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2.6. Mutually Exclusive Events.

Two events connected to a given random experiment E are said

to be mutually exclusive if 4, B can, “r%evgr happen simultaneousty

in any performance of E, i.c.,if 4B=0. In connection with the
random experiment of thr'owing a die, the évents ‘multiple of ¥
and ‘a prime number’ are not mutually exclusive, since the number |
‘3’ is a multiple of 3 as well as a prime number, whereas the eVent_s

‘even number’ and ‘odd number’ are mutually exclusive events of
the same random experiment.

2.7. Exbhaustive Set ot Events.

A collection of eventsis said to be-exhaustive if in every performance of
the corresponding random experiment at least one event (not necessarily’
the same for every performance) belonging to the collection happens.

\_In set theoretic.notations the collection of events {da: €I} is
exhaustive if and only if

> =9,.. UYL 2 “ —
v&EIA‘ 1 a\}s-,x 6‘ S

. IO .
collection of events {4,, 4,, 4,} is exhaustjye where wing a die the

A,=1{1,3,5}, A4, - {2}, Aa = {4, 6},)
2.8. Statistical Regularity.

Let a random experiment E be repeated A ¢ .
conditions, in which we note that i lmes ypdep -

fvent 4 of E oce
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THE CONCEPT OF PROBABILITY 39

times. Then the ratio N'F(é) is called the frequency ratio of 4 and

s denoted by f(4). Now if the random experiment E is repeated 2

cery large number of times, it is scen that the frequency ratio f{4)
N(
radually stabilises to a more or less constant, I.¢., ﬂxﬂ"' A)
dually tends to a constant number as N becomes larger and larger.
This tendency of stability of frequency ratio is called statistical
regularity and this fact was confirmed by many experimental
results.

2.9. Classical Detinition of Probability.

Towards the beginning of the 19th century, Laplace gave a
formal definition of probability which gees by the name of the
classical definition. The theory of probability developed on the
basis of the classical definition is known as the classical theory of
probability. In the classical theory we. have the following definition
of probability : =
% [ Let the event space S of a given random experiment E be finite.

" If7all the simplé events connected to E be ‘equally likely’ then

the probability of an event A(4 C S) is defined as
_m | '
PUA=T, )
F where n is the total number of simple events connected toE, i.e.,

“n is the number of distinct elements of S .and m of these simple
events are favourable to 4, i.e., A contains m distinct eclements. )\‘l

At this stage it is not possible to give a precise definition of the
phrase ‘equally likely’ used in the above definition. In the next
section we shall critically examine the meaning of the phrase. At
present, we shall say that all the simple events are equally likely
if it is understood intuitively that no one of them is expected to -
occur in preference to others in any trial of the given random
experiment and only then the definition can be applied.

Deductions :—
Ja) 0< P(A)<1 e

(0 PS)=1 |
|
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JE— L L

(©) P(0)=0 |
d)  PA)=1-P(4).

Proof: (a) We have P(A) =™ where 1 1 havo the meanings
n

given before.
Here 0 <m<n

or, 05%—:51'
So, 0< P(A) &1
() P(S)=7=1.

0
{c) P(O)= " 0.

e )
d) P(d)=— 1-- ( |
W B
CTHEOREM 2.9.1. Theorem of Total Probability.
If 4., 4o, Az are pairwise mutually exclusive events, then

P(Ay + Ay + -+ Ag) = P(e) + P(4g) + - + P(A,,).) L e

Proof : Let n be the total number of simple events of the
corresponding random experiment E of which m; are favourable to
A i=1, 2,..., k. Since the events A,, Ag,..., Az are mutually
exclusive, the total number of simple-events favourable to the event.
Ay +Ag+ -+ Arismy +mgy + -+ my,

0L m <ni=1,2,.., k

Then by the classical definition,

P(A1+A2+-'.+Ak)=m1 +m2+n-.‘+mkf .

n
=By Mey e
n n n
!

) - P e
Hence the theorem, U+ Plda)+ -4 P (Ay).

