❑The force points along the line from 𝑞 to 𝑄; it is repulsive if 𝑞 and 𝑄 have the same sign, and 

attractive if their signs are opposite.
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❑The Electric Field

❑Consider several point charges 𝑞1, 𝑞2, . . . , 𝑞𝑛, at distances r1, r2, …., rn 

from 𝑄, the total force on 𝑄 is given by the superposition principle:

ത𝐹 = ഥ𝐹1 + 𝐹2 + … … . =
𝑄

4𝜋𝜀0

𝑞1

𝑟1
2  ෝ𝑟1 +

𝑞2

𝑟2
2  ෝ𝑟2 + … . .  = 𝑄 ത𝐸

Where ത𝐸 =
1

4𝜋𝜀0
 σ𝑖=1

𝑛 𝑞𝑖

ri
2  ොri (discrete charge distribution)

❑ ത𝐸 is called the electric field of the source charges. 

❑ Note: ത𝐸 is a function of position (r), because the separation vectors 

ri depend on the location of the field point. But it makes no 

reference to the test charge 𝑄. 
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❑The Electric Field

❑ Discrete charge distribution: ത𝐸 =
1

4𝜋𝜀0
 σ𝑖=1

𝑛 𝑞𝑖

ri
2  ොri

❑ ത𝐸 is called the electric field of the source charges. It is a vector 

quantity that varies from point to point and is determined by 

the configuration of source charges.

❑ Physically, 𝑬(𝒓) is the force per unit charge that would be 

exerted on a test charge, if you were to place one at P.
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❑The Electric Field

❑Continuous Charge Distributions: Instead of assuming that the 

source of the field is a collection of discrete point charges 𝑞𝑖, if 

the charge is distributed continuously over some region, the 

sum becomes an integral: ഥ𝑬(ത𝒓) =
1

4𝜋𝜀0
 ∫

𝑑𝑞

r2  Ƹr

❑ If the charge is spread out along a line (Fig. b), then 𝑑𝑞 = 𝜆𝑑𝑙′ (𝜆 is the charge-per-unit-length and 𝑑𝑙′ is 

an element of length along the line).

❑ If the charge is smeared out over a surface (Fig. c), then 𝑑𝑞 = 𝜎𝑑𝑎′ (𝜎 is the charge-per-unit-area and 

𝑑𝑎′ is an element of area on the surface). 

❑ If the charge fills a volume (Fig. d), then 𝑑𝑞 = 𝜌𝑑𝜏′ (𝜌 is the charge-per-unit-volume and 𝑑𝜏′ is an 

element of volume).
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❑The Electric Field

❑For a continuous charge distribution:  ഥ𝑬(ത𝒓) =
1

4𝜋𝜀0
 ∫

𝑑𝑞

r2  Ƹr

❑The electric field of a line charge is:  ഥ𝑬(ത𝒓) =
1

4𝜋𝜀0
 ∫

𝜆 𝑑𝑙′

r2  Ƹr

❑For a surface charge:  ഥ𝑬(ത𝒓) =
1

4𝜋𝜀0
 ∫

𝜎 𝑑𝑎′

r2  Ƹr

❑For a volume charge:  ഥ𝑬(ത𝒓) =
1

4𝜋𝜀0
 ∫

𝜌 𝑑𝜏′

r2  Ƹr (often referred to as the Coulomb law)
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❑The Electric Flux

❑Total flux of 𝑬 through a surface S: Φ𝐸 ≡ ∫
𝑆

𝑬. 𝑑𝒂

❑This is a measure of the “number of field lines” passing normally through the surface S.

❑𝑬. 𝑑𝒂 is proportional to the number of lines passing through the infinitesimal area 𝑑𝒂. (It is 

the area in the plane perpendicular to 𝑬).

❑For a closed surface, the flux through that surface is a measure of the total charge inside. 

This is the essence of Gauss’s law. 

❑Now let’s make it quantitative.
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❑The Electric Flux

❑The total flux due to a point charge Q:  ∮ 𝑬. 𝑑𝒂 =
𝑄

4𝜋𝜀0
 ∫

𝑑𝑎

r2 [ ∵ ഥ𝑬 =
𝑄

4𝜋𝜀0

r
r2 ]

              =
𝑄

4𝜋𝜀0

4𝜋r2

r2    

              =
𝑄

𝜀0

❑Note: no. of field lines passing through the spherical surface = no. of field lines passing through

ANY surface. Hence, ∮𝑆
𝑬. 𝑑𝒂 =

𝑄

𝜀0
(where S is an arbitrary surface enclosing 𝑄).

[∵ r is constant for the spherical

surface and ∫ 𝑑𝑎 = 4𝜋r2 ]
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❑The Electric Flux

❑Now, suppose, there is a distribution of charge instead of a single charge at the origin. 

❑According to the principle of superposition, the total field is the vector sum of all the individual 

fields: 𝑬 =
1

4𝜋𝜀0
 σ𝑖=1

𝑛 𝑬𝑖

❑The flux through a surface that encloses them all is: ∮ 𝑬. 𝑑𝒂 = σ𝑖=1
𝑛 ∮ 𝑬𝒊. 𝑑𝒂 = σ𝑖=1

𝑛  (
𝑞𝑖

𝜀0
)

❑For any closed surface, then, ∮𝑆
𝑬. 𝑑𝒂 =

𝑄
𝑒𝑛𝑐

𝜀0

❑This is the integral form of Gauss’s law or simply the Gauss’s law.
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❑The Electric Flux

❑Integral form of Gauss’s law for any closed surface: ∮ 𝑬. 𝑑𝒂 =
𝑄

𝑒𝑛𝑐

𝜀0

❑We can easily turn it into a differential one, by applying the divergence theorem: ∮𝑆
𝑬. 𝑑𝒂 =

∫𝑉
𝜵. 𝑬  𝑑𝜏

❑Rewrite 𝑄𝑒𝑛𝑐 in terms of the charge density 𝜌, we have: 𝑄𝑒𝑛𝑐 = ∫𝑉
𝜌 𝑑𝜏

❑Hence the integral form of Gauss’s law (∮ 𝑬. 𝑑𝒂 =
𝑄

𝑒𝑛𝑐

𝜀0
) becomes: ∫𝑉

𝜵. 𝑬  𝑑𝜏 = ∫𝑉
(

𝜌

𝜀0
) 𝑑𝜏

❑Since it holds for any volume, the integrands must be equal: 𝜵. 𝑬 =
𝜌

𝜀0

❑This is the differential form of Gauss’s law.
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❑The Electric Flux

❑Gauss’s Law

❑∫𝑎

𝑏
𝑔 𝑥 𝑑𝑥 =  ∫𝑎

𝑏
𝑓 𝑥 𝑑𝑥

❑These 𝑎 and 𝑏 are arbitrary

❑∫ 𝑔 𝑥 𝑑𝑥 =  ∫ 𝑓 𝑥 𝑑𝑥 is NOT possible for ANY given a, b unless the functions are same [i.e.

unless 𝑓(𝑥) = 𝑔(𝑥)].
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❑ Application of Gauss’s Law

❑Gauss’s Law

❑Integral form of Gauss’s law: ∮𝑆
𝑬. 𝑑𝒂 =

𝑄
𝑒𝑛𝑐

𝜀0

❑Differential form of Gauss’s law: 𝜵. 𝑬 =
𝜌

𝜀0

❑When symmetry permits, Gauss’s law in integral form affords by far the quickest 

and easiest way of computing electric fields. 

❑Solve some of the problems as example.

❑Please go through the Assignment
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❑ Consider a spherical surface at radius 𝑟 > 𝑅 (This is called a Gaussian surface)

❑ Gauss’s law: ∮𝑆
𝑬. 𝑑𝒂 =

𝑄
𝑒𝑛𝑐

𝜀0
=

𝑞

𝜀0
  (In this case 𝑄𝑒𝑛𝑐 = 𝑞) 

❑ Symmetry allows us to extract 𝑬 from under the integral sign: Both 𝑬 and 𝑑𝒂 points radially 

outward, so we can drop the dot product: ∫𝑆
𝑬. 𝑑𝒂 = ∫𝑆

𝑬 𝑑𝒂

❑ The magnitude of 𝑬 is constant over the gaussian surface – so it can come outside the integral.

❑ ∫𝑆
𝑬. 𝑑𝒂 = ∫𝑆

𝑬 𝑑𝒂 = 𝑬 ∫𝑆
𝑑𝒂 = 𝑬  4𝜋𝑟2 



Electrostatics
Application of Gauss’s Law

Dr. Anupam Roy 50

PH113: Physics (B.Tech. I)
Module 2 (Electromagnetic Theory)

❑ Hence, 𝑬  4𝜋𝑟2 =
𝑞

𝜀0
      Or,  ഥ𝑬 =

1

4𝜋𝜀0

𝑞

𝑟2  ො𝒓

❑ Note a remarkable feature of this result: The field outside the sphere is exactly the same as it 

would have been if all the charge had been concentrated at the center.
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❑ Note: Gauss’s law is always true, but it is not always useful.

❑ In the previous example, 𝑬 is pointed in the same direction as 𝑑𝒂 and its magnitude is 

constant over the surface. That’s why we could take |𝑬| outside the integral.

❑ Unless we assume a spherically symmetrical shape (𝜌 must be uniform), this will not be 

valid. Hence, Symmetry is crucial to this application of Gauss’s law.

❑ Three kinds of symmetry that work:

1. Spherical symmetry (Gaussian surface is a concentric sphere).

2. Cylindrical symmetry (Gaussian surface is a coaxial cylinder).

3. Plane symmetry (Gaussian “pillbox” that straddles the surface).
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Module – 2: Electromagnetic Theory

Gradient, Divergence and Curl, Statement of Gauss theorem & Stokes theorem, Gauss’s law, Applications, 

Concept of electric potential, Relationship between E and V, Polarization of dielectrics, dielectric constant, 

Boundary conditions for E & D, Gauss’s law in magnetostatics, Ampere’s circuital law, Boundary conditions 

for B & H, Equation of continuity, Displacement current, Maxwell’s equations. [8] 

Text Book: Mathew N.O. Sadiku, Elements of Electromagnetics, Oxford University Press (Seventh Edition, 2018) 

Reference Book: David J. Griffiths, Introduction to Electrodynamics, Pearson (Fourth Edition, 2014) 

Module 2

Class structure: 4 Lectures including 1 Tutorial per week. (8  hours ~ 2 weeks for this module!)
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❑Curl of 𝑬

❑For a point charge at origin:  ഥ𝑬 =
1

4𝜋𝜀0

𝑞

𝑟2  ො𝒓

❑Let’s calculate the line integral of this field from some point a to some other point b: ∫𝑎

𝑏
𝑬. 𝑑𝒍

❑In spherical coordinates: 𝑑𝒍 = 𝑑𝑟 ො𝒓 + 𝑟𝑑𝜃 𝜽 + 𝑟 𝑠𝑖𝑛𝜃 𝑑𝜑 ෝ𝝋, so

where 𝑟𝑎 is the distance from the origin to the point a and 𝑟𝑏 is the distance to b.