( 2.10. Criticisms of the Classic
If we examipe the classica) d
find that there ig a logical draw

that the definition cap be ugeq 1
. on

al Definitjoy.

efinit; .

acim-tlon a little more closely we
yif-:_n- the definition. We note
\ 1L 18 possible to é'scertain that
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THE CONCEPTS OF PROBABILITY - 41

all the simple events are equally likely. In many problems,
considerations of symmetry and similarity enable us to decide
whether, in the problem before us, simple events are equally likely.
For example, if a die be symmetric, then the simple events connected
to the random experiment of throwing the die may be considered to
be equally likely. But it is very difficult to explain the nature of
‘symmetry’ and ‘similarity’ as stated above. It was found after.
many serious investigations that the phrase ‘equally likely’ cannot
be explained without the prior idea of probability.

‘Moreover, the definition is restricted to event spaces which are
finite and where all the simple events are equally likely. The
definition canunot be applied where the simple events are not equally
likely or where the event space is infinite. . With the help of this
-definition-it will thus be impossible to ' treat the case of a loaded’
die since here intuitively we can expect that a face can turn up
in ‘preference to others and consequently simple events are not
 necessarily equally likely and the case of predicting the number of
telephone calls in a given interval (in a given trunk line) in which |
‘there are infinite number of simple events. |
~ In order to avoid the limitations of thc classical approach and to
make the definition more widely applxcable we now take recourse
in the next section to another deﬁmtmn called the frequency
definition of probability. |

It may be noted here that the classwal dcﬁmtlon is based on
advance subjective concept of probabﬂlty so that P(A)==_- should ,

rather be called a method of calculation or probablhty for events
of a finite event space of equally likely simple evchts, mstead of
taking it as a definition of probability. ) |

2 1. Frequency Definition of Probability.

' Let 4 be an event of a given random experiment E,' ‘Let the
event 4 occur N(4) times when the random experiment E is
repeated N times under identical conditions. . -Then on the basis of
- statistical regulanty we can assume that Lt JY.L)_ exists finitely -

. N—b::o N
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and the value of this limit is called the probability of the event
denoted by P(4), : ’ '
N(A) _

he., PA)= Lt =5m'= Lt fid),

where f(A)—NI(;;n is the frequency ratio of the event 4 in y

repetitions of the corresponding random experiment under identicy)
conditions. %

Deductions : -2
/(a) 0L P(A),< 1 for any event 4
) P(S)=1__
/(,c) P(O)=0 -
—d) P(4)=1- P(A)
ST "“e&g%roof : (@) Wehave 0 < N(A) < N wherc N and N(A) have
the meanings glven above.

N(A)<1
0<—
C ., N(A)
or, 0 < Lt < 1.
Hence, 0 < P(4) < 1. L
N(S) Lt N
= Lt 2= N_1
| (b) P(S) N T N=s 1
€) P(O)= Lt NO)_ p, O,

Nosw N Nax N
@ P@- rr YD

Ne»

N> »
No N
: N N

=1 1 s YARPTS
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C Definition of condltiohal probability.
Let £ be a gwen random experiment and 4, B be two events

of E where P(B)#0. Thﬂ condmonal probability of the event 4 on
the hypothesis that the event B has happencd denoted by P4 | B),

- is defined by

= L
P(4 | B) _.tm NGB

assuming that' the limit exlsts, N N(AB), N(B) have the usual
meanings given bcforc. ' .
THEGREM 2. 12.1." 'Theorem of IComp'ound'Probablll‘t'y. i,
If 4, B are two events of a- -given random- cxpenmcnt then
P(AB) . P(4/B) P(B), if P(B)=0
‘or, P(4B)=P(B|A) P(4),if P(4)0.

‘Proof : Let E be the given random expenment and let E be
repeated under identical conditions N times. If N(4B), N(B), N(A)
be respectively the number of occurrences of the events 4B, B, 4
then

.N(AB)

|

- 1y NU4B
P(AIB) Nﬁfm NB)

\N(
N)

- Lt ——

N—= N(B)

B) [ Hele We note.that P B))O = N(B))O

. for suitab]e large M. ]
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N (4B)
3 N_f':o N
or, P(4|B)= N(R)
Ltk
N> N
_PUB) .. N(B) '
;o Ly 23l .
DI e kit 0)

Hence we get,

P(AB)=P(4 | B) P(B) if P(B) # 0.
It can be proved similarly that

P(AB)=P(B | 4) P(4) if P(4) 0.