❑The integral around a closed path is zero (for then 𝑟𝑎 = 𝑟𝑏): ∮𝐶
𝑬. 𝑑𝒍 = 0

❑Now, applying Stokes’ theorem: 𝜵 × 𝑬 = 0      irrotational field or conservative field
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❑Curl of 𝑬

❑ ∮𝐶
𝑬. 𝑑𝒍 = 0

❑ 𝜵 × 𝑬 = 0

❑Gauss’s Law

❑ ∮
𝑆

𝑬. 𝑑𝒂 =
𝑄

𝑒𝑛𝑐

𝜀0

❑ 𝜵. 𝑬 =
𝜌

𝜀0

❑∮𝐶
𝑬. 𝑑𝒍 = 0 implies that the line integral of 𝑬 along a closed path must be zero. Physically, this means 

that no net work is done in moving a charge along a closed path in an electrostatic field.

❑Applying Stokes theorem, we get: 𝜵 × 𝑬 = 0

❑Any vector field that satisfies these two equations is said to be conservative, or irrotational. In other 

words, vectors whose line integral does not depend on the path of integration are called conservative 

vector fields. 

❑Thus, an electrostatic field is a conservative field.
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❑Electric Potential

❑Remember: The electric field 𝑬 is a very special kind of vector function whose curl is zero

❑𝜵 × 𝑬 = 0      irrotational field or conservative field

❑Any vector whose curl is zero is equal to the gradient of some scalar.

𝑪

Path (1)

Path (2)

𝑟𝑎

𝑟𝑏

❑Because 𝜵 × 𝑬 = 0, the line integral of 𝑬 around any 

closed loop is zero (that follows from Stokes’ theorem). 

❑Since curl of gradient is zero, 𝑬 ∝ 𝜵𝑉

❑Because ∮𝐶
𝑬. 𝑑𝒍 = 0, the line integral of 𝑬 from point 

a to point b is the same for all paths.
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❑Electric Potential

ර
𝐶

𝑬. 𝑑𝒍 = 0 =>  න

𝒓𝑎

𝒓𝑏

𝑬. 𝑑𝒍 + න

𝒓𝑏

𝒓𝑎

𝑬. 𝑑𝒍 = 0 =>  න

𝒓𝑎

𝒓𝑏

𝑬. 𝑑𝒍 = − න

𝒓𝑏

𝒓𝑎

𝑬. 𝑑𝒍 =>  න

𝒓𝑎

𝒓𝑏

𝑬. 𝑑𝒍 = න

𝒓𝒂

𝒓𝑏

𝑬. 𝑑𝒍 

❑ Hence, ∫
𝒓𝑎

𝒓𝑏 𝑬. 𝑑𝒍  is INDEPENDENT of chosen path.

𝑪

Path (1)

Path (2)

𝑟𝑎

𝑟𝑏
Path (1) Path (2)

❑ Because the line integral is independent of path, we can define a 

function: 𝑉 𝒓 ≡ − ∫𝒓0

𝒓𝑏 𝑬. 𝑑𝒍   where 𝒓0 is the reference point. It is 

called the electric potential.

❑ Note: 𝑉 depends only on the point 𝒓. 
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❑Electric Potential

❑ The potential difference between two points a and b is 

❑ 𝑉 𝑟𝑏 − 𝑉 𝑟𝑎 = − ∫𝒓0

𝒓𝑏 𝑬. 𝑑𝒍 + ∫𝒓0

𝒓𝑎 𝑬. 𝑑𝒍 = − ∫𝒓0

𝒓𝑏 𝑬. 𝑑𝒍 − ∫𝒓𝒂

𝒓0 𝑬. 𝑑𝒍 = − ∫𝒓𝒂

𝒓𝑏 𝑬. 𝑑𝒍

❑ Now the fundamental theorem for gradients states that: 

𝑉 𝑟𝑏 − 𝑉 𝑟𝑎 = ∫𝒓𝑎

𝒓𝑏(𝜵𝑉). 𝑑𝒍    [Remember: ∇ =  ො𝑥
𝜕

𝜕𝑥
+ ො𝑦

𝜕

𝜕𝑦
+ Ƹ𝑧

𝜕

𝜕𝑧
]

❑ So, ∫𝒓𝑎

𝒓𝑏(𝜵𝑉). 𝑑𝒍 = − ∫𝒓𝒂

𝒓𝑏 𝑬. 𝑑𝒍

❑ Since, this is true for any points a and b, the integrands must be equal: 𝑬 = −𝜵𝑉

❑ If 𝑉 is known, one can easily get 𝑬 just by taking the gradient: 𝑬 = −𝜵𝑉.
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❑Electric Potential

❑ If 𝑉 is known, one can easily get 𝑬 just by taking the gradient: 𝑬 = −𝜵𝑉. 

❑𝑬 is a vector quantity (has three components), but 𝑉 is a scalar (has only one 

component). How can one function possibly contain all the information that three 

independent functions carry? 

❑ The answer is that the three components of 𝑬 are not really as independent. They are 

related via 𝜵 × 𝑬 = 0. In terms of components:
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❑Electric Potential

❑ Potential obeys the superposition principle. 

❑ The original superposition principle pertains to the force on a test charge 𝑄. It says that the 

total force on 𝑄 is the vector sum of the forces attributable to the source charges individually: 

𝑭 =  𝑭𝟏 +  𝑭𝟐 + . . .

❑ Dividing through by 𝑄, we see that the electric field, too, obeys the superposition principle 

(vector sum): 𝑬 =  𝑬𝟏 +  𝑬𝟐 + . . .

❑ Integrating from the common reference point to 𝑟, it follows that the potential also satisfies 

such a principle (scalar sum): 𝑉 =  𝑉1 +  𝑉2 + . . .

❑ That is, the potential at any given point is the sum of the potentials due to all the source 

charges separately. 
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❑Poisson’s Equation and Laplace’s Equation

❑Electric field can be written as the gradient of a scalar potential: 𝑬 = −𝜵𝑉. 

❑ Using 𝑬 = −𝜵𝑉 we get 𝜵. 𝑬 = 𝜵. −𝜵𝑉 = −𝜵2𝑉

❑ (apart from the minus sign) Divergence of 𝑬 is the Laplacian of 𝑉.

❑ From the Gauss’s law: 𝜵. 𝑬 =
𝜌

𝜀0
, we get: 𝜵. −𝜵𝑉 =

𝜌

𝜀0
 ⇒  𝜵2𝑉 = −

𝜌

𝜀0

❑ 𝜵2𝑉 = −
𝜌

𝜀0
 => This is known as Poisson’s equation.

❑ In regions where there is no charge, we have 𝜌 = 0, and Poisson’s equation reduces to 

Laplace’s equation: 𝜵2𝑉 = 0.
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❑The Potential of a Localized Charge Distribution

❑Section 3.4, Griffith (Please go through the textbook)

❑Remember the expressions for 𝑬?

❑Can you guess the expression for 𝑉?

❑The electric field of a line charge is:  ഥ𝑬(ത𝒓) =
1

4𝜋𝜀0
 ∫

𝜆 𝑑𝑙′

r2  Ƹr

❑For a surface charge:  ഥ𝑬(ത𝒓) =
1

4𝜋𝜀0
 ∫

𝜎 𝑑𝑎′

r2  Ƹr

❑For a volume charge:  ഥ𝑬(ത𝒓) =
1

4𝜋𝜀0
 ∫

𝜌 𝑑𝜏′

r2  Ƹr
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❑The Work It Takes to Move a Charge

❑Suppose you have a stationary configuration of source charges, and you want to move a test 

charge 𝑄 from point a to point b. How much work will you have to do? 

❑At any point along the path, the electric force on 𝑄 is 𝑭 = 𝑄𝑬; the force you must exert, in 

opposition to this electrical force, is −𝑄𝑬.

❑The work you do is therefore

❑Notice that the answer is independent of the path you take from a to b.
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❑Three fundamental quantities of electrostatics: 𝜌, 𝑬, and 𝑉. 

❑We have derived all six formulas interrelating them (summarized in the figure).



Electrostatics

Dr. Anupam Roy 69

PH113: Physics (B.Tech. I)
Module 2 (Electromagnetic Theory)

❑Electric Fields in Matter

❑Matter can be broadly divided into two categories: conductors and insulators/dielectrics.

❑Conductors contain an “unlimited” supply of charges that are free to move about 

through the material. Many of the electrons (one or two per atom, in a typical metal) are 

not associated with any particular nucleus, but roam around at will. 

❑In dielectrics, by contrast, all charges are attached (or, bound) to specific atoms or 

molecules.
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❑Electric Fields in Matter

❑Induced Dipole: What happens to a neutral atom when it is placed in an electric field 𝑬?

❑Positively charged core (nucleus) and negatively charged electron (𝑒−) surrounding it are 

influenced by the field: the nucleus is pushed in the direction of 𝑬, and 𝑒− the opposite way. 

❑Consider 𝑬 is not too strong (so the atom is not ionized). The two opposing forces – 𝑬 pulling 

the electrons and nucleus apart, their mutual attraction drawing them back together – reach a 

balance, leaving the atom polarized.

❑The atom with separated +ve and –ve charges now has a tiny dipole moment 𝒑, which points in 

the same direction as 𝑬 and is approximately proportional to 𝑬 (as long as 𝑬 is not too strong).

❑Dipole moment, 𝒑 = 𝛼𝑬. (the constant of proportionality 𝛼 is called atomic polarizability).
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❑Electric Fields in Matter

❑Induced Dipole: What happens to a neutral atom when it is placed in an electric field 𝑬?

❑Neutral atom has no dipole moment to start with and 𝒑 is induced by the applied 𝑬 field. 

❑Some molecules have permanent dipole moments (e.g., water molecule) – polar molecules.