Remark: We know that the event S occurs in any.trial of a
given random experiment, so from the meaning of condltxonal
probability given above we find that uncondltlonal probablhty P(A)

. is a particular conditional probablhty, since the statement ‘A occurs’

can also be expressed as ‘A occurs on the hypothesm that S has

“happened’. ~ So P(4 | S) and P(4) should be equal and by the

theorem of compound probability we find that

P(4S)_P(4)
P(S) 1 P(

P(4|S)= 4).
2'13.  Criticisms of the Frequency Definition.

N4

In this deﬁnition we note that the t;i"”equency ratio ¥
4

obtamed from observation whereas Lt 1&4}
N—x

tical concept. This{ combination of empirical and analytical
concepts leads to mathematical difficulties. Although there is not
much objection against the logical content of the theory of probabi-
lity based on the frequency definition but due to the aforesaid
weakness in the definition it will be unwise to build the theory of
probability on the basis of this definitjon.

Conclusion : In sections 2,10 and 2.13 we have seen that
classical and frequency definitions are both inadequate for develo-
ping the mathematical theory of probability. Now the theory of
probability is conceived as a mathematical theory of phenomena
showing statistioal regularity. So in order that mathematical theory

is a rigorous analy-

"
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THE CONCEPTS OF PROBABILITY 47

of probability may be applied to different types of phenomena
showing statistical regularity, the definition of probability should

be independent of the intended application. From all these consi-
derations we feel the necessity of an axiomatic treatment of the
theory of probability,i.e., the theory of probability, as a branch
of mathematics, should be developed from axioms in exactly the
same way as Geometry and Algebra. Axioms are propositions
which are regarded as true and not proved within the framework of
the given theory. All other propositions of the theory have to be
proved from the accepted axioms in a purely logical manner.
Axiomatic theory starts from one or more sets of abstract objects,
where some relations between the objects are expressed by the
axioms. The points, lines, planes considered in Pure Geometry as
abstract objects, are not things that we know from immediate
experience. Pure Geometry deals with such abstract objects entirely
defined by their properties, as expfessed by the five sets of axioms,
namely, ‘axioms of incidence’, -‘axioms of order’, ‘axioms of
motion’, ‘axiom} of parallelism’ and ‘axiom of continuity’
(Hilbert).

Now any mathematical theory d'evelopedllogically from a set
of axioms can have many concrete interpretations besides those
from which the axioms are developed. Similarlis the situation in
the axiomatic theory of probability. But we shall interpret the
theory in such a way that ‘events’ will be events of the real world
and the probability will be so interpreted that it can be applied to
phenomena showing statistical regularity. /

Formulation of the axioms are the results of a prolonged accu-
mulation of facts and a logical analysis of the results obtained and
in this way the axioms of Geometry, studied in elementary mathe-
matics, were formulated. The axioms taken for defining probability
will certainly be motivated by the results obtained from the
classical and frequency definition of probability. On the basis of
the axioms it will be possible to construct a logically consistent
theory of probability. We shall begin -the next chapter with the
axioms propos:d by the Russian ‘mathematiciani A. N. Kolmogorov.
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Qf-:-.r‘ﬁw' (L Let E be a given random experiment and S be the corresponding
event space. Also let 4 be the class of subsets of § forming the
class of events of E. A mapping P : A/—R iscalled a probability
function defined on A and the unique real number P(4) determined
by P is called the probability of the event A where 4 € 4 if the
following axioms, known as axioms of probability, are satisfied :

Axiom (d). P(4) > O for every event 4 € 4.
~ Axiom (). P(S)=1. ~

Axiom (c). If Ay, Aoy ... o
of pairwise mutually exclusive events, i.e., if 4; 4;=0O whenever

A,,...be countably infinite number

i# jand 4, 4; € 4,
then P(A, + A+ Ag+ -+ A4, + ) )
= P(AL)+ P(A)+ -+ P(Ay) + - (3.1.1)
The entire mathematical theory of probability will be built by three
objects, namely (/) the event space (ii) the class of events A (iii) the
probability function P : A — R. The ordered 3—tuple (S,A,P) is called 2

probability space. D ,
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_THEOREM 3.10.2. Bayes’ Theorem.