❑For such molecules placed in a uniform 

electric field 𝑬, the force on the positive 

end, 𝐹+ = 𝑞𝑬, exactly cancels the force 

on the negative end, 𝐹− = −𝑞𝑬. 
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❑Electric Fields in Matter

❑However, there will be a torque: 

𝑵 = 𝒓+ × 𝑭+ + 𝒓− × 𝑭− =
𝒅

2
× (𝑞𝑬) + −

𝒅

2
× (−𝑞𝑬) = 𝑞𝒅 × 𝑬

❑Thus, a dipole 𝒑 = 𝑞𝒅 in a uniform field 𝑬 experiences a torque 𝑵 = 𝒑 × 𝑬.

❑Notice that 𝑁 is in such a direction as to line 𝒑 up parallel to 𝑬; in a polar molecule dipole 

moments get aligned along 𝑬.

Dielectric material placed in an electric field, 𝑬: tiny dipoles point along the direction of 

𝑬 (material becomes polarized). We define a vector called polarization vector, 𝑷 ≡ dipole 

moment per unit volume.
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❑Electric Fields in Matter

❑Further Reading (Not in Syllabus)

❑What happens when 𝑬 is applied to a conductor?
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❑Electric Fields in Matter: Field of a Polarized Object

❑Suppose we have a polarized material – an object containing a lot of 

microscopic dipoles lined up. 

❑What is the potential at a point G?

❑First integral is over the surface S enclosing the charge distribution (r is the position vector from 

a point on S to the point G). 𝜎𝑏 is the surface bound charge density and is given by 𝜎𝑏 ≡ 𝑷 . ෝ𝒏 

(where ෝ𝒏 is the normal unit vector). 

❑Second integral is over the volume V (r is the position vector from any volume element enclosed 

by S to the point G). 𝜌𝑏 is the volume bound charge density and is given by 𝝆𝒃 ≡ −𝜵 . 𝑷.

❑ For more details: Section 2, Chapter 4. Electric Fields in Matter, David J. Griffiths

G
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❑Electric Fields in Matter

❑Gauss’s Law in the Presence of Dielectrics

❑The effect of polarization is to produce accumulations of (bound) charge, 𝜌𝑏 = −𝜵 . 𝑷 within 

the dielectric and 𝜎𝑏 = 𝑷 . ෝ𝒏  on the surface.

❑The field due to polarization of the medium is just the field of this bound charge.

❑Also, the sample consists of free charges (electrons or ions). 

❑Hence, within the dielectric, the total volume charge density can be written as: 𝜌 = 𝜌𝑏 + 𝜌𝑓.

where, 𝜌𝑏 is volume density of bound charges and 𝜌𝑓 is volume density of free charges.   
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❑Electric Fields in Matter: Gauss’s Law in the Presence of Dielectrics

❑In a dielectric, the total volume charge density can be written as: 𝜌 = 𝜌𝑏 + 𝜌𝑓.

❑Gauss’s law for 𝑬:                                      𝜵 . 𝑬 =
𝜌

𝜀0
=

𝜌𝑏+𝜌𝑓

𝜀0

⇒  𝜀0 𝜵 . 𝑬 = 𝜌𝑏 + 𝜌𝑓

⇒  𝜀0 𝜵 . 𝑬 = −𝜵 . 𝑷 + 𝜌𝑓

⇒  𝜵 . (𝜀0𝑬 + 𝑷) = 𝜌𝑓

We define the Electric Displacement Vector as 𝑫 = 𝜀0𝑬 + 𝑷

Hence, 𝜵 . 𝑫 = 𝜌𝑓   (This is the differential form of Gauss’s law in matter)

(Since, 𝜌𝑏 = −𝜵 . 𝑷) 
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❑Electric Fields in Matter: Gauss’s Law in the Presence of Dielectrics

❑In a dielectric, the total volume charge density can be written as: 𝜌 = 𝜌𝑏 + 𝜌𝑓.

❑Differential form of Gauss’s law in matter: 𝜵 . 𝑫 = 𝜌𝑓

Where the Electric Displacement Vector, 𝑫 = 𝜀0𝑬 + 𝑷

❑ Integral form of Gauss’s law in matter:

∫𝑉
𝜵 .  𝑫  𝑑𝜏 = ∫𝑉

𝜌𝑓 𝑑𝜏 = 𝑄𝑓, 𝑒𝑛𝑐         [𝑄𝑓, 𝑒𝑛𝑐 
is the enclosed free charge]
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❑Electric Fields in Matter

❑Curl of 𝑫:

❑The Electric Displacement Vector, 𝑫 = 𝜀0𝑬 + 𝑷

❑Hence, 𝜵 × 𝑫 = 𝜀0 𝜵 × 𝑬 + 𝜵 × 𝑷

❑But 𝜵 × 𝑬 = 0

❑So, 𝜵 × 𝑫 = 𝜵 × 𝑷

❑Note: For the conservative field: (i) 𝜵 × 𝑬 = 0 and (ii) 𝑬 = −𝜵𝑉.
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❑Electric Fields in Matter: Linear Dielectric

❑If 𝑬 is not too strong, polarization is proportional to the field:

 𝑷 = 𝛼𝑬

     = 𝜀0 𝜒𝑒  𝑬         (where 𝜒𝑒 = 𝛼/𝜀0 is the electric susceptibility of the medium)

❑Materials that obey the relation 𝑷 = 𝜀0 𝜒𝑒 𝑬  are called linear dielectric materials.

❑The Electric Displacement Vector, 𝑫 = 𝜀0𝑬 + 𝑷 = 𝜀0𝑬 + 𝜀0 𝜒𝑒  𝑬 = 𝜀0 1 + 𝜒𝑒 𝑬 = 𝜀 𝑬

❑𝜀 is the permittivity of the material and 𝜀0 is the permittivity of vacuum (or free space). 

❑So, 𝑫 is also proportional to 𝑬 and it can be written as 𝑫 = 𝜀 𝑬   [where 𝜀 =  𝜀0 1 + 𝜒𝑒 ]

❑Relative permittivity (or dielectric constant) is defined as: 𝜀𝑟 = 1 + 𝜒𝑒 = 𝜀/𝜀0
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❑Electric Fields in Matter: Boundary Conditions for 𝑬 and 𝑫

❑What happens to the parallel and perpendicular components of 𝑬 and 𝑫 when they cross an 

interface?

1. Boundary condition for 𝑬:

a. Normal (perpendicular) component

b. Tangential (parallel) component

2. Boundary condition for 𝑫:

a. Normal (perpendicular) component

b. Tangential (parallel) component

▪ Decompose the electric field 𝑬  vector into two orthogonal 

components: 𝑬 = 𝑬⊥ + 𝑬∥ where 𝑬⊥ and 𝑬∥ are the normal and 

tangential components of 𝑬 to the interface, respectively.

▪ A similar decomposition can be done for 𝑫.
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❑Electric Fields in Matter: Boundary Conditions for 𝑬 and 𝑫

1. Boundary condition for 𝑬: (a) Normal Component:

❑From the Gauss’s law:  ∮𝑆
𝑬. 𝑑𝒂 =

𝑄
𝑒𝑛𝑐

𝜀0
= ∮𝑆

𝜎 𝑑𝑎

𝜀0

Where 𝜎 is the surface charge density and 𝜀0 is the permittivity of free space.

❑ So, ∮𝑆
𝑬. 𝑑𝒂 = ∮𝑢𝑝𝑝𝑒𝑟

𝑬. 𝑑𝒂 + ∮𝑙𝑜𝑤𝑒𝑟
𝑬. 𝑑𝒂 + ∮𝑠𝑖𝑑𝑒𝑠

𝑬. 𝑑𝒂

In the limit ℎ → 0, sides of the pillbox do not contribute, and we have ∮𝑠𝑖𝑑𝑒𝑠
𝑬. 𝑑𝒂 = 0.

❑We consider a cylindrical Gaussian pillbox of surface S 

with a small circular cross-section ∆𝑎 and height ℎ
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❑Electric Fields in Matter: Boundary Conditions for 𝑬 and 𝑫

1. Boundary condition for 𝑬: (a) Normal Component:

❑∮𝑆
𝑬. 𝑑𝒂 =

𝑄
𝑒𝑛𝑐

𝜀0
= ∮𝑆

𝜎 𝑑𝑎

𝜀0

∮𝑆
𝑬. 𝑑𝒂 = ∮𝑢𝑝𝑝𝑒𝑟

𝑬. 𝑑𝒂 + ∮𝑙𝑜𝑤𝑒𝑟
𝑬. 𝑑𝒂 = ∮𝑆

𝜎 𝑑𝑎

𝜀0

𝐸⊥
(1)

 ∆𝑎 + 𝐸⊥
(2)

−∆𝑎 =
𝜎 ∆𝑎

𝜀0

⇒  𝐸⊥
(1)

 − 𝐸⊥
(2)

 =
𝜎

𝜀0
≠ 0

Conclusion: In presence of a finite surface charge density 𝜎 ≠ 0, the normal component of 𝑬 is

discontinuous across the interface by an amount of
𝜎

𝜀0
. (Where there is no surface charge, 𝑬⊥ is 

continuous, as for instance at the surface of a uniformly charged solid sphere.)
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❑Electric Fields in Matter: Boundary Conditions for 𝑬 and 𝑫

1. Boundary condition for 𝑬: (b) Tangential Component:

❑∮𝐶
𝑬. 𝑑𝒍 = 0

❑Again, consider the height, ℎ → 0. Hence, only the longer sides 

contribute (shorter sides of length ℎ → 0 do not contribute)

❑𝐸∥
(1)

 (−𝑙) + 𝐸∥
(2)

𝑙 = 0

❑𝐸∥
(1)

= 𝐸∥
(2)

ℎ

ℎ → 0

𝑬∥
(1)

𝑬∥
(2)𝑙

❑Conclusion: Tangential component of 𝑬, by contrast, is always continuous across an interface.
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❑Electric Fields in Matter: Boundary Conditions for 𝑬 and 𝑫

2. Boundary condition for 𝑫: (a) Normal Component:

❑∮𝑆
𝑫 . 𝑑𝒂 = 𝑄𝑓, 𝑒𝑛𝑐 = ∮𝑆

𝜎𝑓 𝑑𝑎

𝐷⊥
(1)

 ∆𝑎 + 𝐷⊥
(2)

−∆𝑎 = 𝜎𝑓 ∆𝑎

⇒  𝐷⊥
(1)

 − 𝐷⊥
(2)

 = 𝜎𝑓 ≠ 0

Conclusion: In presence of a finite free surface charge density 𝜎𝑓 ≠ 0, the normal

component of 𝑫 is discontinuous across the interface by an amount of 𝜎𝑓.