Let 4., Agy ...y 4, be n pairwise mutually exclusive events
connected to a random experzment E where at least ome of Al,
Agy---s Aq is sure to happen (le., Ay, HAggeeren- , An form an exhaustive
set of n-events). Let X be an arbztrary event connected to B, where

P(X) # 0. Also let the probabilities P(X | A,), P(Xl A,),...... a
P(X | An) be all known.
PAIPX N A3) i, 2y n, (3.10.2)

Z‘ PA)P(X | 4y)

yei

Then P(A; | X)=

Lnfno an avhanetiva cat Af avran ta
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3,41. Independence of Events.

4 " ;
Let 4 and B be two events connected to a given random

experiment. If P(B) # 0 then P(4 | B) can be defined and in this
case if P(4 | B)=P(4), then we can say that the probability of 4
does not depend on the happenlng of B, i.e., there is one kind of
jndependence between A and B. Also if P(A) # 0, then P.B | 4)
can be defined and in this case if P(B | 4)=P(B), we can say. that
the probability of B does not depend on the happening of 4, ie.,
éﬁ_xthere is one kind of independence between A and B. " We
observe that

P(4|B)=P(4), P(B|A)=P(B)

both lead to P(4B) = P(4) P(B).

So formally we can define independence of two events as
follows : ' |

Two events 4, B are said to be stochastically independent
f]r statistically independent/or simply independent if and only if

1 PUB)=P(APE). (3.11.1)
If P(AB) # P(A)P\B), then A, B are said to be dependent.
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68 MATHEMATICAL PROBABILITY

/3 12. Mutual and Pairwise Independence of more than ty,
Events.
Three events 4, B, C are said to be pairwise independent j5
P(4B)=P(4)P(B)
P(BC)=P(B)P(C) .
P(C4)= P(C)P(4) . (.12

[ and 4, B, C are said to be mutually independent if
P(AB)=P(4)P(B)

P(BC)=P(B)P(C)
P(CA)=P(C)P(4)

P(4BC)=P(4)P(B)P(C). (3.123

In general n events 4, 4, -+, 4, (n > 2) are said to b
mutually independent if

P(A;4;)=P(4:)P(4;), where i < j; i, j any combination of

125,08 , n taken two at a tims,

P (AiAJ'AI:)=P(Ai)P(Aj)P(Ak)’ where i <j < k; i,j, k any

combination of 1, 2, ......, n taken 3 at a time.

.P(A,]_Az .--A.”) ‘=P(A1)P(A’)"'P(A')' (3o12'3)

Note 1. From (3.12.3) we see that in defining mutual
independence of n events (n > 2),

1Co+"Cy+ e +"Cpr=2"=-n-1

elations are required. )
( Note 2. From the definition of mutual independence, we see
that mutual independence implies pairwise independence, but the
converse is not true, as shown by the following =xample

Let the equally likely outcomes of an expcnfncnt be one of
the four points in the three-dimensional space with rectangyy,,
co-ordinates (1, 0,0), (0, 1, 0), (0,0, 1) and (1, 1, I). t.et A, B, C
denote the events ‘x-co-ordinmate I’ ‘y-co-ordinate 1° .. .

¢z.co-ordinate 1’ respectively.
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AN AXIOMATIC CONSTRUCTION OV ‘THIORY OF PRODABILITY 0V

Then by using classieal dofinition,

Pld)mgmd, P(BD)=4, PC)=}

PAB) &= § v P(A)P(B)

P(BC)w i = 2(B)P(C)

P(CA) = L m D(C)P(A)
Hence, A, B, C aro pairwise indopondent,
But P(ABC)w=}.
P(ABC) s P(APB)P(C),
:- which implies that 4, B, C are not mutually indopcndonh/)) /
Hence, pairwise independence does not always imply mutual
~ independepce.
‘ Note 3. It is to be noted that the concept of mutually exclusive
events and independent events are not equivalent, Weo bring out
. the difference between the two idens.

. Iftwo events A and B are mutually exclusive then AB = O and so
'~ the occurrence of one of the two events, in this case, is hindered by

anticipating the occurrence of the other.

. On the other hand, if the occurrence of one event has no cfTect
.~ on the probability of the occurrence of the other event, the two
. events are said to be independent and in this caso P(4.13) = P(A)P(B).

. Two events can be ,mutually oexclusive and not independent.
- For example, consider the random experiment of tossing of two
coins, Let 4 and B be the cvents ‘both the coins show head’ and
. ‘both the coins show tail’ respectively. Then A and B aro clearly
mutually exclusive, since if A happens B cannot happon and as
. such AB=0. But P(A)=}, P(B)=3}. .. P(AB)=0 # P(A)P(B),
- i, Aand B are not independent. i

. Again, two events can be independent and not mutually
. oxclusive, For example, consider the random experiment of
] throwing 2 dice together. . Let A and B be the events 6 appears in
the first die’ and ‘6 appears in the second die’ respectively.

.IdThen P(4AB) =y =P(A)P(B)=}xy and so A and B are
| pendent. Also AB={(6, )} O which implies that A and B
] are not mutually exclusive.
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Finally, two events « and B ocan be DO mutually °xclu,iJf
and independent when . | |
which holds if at le.-\\t one of thc two cvcnt* 4 and B by
rero  probability, In fact, two events having both non.ze
probabilities cannot be simultancously mutually exclusive anq

independent,
F‘
o313 General Multiplication Rule.

THEORRNC 3L IF 4y, dyy ey Ay (8> 2) be n even |
connected to a random experiment B, then :

.-.\A -{s -i-c) R-Ai HA& lil)}.\-’:{ l A:[-Aa) P(ﬂ'iﬂ l A AB b Aﬂ- )

(3.13.)
provided the conditional probabilities are defined. ‘
Proof : ' For two events 41, 45 we have, by the definition. of |
conditional probability,
P( ’ | .:{ ,,P(-clx-dn)
AT

P(Al-'is) “HA1)P(AS | 4,)

Hence the - proposmon (3.13.1) is true for 71 = 2,
Let the proposition be true for n=pm
integer > 2. Then we have for any m event

» Where m s g pOSlthC |
Pd1454s...4m) = P(4,)P(4, | 4

S Al. Ag, ase A_m, h
1) Pldm | dy4,. A,

~1)
Now we consider the (m + 1) events Ay Ay oy g, . (3.13.2).
Then P(d;dq...... Apdpsy) T
"P[(Axﬁa ------ Am)-din-u]
=P(4,4,...... Am)P(Amsy | Aydq...... Am),
since the proposition is true fo ¥
=P(A-1)P(Ai | 4y)..00es P(Am l Adq..... Apnay) e
PlAmer I A-].A_i ------ 4,),

by (3.13.2)
This shows that the proposition (3.13.1) is true for B,
if it is true for n=m. But the pmpos:t:on is true for n=3, encl
by the principle of mathematical induction, the meOSltion i:
true for any positive integer n > 2,

Scanned by CamScanner



ular Case.

nt E, :

A;AgA;)=P(BAs), where B=4,4,
= P(B)P(4;|B)
=P(4:14,)P(4; | 4:4.)

=P(4, P(4, | Al)P(As | 4:4.)-

three events A,, A,, A, connected to a random
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138 MATHEMATICAL PROBABILITY \

In future, we will write the events |
fo: —=<X()< X0 €St {o: X(cu)-"-"-x,weS}
{o:a<X(w)<bweS} and 50 on, in short 4

(- <X<x), (Y=x), (a <X < D) respectively ang

Ex. A coinis tossed twice. Here,

S={w, = (M, H), wg =(H, T),’wa =(T, H), w}.:"(T,T)}'

A mapping X : § — R is defined as follows :

X (v;) =k, where & is the number of heads, ;= 1,2,34

Then X(wy)=2, X(wg)=X(vg)=1, X(w,)=0. Here x |, a

random variable defined in the.domain S and the spectrup (r&hgq
of Xis {0, I, 2}. Here, according to our notatjon (X=0) represey,

the event {(T, T)}, (0 < X < 2) is a certain event agd (1< X<y
represents the impossible event O. -

800[1'

The above random variable X: S — R is also described in the
following manner. The ragdom variable X, in this case, define
92 § denotes the total number of heads in two tosses of the coin

Later, we shall often use thjs convention of description of a
random varjable, |

92, Distribution Function.