𝑫⊥
(1)

𝑫⊥
(2)
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❑Electric Fields in Matter: Boundary Conditions for 𝑬 and 𝑫

2. Boundary condition for 𝑫: (b) Tangential Component:

❑𝑫 = 𝜀0𝑬 + 𝑷

❑∮𝐶
𝑫. 𝑑𝒍 = 𝜀0 ∮𝐶

𝑬. 𝑑𝒍 + ∮𝐶
𝑷. 𝑑𝒍

❑Since, ∮𝐶
𝑬. 𝑑𝒍 = 0, we have ∮𝐶

𝑫. 𝑑𝒍 = ∮𝐶
𝑷. 𝑑𝒍

❑Hence, ∮𝐶
𝑫 − 𝑷  . 𝑑𝒍 = 0

❑Rewrite this as: ∮𝐶
𝑪 . 𝑑𝒍 = 0  (where 𝑪 = 𝑫 − 𝑷)

ℎ → 0

𝑪∥
(1)

𝑪∥
(2)𝑙
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❑Electric Fields in Matter: Boundary Conditions for 𝑬 and 𝑫

2. Boundary condition for 𝑫: (b) Tangential Component:

❑Again, consider the height, ℎ → 0. Hence, only the longer sides contribute (shorter sides of 

length ℎ → 0 do not contribute). Similar to previous case for 𝑬, we can have

❑𝐶∥
(1)

 (−𝑙) + 𝐶∥
(2)

𝑙 = 0 ⇒  𝐶∥
(1)

= 𝐶∥
(2)

❑Hence, 𝐷∥
(1)

− 𝑃∥
(1)

= 𝐷∥
(2)

− 𝑃∥
(2)

❑This gives, 𝐷∥
(1)

− 𝐷∥
(2)

= 𝑃∥
(1)

− 𝑃∥
(2)

❑Conclusion: Tangential component of 𝑫 is in general discontinuous across an interface unless

𝑃∥
(1)

= 𝑃∥
(2)

.

ℎ → 0

𝑪∥
(1)

𝑪∥
(2)𝑙
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❑Electric Fields in Matter: Boundary Conditions for 𝑬 and 𝑫

1. Boundary condition for 𝑬: 

(a) Normal Component: 𝐸⊥
(1)

 − 𝐸⊥
(2)

 =
𝜎

𝜀0

(b) Tangential Component: 𝐸∥
(1)

= 𝐸∥
(2)

2. Boundary condition for 𝑫: 

(a) Normal Component: 𝐷⊥
(1)

 − 𝐷⊥
(2)

 = 𝜎𝑓

(b) Tangential Component: 𝐷∥
(1)

− 𝐷∥
(2)

= 𝑃∥
(1)

− 𝑃∥
(2)
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Module – 2: Electromagnetic Theory

Gradient, Divergence and Curl, Statement of Gauss theorem & Stokes theorem, Gauss’s law, Applications, 

Concept of electric potential, Relationship between E and V, Polarization of dielectrics, dielectric constant, 

Boundary conditions for E & D, Gauss’s law in magnetostatics, Ampere’s circuital law, Boundary conditions 

for B & H, Equation of continuity, Displacement current, Maxwell’s equations. [8] 

Text Book: Mathew N.O. Sadiku, Elements of Electromagnetics, Oxford University Press (Seventh Edition, 2018) 

Reference Book: David J. Griffiths, Introduction to Electrodynamics, Pearson (Fourth Edition, 2014) 

Module 2

Class structure: 4 Lectures including 1 Tutorial per week. (8  hours ~ 2 weeks for this module!)
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❑Lorentz Force Law

❑ A stationary charge produces only an electric field 𝑬 in the space around it. 

❑ However, a moving charge generates, in addition, a magnetic field 𝑩.

❑ In the presence of both electric and magnetic fields, the net force on a charge 𝑄 moving with a 

velocity 𝒗 would be 𝑭 = 𝑄[𝑬 + (𝒗 ×  𝑩)]. 

❑ This is known as the Lorentz force law.

❑ In absence of electric field 𝑬, we only have the magnetic force, 𝑭𝑚𝑎𝑔 = 𝑄(𝒗 ×  𝑩).
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❑Lorentz Force Law

❑ In the presence of both electric (𝑬) and magnetic (𝑩) fields, the net force on a charge 𝑄 moving with a 

velocity 𝒗 would be 𝑭 = 𝑄[𝑬 + (𝒗 ×  𝑩)]. This is known as the Lorentz force law.

❑ In absence of electric field 𝑬, we only have the magnetic force, 𝑭𝑚𝑎𝑔 = 𝑄(𝒗 × 𝑩).

❑ Note: Magnetic forces do no work.

❑ For if 𝑄 moves an amount 𝑑𝒍 = 𝒗 𝑑𝑡, the work done is 𝑑𝑊𝑚𝑎𝑔 = 𝑭𝑚𝑎𝑔 · 𝑑𝒍

                   = 𝑄(𝒗 × 𝑩) · 𝒗 𝑑𝑡 = 0.

▪ Because (𝒗 × 𝑩) is perpendicular to 𝒗, so (𝒗 × 𝑩) · 𝒗 = 0. 

❑Magnetic forces may alter the direction in which a particle moves, but they cannot speed it up 

or slow it down.
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❑Lorentz Force Law

❑ Current: The current in a wire is the charge per unit time passing a given point.

❑ The magnetic force on a segment of current-carrying wire is 

𝑭𝑚𝑎𝑔 = ∫ 𝑑𝑞 𝒗 × 𝑩 = ∫ 𝐼 𝑑𝑡 𝒗 × 𝑩 = ∫ 𝐼 𝑑𝒍 × 𝑩     (since 𝑑𝒍 = 𝒗 𝑑𝑡)

❑ Hence, 𝑭𝑚𝑎𝑔 = 𝐼 ∫(𝑑𝒍 × 𝑩).  (Typically, the current is a constant in magnitude along the wire)

❑ Suppose both 𝐼 and 𝑩 are constants. Then 𝑭𝑚𝑎𝑔 = 𝐼 (∫ 𝑑𝒍 × 𝑩 = 𝐼 𝒍 × 𝑩 .
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❑Biot Savart Law

❑ The magnetic field of a steady line current is given by the Biot-Savart 

law: 𝑩 𝒓 =
𝜇0

4𝜋
 ∫ 𝐼

𝑑𝒍′× r
r2

❑ The constant 𝜇0 is called the permeability of free space and 𝜇0 = 4𝜋 × 10−7 N/A2.

❑ The integration is along the current path, in the direction of the flow; 𝑑𝒍′ is an element of 

length along the wire, and r, as always, is the vector from the source to the point r (see figure).
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❑Biot Savart Law

❑When charge flows over a surface, we have a surface 

current density (𝑲), defined as the current per unit width 

perpendicular to the flow.

❑ Consider a “ribbon” of infinitesimal width 𝑑𝒍⊥, running 

parallel to the flow (see Figure). If the current in this ribbon 

is 𝑑𝑰, the surface current density is 𝑲 =
𝑑𝑰

𝑑𝒍⊥
.

❑ If the (mobile) surface charge density is 𝜎 and its velocity is 𝒗, then 𝑲 = 𝜎𝒗.

❑ For a surface current, Biot-Savart law becomes: 𝑩 𝒓 =
𝜇0

4𝜋
 ∫

𝑲(𝒓′)× r
r2  𝑑𝑎′
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❑Biot Savart Law

❑When the flow of charge is distributed throughout a three-

dimensional region, we describe it by the volume current density (𝑱), 

defined as the current per unit area.

❑ Consider a “tube” of infinitesimal cross section 𝑑𝑎⊥, running parallel 

to the flow (see Figure). If the current in this tube is 𝑑𝑰, the volume 

current density is: 𝑱 =
𝑑𝑰

𝑑𝑎⊥
.

❑ If the (mobile) volume charge density is 𝜌 and the velocity is 𝑣, then 𝑱 = 𝜌𝒗.

❑ For a volume current, Biot-Savart law becomes: 𝑩 𝒓 =
𝜇0

4𝜋
 ∫

𝑱(𝒓′)× r
r2  𝑑𝜏′
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❑Continuity Equation

❑ Consider a “tube” of infinitesimal cross section 𝑑𝑎⊥, running parallel 

to the flow (see Figure). If the current in this tube is 𝑑𝑰, the volume 

current density is: 𝑱 =
𝑑𝑰

𝑑𝑎⊥
.

❑ Total current crossing a surface S can be written as: 𝐼 = ∫𝑆
𝐽 𝑑𝑎⊥ = ∫𝑆

𝑱 . 𝑑𝒂 

(The dot product serves neatly to pick out the appropriate component of 𝑑𝒂.)

❑ Charge per unit time leaving a volume V is: ∫𝑆
𝑱 . 𝑑𝒂 = ∫𝑉

𝜵 .  𝑱  𝑑𝜏
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❑Continuity Equation

❑ Consider a “tube” of infinitesimal cross section 𝑑𝒂, running parallel to the 

flow. If the volume current density is 𝑱, the total current crossing a surface S 

can be written as: 𝐼 = ∫𝑆
𝐽 𝑑𝑎⊥ = ∫𝑆

𝑱 . 𝑑𝒂 = ∫𝑉
𝜵 .  𝑱  𝑑𝜏

❑ Because charge is conserved, whatever flows out through the surface must come at the 

expense of what remains inside: ∫𝑉
𝜵 .  𝑱  𝑑𝜏 = −

𝑑

𝑑𝑡
∫𝑉

𝜌 𝑑𝜏 = − ∫𝑉

𝜕𝜌

𝜕𝑡
𝑑𝜏

(The minus sign reflects the fact that an outward flow decreases the charge left in V.) 

❑ Since this applies to any volume, we conclude that: 𝜵 . 𝑱 = −
𝜕𝜌

𝜕𝑡

❑ This is the precise mathematical statement of local charge conservation and is called the 

continuity equation.
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❑Biot Savart Law

Homework

Section 2.2 (Magnetostatics) 
from Griffith

▪ What is the magnetic field by an infinite straight current carrying wire at a distance 𝑠?