Let P: 4 Rpe 5 probability function, where 4 is the class
of subsets (of ) forming the class of events. ~ We remember that
the ordered 3 tuple (S, A, P) js called a probability space.

Let X be g random variable defined on the event space S

;onncgted t0 a random experiment B. The distribution function of
€ random varjab|e y with respect to the probability space (S, A, P) isaredl

Valued function F(y) of, real variable x, defined in (-0, ) , wifere
Fx)=P(-~ 0 < y x), for all x 6(—,0c ). ~  (5.2.1)
It is evident that the range of the distribution function isa
subset of [0, 1], |
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144 MATHEMATICAL PROBABILITY
VIIL. The set of points of discontinuity of a distriburio
(] N n

. . ‘e- ) \
SJunction is at most enurr:ergble.w w&f‘%e)\‘:m\w%b\\““b\

We know that every monotonic functicn can have at most ,
countable set of points of discontinuity. Since every di§tribution
function is monotonic, the property follows. '

. R-emark: (@) From properties I-VII we congiide that th,
distribution tunction F(x) is a monotonic non-decreasing'b/ounded
funotion such that o o

(i) F( - %0)=0
(i) F(ob)=1

(iii) 1t is c(_)ntinuous to the right. at all points

“(iv) it is discontinuous to the left at every point x=a,if
P(}{:a) > 0 and the discontinuity being a jump discontinuiy, the
\hei%g,ht of the jump (or saltus) is equal to P(X= a). |

(b). The converse of the remdrk (@) is also true and so we
conclude the following (without proof) :

Any function F(x) with domain (- e, o) and rénge a subset of
[0, 1] is a distribution function of a random variable with respect to
a probability space (S, 4, Py if and only if F(x) is such that
() F(-)=0, (i) F(=)=1, (iii) F(x) is monotonically non-
decreasing and bounded, (iv) F(x) is continuous to the right at all
points, (v) F(x) is discontinuous to the left at every pofnt x=a

»

if P(X=a) > 0. |

" (¢) The curve y=F(x) is called the distribution curve of el
corresponding random variable’ X, It is evident that the distribution
curve lies between y=0,"y=1, ;

Probability distribution and the concept of probability mass.

1f the distribution function F(x) of a random va,;iableXbe
known, then for any a, b (a < b), the probability of the event
@<X<b) can be determined. So the distribution function
F(x) gives the distribution of probabilites of various events and
so we say that F(x) determines the probability distribution of the

random variable X. Then the problem of determination of thf
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r& probabllxty distribution of X is the same as the problem of
' finding the distribution function F(x) of X.

! From the properties of the distribution function proved in
 §5.2(1-VID), i it will be possible to make an analogy with probablllty
of an event’ and ‘mass of a particle or of a system of particles.’
The aforesaid analogy can be done as follows: We assume that a
certain amount of matter is distributed on a given straight line
(on which x is measured) in such a way that the total mass of the
matter distributed from —oo up to the point x =a is equal to F(a),
where F(x) is the distribution function of the random variable X.
Then the property ‘F(e)=1’ implies immediately that the. total \

mass of matter distributed on the line is .1 unit. The property
«pa < X< b) = F(b) — F(a)’ reflects that the probability of the event
@<X< b) is equal to the mass of the matter distributed on the
semi-closed interval (a, b]. The relation ‘P(X =a)=F(a)-F(a-0)
_shows that the probability of the event (X =a) can be mterpreted
.35 the mass of a particle placed at. the pomt x=a.

\

The hypothetlcal distribution of mass described above is: called
the probability mass and in many situations it will be convenient
to think probability in terms of mass by the aforesaid analogy
where the probabilty of an event is identified w1th the mass of a
certain amount of matter. - ;

We shall restrlct our discussion to two types (unless otherwise
stated) of random variables, namely discrete and continuous which
will be explained in the followmg sectxons

5.3. Discrete Distrlbutxon. Probability Mass Functlon (p.m.t.)

A random variable X deﬁned on an event space S is said to be-
discrete if the spectrum of X is at most countable, i.e., if the
spectrur is finite or countably infinite. In this case the probabﬂxty
distribution of X will be called a discrete distribution.