▪ 𝐵 =
𝜇0 𝐼

2𝜋𝑠
(the field is inversely proportional to the distance from the wire)
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❑Curl of 𝑩

❑ The integral of 𝑩 around a circular path C of radius 𝑟, centered at the wire 

❑ ∫𝑆
𝜵 ×  𝑩  . 𝑑𝒂 = ∮𝑪

𝑩 . 𝑑𝒍   (using Stokes’ theorem)

        =
𝜇0 𝐼

2𝜋𝑟
∮ 𝑑𝑙 =

𝜇0 𝐼

2𝜋𝑟
2𝜋𝑟 = 𝜇0 𝐼

❑ Suppose we have a bundle of straight wires. Each wire that passes through the loop contributes 

𝜇0 𝐼, and those outside contribute nothing. The line integral will then be

  ∮𝑪
𝑩 . 𝑑𝒍 = 𝜇0 𝐼𝑒𝑛𝑐  (where 𝐼𝑒𝑛𝑐 is the total current enclosed by the loop C)

❑ Note: the result is independent of 𝑟. Hence it does not have to be a circle; it is applicable to any 

shape of closed loop.

𝑟

𝐼

𝐶
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❑Curl of 𝑩

❑ The entire loop C can be represented by an infinitesimal line element 

along one of the concentric circles and an infinitesimal element 

perpendicular to that circle.

𝑩

▪ 𝑑𝒍 = 𝑑𝒍∥ + 𝑑𝒍⊥

▪ 𝑩 . 𝑑𝒍 = 𝐵𝑑𝑙∥

𝑟 𝑑𝜑 = 𝑑𝑙∥

𝑟

❑ ∮𝑪
𝑩 . 𝑑𝒍 = ∮𝑪

𝐵 𝑟 𝑑𝜑  (∵ line element that 

are perpendicular to concentric circles do not 

contribute to the integral).
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❑Curl of 𝑩

❑ For any concentric circle of radius 𝑟, magnetic field produced is
𝜇0 𝐼

2𝜋𝑟
 

along the direction of 𝑑𝒍∥ which lies on the circumference of that 

circle. 

𝑩

▪ 𝑑𝒍 = 𝑑𝒍∥ + 𝑑𝒍⊥

▪ 𝑩 . 𝑑𝒍 = 𝐵𝑑𝑙∥

𝑟 𝑑𝜑 = 𝑑𝑙∥

𝑟

❑ Hence, ∮𝑪
𝑩 . 𝑑𝒍 = ∮𝑪

𝐵 𝑟 𝑑𝜑 = ∮𝑪

𝜇0 𝐼

2𝜋𝑟
 𝑟 𝑑𝜑

           =
𝜇0 𝐼𝑒𝑛𝑐

2𝜋
∮𝑪

𝑑𝜑 =
𝜇0 𝐼𝑒𝑛𝑐

2𝜋
 (2𝜋)

❑ Hence, ∮𝑪
𝑩 . 𝑑𝒍 = 𝜇0 𝐼𝑒𝑛𝑐 

❑ This is the integral form of Ampere’s Law.
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❑Curl of 𝑩

❑ If the flow of charge is represented by a volume current density 𝑱, the enclosed current is 

𝐼𝑒𝑛𝑐 = ∫𝑆
𝑱 . 𝑑𝒂.  [since 𝑱 =

𝑑𝑰

𝑑𝑎⊥
=

𝑑𝑰

𝑑𝑎 𝑐𝑜𝑠𝜃
 and the integral is taken over any surface bounded 

by the loop] 

❑ Apply Stokes’ theorem: ∫𝑆
𝜵 ×  𝑩  . 𝑑𝒂 = ∮𝑪

𝑩 . 𝑑𝒍  = 𝜇0 𝐼𝑒𝑛𝑐 = 𝜇0 ∫𝑆
𝑱 . 𝑑𝒂

❑ Hence, ∫𝑆
𝜵 ×  𝑩  . 𝑑𝒂 = 𝜇0 ∫𝑆

𝑱 . 𝑑𝒂

❑ Since S is arbitrary, we have: 𝜵 × 𝑩 = 𝜇0 𝑱

❑ This is the relation for the curl of 𝑩. This is also known as the differential form of Ampere’s Law. 
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❑Divergence of 𝑩

❑ Since the number of field lines exiting the surface equals the number of field lines entering the 

surface, we have: ∮𝑺
𝑩 . 𝑑𝒂 = 0   

❑ This is because the magnetic fields always form closed loops unlike electric fields.

❑ Since, ∮𝑺
𝑩 . 𝑑𝒂 = 0, we have ∮𝑺

𝑩 . 𝑑𝒂 = ∫𝑉
𝜵 .  𝑩  𝑑𝜏 = 0

❑ Hence, 𝜵 . 𝑩 = 0 

❑Curl of 𝑩

❑𝜵 × 𝑩 = 𝜇0 𝑱, Or

❑ ∮𝑪
𝑩 . 𝑑𝒍 = 𝜇0 𝐼𝑒𝑛𝑐

❑Divergence of 𝑩

❑ 𝜵 . 𝑩 = 0, Or

❑ ∮𝑺
𝑩 . 𝑑𝒂 = 0
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❑Derivation of 𝜵 . 𝑩 = 0

❑ The Biot-Savart law for a volume current: 𝑩 𝒓 =
𝜇0

4𝜋
 ∫

𝑱(𝒓′)× r
r2  𝑑𝜏′

❑ Note: 

▪ This formula gives the magnetic field (𝑩) at a point 𝒓 = (𝑥, 𝑦, 𝑧) in terms of an integral 

over the current distribution 𝑱(𝑥′, 𝑦′, 𝑧′). 

▪ So, 𝑩 is a function of (𝑥, 𝑦, 𝑧), 𝑱 is a function of (𝑥′, 𝑦′, 𝑧′), r = 𝑥 − 𝑥′ ෝ𝒙 + 𝑦 − 𝑦′ ෝ𝒚 +

(𝑧 − 𝑧′)ො𝒛 and 𝑑𝜏′ = 𝑑𝑥′𝑑𝑦′𝑑𝑧′.

▪ The integration is over the primed coordinates; the divergence and the curl of 𝑩 are 

with respect to the unprimed coordinates.
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❑Derivation of 𝜵 . 𝑩 = 0

❑ The Biot-Savart law for a volume current: 𝑩 𝒓 =
𝜇0

4𝜋
 ∫

𝑱(𝒓′)× r
r2  𝑑𝜏′

❑ Take divergence of both sides: 𝜵 . 𝑩 =
𝜇0

4𝜋
∫ 𝜵 . (𝑱 ×

r
r2) 𝑑𝜏′

❑ Now use the vector calculus identity: 𝜵 . 𝑨 × 𝑩 = 𝑩 . 𝜵 × 𝑨 − 𝑨 . (𝜵 × 𝑩)      (prove it)

❑ Then we have 𝜵 . 𝑩 =
𝜇0

4𝜋
∫

r
r2  . 𝜵 × 𝑱 − 𝑱 . 𝜵 ×

r
r2 𝑑𝜏′

❑ Now, 𝑱 ≡ 𝑱(𝑥′, 𝑦′, 𝑧′) is a function of primed coordinates. But 𝜵 ≡ ෝ𝒙
𝜕

𝜕𝑥
+ ෝ𝒚

𝜕

𝜕𝑦
+ ො𝒛

𝜕

𝜕𝑧
  

(unprimed coordinates)

❑ Since 𝑱 is independent of the unprimed coordinates, 𝜵 × 𝑱 = 0 
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❑Derivation of 𝜵 . 𝑩 = 0

❑ The Biot-Savart law for a volume current: 𝑩 𝒓 =
𝜇0

4𝜋
 ∫

𝑱(𝒓′)× r
r2  𝑑𝜏′

❑ Take divergence: 𝜵 . 𝑩 =
𝜇0

4𝜋
∫ 𝜵 . 𝑱 ×

r
r2 𝑑𝜏′ =

𝜇0

4𝜋
∫

r
r2  . 𝜵 × 𝑱 − 𝑱 . 𝜵 ×

r
r2 𝑑𝜏′

❑ Use, 𝜵 × 𝑱 = 0 

❑ Hence, 𝜵 . 𝑩 = −
𝜇0

4𝜋
∫ 𝑱 . 𝜵 ×

r
r2 𝑑𝜏′

❑ Now use another vector calculus identity: if 𝑓 is a scalar and 𝑨 is a vector, then 𝜵 × 𝑓𝑨 =

𝑓 𝜵 × 𝑨 + (𝜵𝑓) × 𝑨           (prove it)

❑ Thus, 𝜵 × (
r
r2) =

1

r2 𝜵 × Ƹr + 𝜵(
1

r2) × Ƹr



Magnetostatics

Dr. Anupam Roy 108

PH113: Physics (B.Tech. I)
Module 2 (Electromagnetic Theory)

❑Derivation of 𝜵 . 𝑩 = 0

❑ The Biot-Savart law for a volume current: 𝑩 𝒓 =
𝜇0

4𝜋
 ∫

𝑱(𝒓′)× r
r2  𝑑𝜏′

❑ Take divergence: 𝜵 . 𝑩 = −
𝜇0

4𝜋
∫ 𝑱 . 𝜵 ×

r
r2 𝑑𝜏′     (Using, 𝜵 × 𝑱 = 0) 

❑ Using a vector calculus identity: 𝜵 × (
r
r2) =

1

r2 𝜵 × Ƹr + 𝜵(
1

r2) × Ƹr

❑ Now, calculate 𝜵 × Ƹr  and 𝜵(
1

r2):  𝜵
1

r2 = −
2 r
r4 = −

2

r3
Ƹr   and 𝜵 × Ƹr = 0

❑ Hence, 𝜵 ×
r
r2 = 𝜵

1

r2 × Ƹr = −
2

r3
Ƹr × Ƹr = 0

❑ Therefore, 𝜵 . 𝑩 = 0 [Divergence of the magnetic field is zero]
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❑Comparison of Magnetostatics and Electrostatics

❑Divergence and Curl of Electrostatics

▪ 𝜵. 𝑬 =
𝜌

𝜀0
(Gauss’s law)

▪ 𝜵 × 𝑬 = 0 (no name)

❑These are Maxwell’s equations for electrostatics

❑Divergence and Curl of Magnetostatics

▪ 𝜵. 𝑩 = 0 (no name)

▪ 𝜵 × 𝑩 = 𝜇0 𝑱 (Ampere’s law)

❑These are Maxwell’s equations for magnetostatics

❑There are no point sources for 𝑩, as compared to 𝑬; there exists no magnetic analog to electric charge.

❑Hence, 𝐁 is divergenceless (𝜵. 𝑩 = 0), and there are no magnetic monopoles. It takes a moving electric 

charge to produce a magnetic field, and it takes another moving electric charge to “feel” a magnetic 

field.



Magnetostatics

Dr. Anupam Roy 110

PH113: Physics (B.Tech. I)
Module 2 (Electromagnetic Theory)

❑The Vector Potential

❑Recall: In Electrostatics 𝛁 × 𝑬 = 0 permitted us to introduce a scalar potential (𝑉): 𝑬 = −𝛁𝑉

❑Similarly, 𝛁 · 𝑩 = 0 invites the introduction of a vector potential 𝑨 in magnetostatics: 𝑩 = 𝛁 × 𝑨. 

❑Since the divergence of a curl is always zero, the potential formulation automatically takes care of 

𝛁 · 𝑩 = 0.

❑There remains the Ampere’s law: 𝛁 × 𝑩 = 𝜇0𝑱

❑𝛁 × 𝑩 = 𝛁 × (𝛁 × 𝑨) = 𝛁(𝛁 · 𝑨) − 𝜵𝟐𝑨 (prove it)

❑Hence, 𝛁 × 𝑩 = 𝛁 × 𝛁 × 𝑨 = 𝛁 𝛁 · 𝑨 − 𝜵𝟐𝑨 = 𝜇0𝑱
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❑The Vector Potential

❑There remains the Ampere’s law: 𝛁 × 𝑩 = 𝛁 × (𝛁 × 𝑨) = 𝛁(𝛁 · 𝑨) − 𝜵𝟐𝑨 = 𝜇0𝑱.

❑It can be shown that 𝛁 · 𝑨 = 𝟎. 

❑The electric potential (𝑉) had a built-in ambiguity: one can add to 𝑉 any function whose 

gradient is zero (for example, any constant), without altering 𝑬. Likewise, one can add to 𝑨 any 

function whose curl vanishes (for example, gradient of any scalar), with no effect on 𝑩. 

Exploiting this property, we can have, 𝛁 · 𝑨 = 𝟎

❑Hence 𝜵𝟐𝑨 = −𝜇0𝑱 (This is the Poisson’s equation)

❑Assuming 𝑱 goes to zero at infinity, we can read off the solution: 𝑨 𝒓 =
𝜇0

4𝜋
∫

𝑱(𝒓′)

r  𝑑𝜏′
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❑Boundary Condition

❑Like the electrostatics, a triangular diagram can be 

drawn to summarize the relations among the three 

fundamental quantities of magnetostatics, relating 

the current density 𝑱, the field 𝑩, and the potential 

𝑨. There is one “missing link” in the diagram: the 

equation for 𝑨 in terms of 𝑩. (See Probs. 52 and 53 

from Griffith book, chapter: magnetostatics). 
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❑Boundary Condition

❑(Recall the boundary conditions for 𝑬 and 𝑫) 

❑Just as the electric field suffers a discontinuity at a surface charge, so the magnetic field is 

discontinuous at a surface current. Only this time it is the tangential component that changes.

❑Boundary condition for 𝑩: (a) Normal Component

❑We start with 𝛁 · 𝑩 = 0 ⇒ ∮𝑺
𝑩 . 𝑑𝒂 = 0  for a wafer-thin pillbox 

straddling the surface

❑As the sides do not contribute (ℎ → 0), ∮𝑆
𝑩. 𝑑𝒂 = ∮𝑢𝑝𝑝𝑒𝑟

𝑩. 𝑑𝒂 + ∮𝑙𝑜𝑤𝑒𝑟
𝑩. 𝑑𝒂

⇒  𝐵⊥
(1)

 ∆𝑎 + 𝐵⊥
(2)

−∆𝑎 = 0 ⇒  𝐵⊥
(1)

 − 𝐵⊥
(2)

 = 0

❑ Conclusion: Normal component of 𝑩 is continuous.
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❑Boundary Condition

❑Boundary condition for 𝑩: (a) Tangential Component

❑For the tangential components, an Amperian loop running 

perpendicular to the current yields ∮𝑪
𝑩 . 𝑑𝒍 = 𝜇0 𝐼𝑒𝑛𝑐

❑As, ℎ → 0, only the longer sides contribute (shorter sides of length do not contribute)

❑𝐵∥
(1)

−𝑙 + 𝐵∥
2

𝑙 = −𝜇0 𝐾𝑙 (since ∫ 𝑲. 𝑑𝒍 = 𝐼)

❑𝐵∥
(1)

− 𝐵∥
2

= 𝜇0 𝐾 (direction of 𝑲 is into the page)

❑Thus, the component of 𝑩 that is parallel to the surface but perpendicular to the current is 

discontinuous in the amount 𝜇0 𝐾. Conclusion: Tangential component of 𝑩 is discontinuous.
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❑Magnetic Fields in Matter

❑A magnetic dipole experiences a torque in a magnetic field, just 

as an electric dipole does in an electric field. 

❑Let’s calculate the torque on a rectangular current loop (see the 

figures) in a uniform field 𝑩. 

❑Consider a current carrying  loop C whose plane makes an angle 

𝜃 with 𝑥-𝑦 plane and the plane also passes through the origin. 

A magnetic field 𝑩 is applied along the 𝑧-axis.
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❑Magnetic Fields in Matter

❑Force acting on QR: 𝑭𝑄𝑅 = 𝐼 𝑎 𝐵 sin
𝜋

2
− 𝜃 (−ෝ𝒙)

❑Force acting on PS: 𝑭𝑃𝑆 = 𝐼 𝑎 𝐵 sin
𝜋

2
− 𝜃 ෝ𝒙

❑The forces on the two sloping sides cancel (they tend to stretch 

the loop, but they don’t rotate it).

❑Force acting on PQ: 𝑭𝑃𝑄 = 𝐼 𝑏 𝐵 ෝ𝒚

❑Force acting on RS: 𝑭𝑅𝑆 = 𝐼 𝑏 𝐵 (−ෝ𝒚)

❑The forces on the horizontal sides are likewise equal and opposite 

(so the net force on the loop is zero), but they generate a torque.

P

Q

R

S

O 𝐼

𝐼

𝐹 = 𝐼𝑏𝐵

𝐹 = 𝐼𝑏𝐵



𝐹 = 𝐼𝑏𝐵

𝐹 = 𝐼𝑏𝐵

𝒓
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❑Magnetic Fields in Matter

❑Assume loop to be perfectly rigid. Total torque produced on 

the loop: 𝑵 = 2 𝒓 × 𝑭 = 2
𝑎

2
𝐹 𝑠𝑖𝑛𝜃 ෝ𝒙 = 𝑎 𝐹 𝑠𝑖𝑛𝜃 ෝ𝒙

❑Using 𝐹 = 𝐼𝑏𝐵, we have 𝑵 = 𝑎 𝐼𝑏𝐵 𝑠𝑖𝑛𝜃 ෝ𝒙 = 𝐼 𝑎𝑏  𝐵𝑠𝑖𝑛𝜃 ෝ𝒙

❑Or, 𝑵 = 𝐼𝐴𝐵𝑠𝑖𝑛𝜃 ෝ𝒙  (where 𝐴 = 𝑎𝑏 = area of the loop)

❑Define 𝑚 = 𝐼𝐴 is the magnetic dipole moment of the loop, hence, 𝑵 = 𝑚𝐵𝑠𝑖𝑛𝜃 ෝ𝒙

❑So, we have, 𝑵 = 𝒎 × 𝑩  (This torque tends to align 𝒎 in the direction of 𝑩)

❑Notice that the relation 𝑵 = 𝒎 × 𝑩 is identical in form to the electrical analog: 𝑵 = 𝒑 × 𝑬. 
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❑Magnetic Fields in Matter

❑A current carrying loop gives rise to a magnetic dipole moment, defined by the current flowing 

through the loop multiplied by the area of the loop and the direction is perpendicular to the 

plane of the loop.

❑Presence of external magnetic field produces a torque that tries to align the dipole moment 

parallel to the field.

❑Consider an atom. The electron revolves in an orbit, which 

can be viewed as a current carrying loop. Each atom 

produces a dipole moment.

❑In presence of a strong enough magnetic field, the 

magnetic dipoles are aligned, and the change is opposite 

to the direction of the magnetic field.
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❑Magnetic Fields in Matter

❑In presence of a magnetic field, matter becomes magnetized; that is, it contains many tiny 

dipoles, with a net alignment along some direction.

❑The state of magnetic polarization is described by a vector quantity, 𝑴 ≡ magnetic dipole 

moment per unit volume. 

❑𝑴 is called the magnetization; it plays a role analogous to the polarization (𝑷) in electrostatics.

❑Just as electric field can be represented by 𝑬 = −𝜵𝑉 (∵ 𝜵 × 𝑬 = 0), magnetic field can be 

represented by 𝑩 = 𝜵 × 𝑨 (∵ 𝜵. 𝑩 = 0). Here 𝑨 is the vector potential.

❑Using 𝜵 × 𝜵𝑓 = 0 = 𝜵. (𝜵 × 𝒂)

❑𝜵 × 𝜵𝑓 = 0   =>   𝜵 × 𝑬 = 0    => 𝑬 = 𝜵𝑓 = −𝜵𝑉

❑𝜵. 𝜵 × 𝒂 = 0    =>  𝜵. 𝑩 = 0   => 𝑩 = 𝜵 × 𝒂 = 𝜵 × 𝑨 
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❑Magnetic Fields in Matter

❑Magnetic field can be represented by 𝑩 = 𝜵 × 𝑨 (∵ 𝜵. 𝑩 = 0). Here 𝑨 is the vector potential.

❑The vector potential produced at a point is the same as that produced by a bound volume 

current density 𝑱𝑏 and a bound surface current density 𝑲𝑏. 

❑It can be shown that 

❑𝑱𝑏 = 𝜵 × 𝑴

❑𝑲𝑏 = 𝑴 × ෝ𝒏

❑Since the current in any arm of a loop in the bulk gets cancelled by the current in the arm of an 

adjacent loop, only the currents of the outermost loops do not cancel and give rise to 𝑲𝑏. 
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❑Magnetic Fields in Matter

❑Suppose magnetization is not constant throughout the sample. Then only partial cancellation 

will take place. So, there will be a non-zero current in the bulk also. This gives rise to 𝑱𝑏.

❑The effect of magnetization is to establish bound currents 𝑱𝑏 = 𝜵 × 𝑴 within the material and 

𝑲𝑏 = 𝑴 × ෝ𝒏 on the surface. The field due to magnetization of the medium is just the field 

produced by these bound currents.

❑Hence the total current can be represented as 𝑱 = 𝑱𝑏 + 𝑱𝑓  (𝑱𝑓 is the free current, for example 

in a conductor).

❑Using Ampere’s law, 𝛁 × 𝑩 = 𝜇0𝑱 = 𝜇0(𝑱𝑏 + 𝑱𝑓)

  =>
𝟏

𝜇0
𝛁 × 𝑩 = 𝑱𝑏 + 𝑱𝑓 = 𝜵 × 𝑴 + 𝑱𝑓
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❑Magnetic Fields in Matter

❑
𝟏

𝜇0
𝛁 × 𝑩 = 𝜵 × 𝑴 + 𝑱𝑓

❑This can be written as: 𝜵 ×
𝑩

𝜇0
− 𝑴 = 𝑱𝑓

This gives, (a) 𝜵 × 𝑯 = 𝑱𝑓

❑In integral form, ∮𝑆
(𝜵 × 𝑯). 𝑑𝒂 = ∮𝑆

𝑱𝑓  . 𝑑𝒂 = 𝐼𝑓,𝑒𝑛𝑐

❑Therefore, ∮𝑪
𝑯 . 𝑑𝒍 = 𝐼𝑓,𝑒𝑛𝑐

❑(b) Divergence of 𝑯 gives: 𝜵 . 𝑯 = 𝜵 .
𝑩

𝜇0
− 𝑴 = −𝜵 . 𝑴   (∵ 𝜵. 𝑩 = 0)

❑𝑯 plays a role in magnetostatics analogous to 𝑫 in electrostatics. 

❑Let,
𝑩

𝜇0
− 𝑴 ≡ 𝑯  is the magnetic 

field strength (in A/m)

where 𝐼𝑓,𝑒𝑛𝑐  is the total free current 

passing through the Amperian loop.
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❑Boundary conditions

❑The magnetostatic boundary conditions can be given in terms of 𝑯 and the free current

(a) Recall 𝜵 . 𝑯 = −𝜵 . 𝑴 ⇒  𝜵 . 𝑯 + 𝑴 = 0

❑ 𝐻 + 𝑀 ⊥
(1)

= 𝐻 + 𝑀 ⊥
(2)

 ⇒  𝐻⊥
(1)

+ 𝑀⊥
(1)

= 𝐻⊥
(2)

+ 𝑀⊥
(2)

❑Thus, 𝐻⊥
(1)

− 𝐻⊥
2

= 𝑀⊥
2

− 𝑀⊥
(1)

→ 𝐻⊥ is discontinuous

(b) Recall ∮𝑪
𝑯 . 𝑑𝒍 = 𝐼𝑓,𝑒𝑛𝑐

❑𝐻∥
(1)

−𝑙 + 𝐻∥
2

𝑙 = −𝐾𝑓𝑙

❑𝐻∥
(1)

− 𝐻∥
2

= 𝐾𝑓 → 𝐻∥ is discontinuous

❑If 𝐾𝑓 = 0, then 𝐻∥
(1)

= 𝐻∥
2

. In general, both 𝐻⊥ and 𝐻∥ components are discontinuous.

𝜵 . 𝑯 + 𝑴 = 0   → 𝜵 . 𝒇 = 0 

This will give, 𝑓⊥
(1)

= 𝑓⊥
(2)
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❑Boundary conditions

❑Summary

❑𝑯 =
𝑩

𝜇0
− 𝑴

❑𝜵 . 𝑯 = −𝜵 . 𝑴      =>   𝐻⊥
(1)

− 𝐻⊥
2

= 𝑀⊥
2

− 𝑀⊥
(1)

❑𝜵 × 𝑯 = 𝑱𝑓 => 𝐻∥
(1)

− 𝐻∥
2

= 𝐾𝑓
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❑Maxwell’s equations for static field [here, 𝐸 ≠ 𝐸 𝑡 , 𝐵 ≠ 𝐵(𝑡)] 

❑General

▪ 𝜵. 𝑬 =
𝜌

𝜀0

▪ 𝜵 × 𝑬 = 0

▪ 𝜵. 𝑩 = 0

▪ 𝜵 × 𝑩 = 𝜇0 𝑱

❑ Inside Matter

▪ 𝜵. 𝑫 = 𝜌𝑓

▪ 𝜵 × 𝑫 = 𝜵 × 𝑷

▪ 𝜵. 𝑯 = −𝜵. 𝑴

▪ 𝜵 × 𝑯 = 𝑱𝑓

❑Boundary conditions: General

▪  𝐸⊥
(1)

 − 𝐸⊥
(2)

 =
𝜎

𝜀0

▪ 𝐸∥
(1)

− 𝐸∥
2

= 0

▪  𝐵⊥
(1)

 − 𝐵⊥
(2)

 = 0

▪ 𝐵∥
(1)

− 𝐵∥
2

= 𝜇0𝐾𝑓

❑Boundary conditions: Inside Matter

▪  𝐷⊥
(1)

 − 𝐷⊥
(2)

 = 𝜎𝑓

▪ 𝐷∥
(1)

− 𝐷∥
2

= 𝑃∥
1

− 𝑃∥
2

▪ 𝐻⊥
(1)

− 𝐻⊥
2

= 𝑀⊥
2

− 𝑀⊥
(1)

▪ 𝐻∥
(1)

− 𝐻∥
2

= 𝐾𝑓



PH113: Physics (B.Tech. I)

Dr. Anupam Roy 126

Date: 04.10.2023

Lecture: 5

Module 2



PH113: Physics (B.Tech. I)

Dr. Anupam Roy 127

Module – 2: Electromagnetic Theory

Gradient, Divergence and Curl, Statement of Gauss theorem & Stokes theorem, Gauss’s law, Applications, 

Concept of electric potential, Relationship between E and V, Polarization of dielectrics, dielectric constant, 

Boundary conditions for E & D, Gauss’s law in magnetostatics, Ampere’s circuital law, Boundary conditions 

for B & H, Equation of continuity, Displacement current, Maxwell’s equations. [8] 

Text Book: Mathew N.O. Sadiku, Elements of Electromagnetics, Oxford University Press (Seventh Edition, 2018) 

Reference Book: David J. Griffiths, Introduction to Electrodynamics, Pearson (Fourth Edition, 2014) 

Module 2

Class structure: 4 Lectures including 1 Tutorial per week. (8  hours ~ 2 weeks for this module!)
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❑Faraday’s law (Experiment done by Faraday in 1831)

The loop was pulled rightward with velocity 𝒗. 

Current 𝐼 flowed clockwise.

Magnet was pulled leftward with velocity 𝒗 holding 

the loop still. Again, current 𝐼 flowed clockwise.

Magnetic field strength was changed (increased the 

field). Current 𝐼 was anticlockwise.
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❑Faraday’s law

❑Lenz’s law: Nature hates a change in flux. The three cases in previous slide are special cases of 
Lenz’s law.

❑Faraday deduced: A changing magnetic field induces an electric field. 

❑Electromotive force: 𝑉𝑒𝑚𝑓 ≡ amount of work done by a unit charge for making a complete 

round of the loop.

❑𝑉𝑒𝑚𝑓 = ∮ 𝒇 . 𝒅𝒍  (where, 𝒇 is the force experienced by the charge)

P Q

S R

𝑣
❑Arms SR and PQ do not contribute (∵ 𝒖 × 𝑩 is perpendicular to 

𝑑𝒍 where 𝒖 is the velocity of charge)

❑Side RQ is outside the field region, so it does not contribute. We 

need to consider only the side PS.
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❑Faraday’s law

❑𝑉𝑒𝑚𝑓 = ∮ 𝒇 . 𝒅𝒍  (where, 𝒇 is the force experienced 

by the charge)

❑𝑉𝑒𝑚𝑓 = ∫𝑃

𝑆
𝒘 × 𝑩 . 𝒅𝒍

❑Here 𝒘 = 𝒖 + 𝒗  is the resultant velocity of the 

charge due to its original motion (with velocity 𝒖) and 

the horizontal velocity (velocity 𝒗 of pulling). So,

𝒘 × 𝑩  makes an angle 𝜃 with the horizontal.

❑Hence, 𝑉𝑒𝑚𝑓 = ∫𝑃

𝑆
𝒘 × 𝑩 . 𝒅𝒍 = ∫𝑃

𝑆
𝒘 × 𝑩  𝑑𝑙 𝑐𝑜𝑠𝜃 𝒖

𝒗

P
Q

S

𝑩
𝒗ℎ

𝜃

𝜃

𝒖

𝒘 × 𝑩

𝜃

𝒗
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❑Faraday’s law

❑𝑉𝑒𝑚𝑓 = ∫𝑃

𝑆
𝒘 × 𝑩 . 𝒅𝒍 = ∫𝑃

𝑆
𝒘 × 𝑩  𝑑𝑙 𝑐𝑜𝑠𝜃

  = ∫𝑃

𝑆
𝑤 𝐵 𝑑𝑙 𝑐𝑜𝑠𝜃

  = 𝐵 ∫𝑃

𝑆
(𝑣 𝑠𝑒𝑐𝜃) 𝑑𝑙 𝑐𝑜𝑠𝜃 

(since, from the vector triangle, 𝑣 = 𝑤 𝑐𝑜𝑠𝜃)

❑Hence, 𝑉𝑒𝑚𝑓 = 𝑣𝐵 ∫𝑃

𝑆
𝑑𝑙 = 𝑣𝐵ℎ

❑Now consider the rate of flux in the loop. Faraday 

found experimentally: 𝑉𝑒𝑚𝑓 = −
𝑑Φ𝐵

𝑑𝑡
  (where Φ𝐵 is 

the magnetic flux through the loop). 

𝒖

𝒗

P
Q

S

𝑩
𝒗ℎ

𝜃

𝜃

𝒖

𝒘 × 𝑩

𝜃

𝒗
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❑Faraday’s law

❑Magnetic flux through the loop: Φ𝐵 = ∫ 𝑩 . 𝒅𝒂 = 𝐵ℎ𝑥

❑𝑑Φ𝐵 = −𝐵ℎ 𝑑𝑥  (since, 𝑥 decreases with time)

❑Hence,
𝑑Φ𝐵

𝑑𝑡
= −𝐵 ℎ

𝑑𝑥

𝑑𝑡
= −𝐵 ℎ 𝑣

❑Hence, 𝑉𝑒𝑚𝑓 = −
𝑑Φ𝐵

𝑑𝑡
= 𝐵ℎ𝑣

❑Faraday deduced that the current was caused by an “induced” electric field.

❑If this induced field is 𝑬, then 𝑉𝑒𝑚𝑓 = ∮ 𝑬 . 𝒅𝒍 = −
𝑑Φ𝐵

𝑑𝑡

𝑩
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❑Faraday’s law

❑If the induced electric field is 𝑬, then 𝑉𝑒𝑚𝑓 = ∮ 𝑬 . 𝒅𝒍 = −
𝑑Φ𝐵

𝑑𝑡

❑Hence, ∮ 𝑬 . 𝒅𝒍 = −
𝑑

𝑑𝑡
 ∫ 𝑩 . 𝒅𝒂 = − ∫

𝜕𝑩

𝜕𝑡
 . 𝒅𝒂   (use Φ𝐵 = ∫ 𝑩 . 𝒅𝒂)

❑Now, use Stokes’ theorem:

∫ 𝛁 × 𝑬  . 𝒅𝒂 = − ∫
𝜕𝑩

𝜕𝑡
 . 𝒅𝒂 

❑By comparison, 𝛁 × 𝑬 = −
𝜕𝑩

𝜕𝑡

𝑩
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❑Faraday’s law

❑If there is a change in magnetic flux, we have an induced electric field is 𝑬, such that

𝑉𝑒𝑚𝑓 = ර 𝑬 . 𝒅𝒍 = −
𝑑Φ𝐵

𝑑𝑡
= − න

𝜕𝑩

𝜕𝑡
 . 𝒅𝒂

❑Since, ∮ 𝑬 . 𝒅𝒍 = ∫ 𝛁 × 𝑬  . 𝒅𝒂, we have, 𝛁 × 𝑬 = −
𝜕𝑩

𝜕𝑡
 ≠ 0  

❑This modifies the Maxwell’s equation 𝛁 × 𝑬 = 𝟎 for static field.

❑Faraday’s law generalizes the electrostatic rule 𝛁 × 𝑬 = 0 to the time-dependent regime.
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❑Displacement Current

❑Another equation for the static field is 𝜵 × 𝑩 = 𝜇0 𝑱.

❑This equation also gets modified if the fields are time-dependent.

𝜵 × 𝑩 = 𝜇0 𝑱

𝜵. 𝛁 × 𝑩 = 𝜇0 (𝛁 .  𝑱)

Divergence of a curl is always zero. Hence, LHS of this equation is zero due to vector identity 

[𝜵. 𝛁 × 𝑩 = 0]. But, there is no reason why 𝛁 .  𝑱 = 𝟎 so RHS ≠ 0 (in general)

❑We know from the equation of continuity: 𝛁 .  𝑱 = −
𝝏𝝆

𝝏𝒕
    (statement of conservation of charge)

❑ But, 𝜵. 𝑬 =
𝜌

𝜀0
               ⇒  𝜌 = 𝜀0(𝜵. 𝑬)
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❑ 𝜵. 𝑬 =
𝜌

𝜀0
               ⇒  𝜌 = 𝜀0(𝜵. 𝑬) 

❑ Hence from the Eqn. of continuity, 𝛁 .  𝑱 = −
𝝏𝜌

𝝏𝒕
= −

𝝏

𝝏𝒕
(𝜀0𝜵. 𝑬) = −𝛁 . (𝜀0

𝜕𝑬

𝜕𝑡
)

❑ This gives, 𝛁 . (𝑱 + 𝜀0
𝜕𝑬

𝜕𝑡
) = 0   

           ⇒ 𝛁 . 𝑱1 = 0   (Consider,  𝑱 + 𝜀0
𝜕𝑬

𝜕𝑡
= 𝑱1)

❑ Now, 𝜵 × 𝑩 = 𝜇0 𝑱1                   ⇒ 𝜵. 𝛁 × 𝑩 = 𝜇0 𝛁 . 𝑱1 = 0  

(the anomaly has disappeared once 𝑱 is replaced by 𝑱1)

❑Displacement Current
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❑ So, we have the modified form of Maxwell’s equation if the fields are not static: 

𝜵 × 𝑩 = 𝜇0 𝑱 + 𝜇0 𝜀0
𝜕𝑬

𝜕𝑡

❑ The quantity 𝜀0
𝜕𝑬

𝜕𝑡
≡ 𝑱𝑑  is called the displacement current.

❑Displacement Current
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❑Maxwell’s Equations 

❑ The final (general) form of Maxwell’s equations are: 

     𝜵. 𝑬 =
𝜌

𝜀0

✓ 𝜵 × 𝑬 = −
𝜕𝑩

𝜕𝑡

     𝜵. 𝑩 = 0

✓ 𝜵 × 𝑩 = 𝜇0 𝑱 + 𝜇0 𝜀0
𝜕𝑬

𝜕𝑡

❑ For static fields the terms
𝜕𝑩

𝜕𝑡
 and

𝜕𝑩

𝜕𝑡
 will vanish.
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❑ Remember, ”d c g(enerator)”, which stands for div of a curl is zero, curl of a grad is zero!

❑ Note: 

❑ A vector field with zero divergence is said to be solenoidal.

❑ A vector field with zero curl is said to be irrotational.

❑ A scalar field with zero gradient is constant.
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For a symmetric spherical charge distribution, we can choose a surface S centered about the 

charge distribution. Integrating the electric field (𝑬) over this surface - the electric flux - is 

proportional to the enclosed charge. 

This is the statement of Gauss's Law: Φ = ∮𝑆
𝑬. 𝑑𝒂 =

𝑄
𝑒𝑛𝑐

𝜀0
      [Here, 𝑑𝒂 is a vector element of 

area of the surface S, that is, it is a vector of magnitude equal to the area of a differential segment 

of the surface and points normal to the surface at that location.]

ර
𝑆

𝑬. 𝑑𝒂 =
𝑄𝑒𝑛𝑐

𝜀0
 ⇒  𝐸 ර

𝑆

𝑑𝒂 =
𝑄𝑒𝑛𝑐

𝜀0
 ⇒ 𝐸 4𝜋𝑟2 =

𝑄𝑒𝑛𝑐

𝜀0
 ⇒  𝐸 =

𝑄𝑒𝑛𝑐

4𝜋𝜀0𝑟2
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If point P is located outside the charge distribution (𝑟 ≥ 𝑅), then the Gaussian surface containing 

P encloses all charges in the sphere. In this case, 𝑄𝑒𝑛𝑐 equals the total charge in the sphere. 

On the other hand, if point P is inside the spherical charge distribution (𝑟 < 𝑅), then the Gaussian 

surface encloses a smaller sphere than the sphere of charge distribution. In this case, 𝑄𝑒𝑛𝑐 is less 

than the total charge present in the sphere.
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For the constant density sphere, the 

enclosed charge is 

𝑄𝑒𝑛𝑐 = න 𝜌 𝒓  𝑑𝜏 = 𝜌 න 𝑑𝜏 =
4

3
𝜋𝑟3𝜌

Therefore, 𝐸𝑖𝑛 =
𝑄

𝑒𝑛𝑐

4𝜋𝜀0𝑟2 =
4

3
𝜋𝑟3𝜌

4𝜋𝜀0𝑟2 =
𝜌𝑟

3𝜀0

Note: for outside the distribution:𝑄𝑒𝑛𝑐 = 𝑄𝑡𝑜𝑡𝑎𝑙 = ∫ 𝜌 𝒓  𝑑𝜏 = 𝜌 ∫ 𝑑𝜏 =
4

3
𝜋𝑅3𝜌

and, 𝐸𝑜𝑢𝑡 =
𝑄

𝑒𝑛𝑐

4𝜋𝜀0𝑟2 =
𝑄

𝑡𝑜𝑡𝑎𝑙

4𝜋𝜀0𝑟2 =
4

3
𝜋𝑅3𝜌

4𝜋𝜀0𝑟2 =
𝜌𝑅3

3𝜀0𝑟2



PH113: Physics (B.Tech. I)

Dr. Anupam Roy 152

Module 2 (Electromagnetic Theory)



PH113: Physics (B.Tech. I)

Dr. Anupam Roy 153

Module 2 (Electromagnetic Theory)



PH113: Physics (B.Tech. I)

Dr. Anupam Roy 154

Module 2 (Electromagnetic Theory)



PH113: Physics (B.Tech. I)

Dr. Anupam Roy 155

Module 2 (Electromagnetic Theory)



PH113: Physics (B.Tech. I)

Dr. Anupam Roy 156

Module 2 (Electromagnetic Theory)



PH113: Physics (B.Tech. I)

Dr. Anupam Roy 157

Module 2 (Electromagnetic Theory)



PH113: Physics (B.Tech. I)

Dr. Anupam Roy 158

Module 2 (Electromagnetic Theory)



PH113: Physics (B.Tech. I)

Dr. Anupam Roy 159

Module 2 (Electromagnetic Theory)



PH113: Physics (B.Tech. I)

Dr. Anupam Roy 160

Module 2 (Electromagnetic Theory)



PH113: Physics (B.Tech. I)

Dr. Anupam Roy 161

Module 2 (Electromagnetic Theory)



PH113: Physics (B.Tech. I)

Dr. Anupam Roy 162

Module 2 (Electromagnetic Theory)



PH113: Physics (B.Tech. I)

Dr. Anupam Roy 163

Module 2 (Electromagnetic Theory)



PH113: Physics (B.Tech. I)

Dr. Anupam Roy 164

Module 2 (Electromagnetic Theory)



PH113: Physics (B.Tech. I)

Dr. Anupam Roy 165

Module 2 (Electromagnetic Theory)



PH113: Physics (B.Tech. I)

Dr. Anupam Roy 166

Module 2 (Electromagnetic Theory)



PH113: Physics (B.Tech. I)

Dr. Anupam Roy 167

Module 2 (Electromagnetic Theory)



Dr. Anupam Roy 168

PH113: Physics (B.Tech. I)
Module 2 (Electromagnetic Theory)


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168