Let the spectrum of X be { x;:i=0, = 1, 7 DA i
where ... <x.a<x_ <xo<x1<x,< ° g,

Let P(X=x,)=f;, X being a spectrum pomt A function
J:R— o, 1] is dcﬁned as follows |

=(). elsewhere. _ RN t '(5.3.1);{
Mp.]n . j : [I'
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ed the probabzh,ym

call
The function f defined 8bOve r::bch | | )
the random V2 v 7
Sunction (p. m. f.) of ) of @ d,screte random "‘"*abze ‘

The distribution function F(X
X is given by : ‘

146

i
. f X, LX< Xt
Fix)= Z P X=xj)= Z‘ f.i: -,l =
Xj < X¢ Jm e T
‘ (,_o +1 +2,......). (5.3.2)

Thus F(x) is a step function which remains constant over eveyy
interval in between two consecutive spectrum points, has a jumy

discontinuity at each spectrum point X;, the height of the jump at
each point being f;=P(X=x,). It is continuous to the. rlght but"
discontinuous to the left at each spcctrum po:nt s

I I ! | ) .
] | ] g | —— ll
| J | | P s
vy | T i | ! :
, ' ﬁn J— 1
,' PRy pda i "’ : I ll By =
| {5 i ek g B e Vg
¥ ‘ Rt
I : | I ; | :
I [ [ N |
,_,1 [ [ l! [ !
I I I | I |
I [ | l’ | ! I
' | l‘ 1 ‘l ' |
| )| )| ! 1 1 | 'I : ‘ ]
- X X X X ]
Fog < 1 PR LT R S o St e

Fig. 5.3.1 Distribution F unction of a Discrete Distrfbutioﬁ
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5.0. I[mportant disoroto disteibutions.
I. Binomial (n, p) Distribution,

A discrete random variable X having the set {0, 1, 2, . as
the spectrum, is said to have binomial distribution with paral meter
n, p if the p. m. f. of X is given by, |

f(x)-( )“'(l—p)“ for x=0, 1, 2, weeerep
=0, elsewhere,

where n is a positive integer and 0 < p < 1,

We now give one example of binomial distribution from real life
situation. Let E, be the resulting compound experiment an ing

I i

from n (a positive integer) Bernoulli trials, where p(0 < p <1 is
the probability of success in each trial. If we are interested only
in the number of successes, then the event space correspondm.
E., is the finite set {0, 1, 2, ......, n} =S (say). |

A random variable X is defined on S as follows :.
X(i)=i where iecS. |

Then X is a discrete random variable where the probability
functlon f(x)=P(X =x) is given by

. ;r--f(x)=( )p“’(l—p)““‘ for x=0, L, 2n

', =0, elsewhere.

(5.5.]
(5 5. l) shows that X has bmomml (n, p) distribution. _
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1. Poisson p. Distribution.

A discrete random variable X having the enumerable set

10, 15 2 «evnee } 29 the spectrum, is said to have Poisson distribution
with parameter p(> (),if the p.m.f, is given by

f @

—p
/ f(x)‘"—‘e x'p. , for x=0,1, 2

—0 elsewhere.

} Let us now give an example of Pmsson distribution from real
]1fe problems. If X be the random varlable denoting the number
of telephone calls in a given interval (O 1), satlsfymg the condltlons
in a Poisson process (see § 5.11), then X is a discrete variate whose
spectrum is the enumerable set {0 l 2, 0000}, the correspondmg_.
probablllty mass function f(x) P(X x) 1s glven by

—\
f(x)= e_;(;__g)_ for x—O l 2

=0, elsewhere. g A (5.5.2)
(2 is the average number of calls per unit time). '
(5.5.2) shows that X has Poxsson dlstubutnon with parameter At.
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5.6- Continuous Random Variable.

Let X be a random variable defined on an event space S. Let,
) be the distribution function of X. Then the random variable
yis said to be continuous if

() the distribution function F(x) is continuous for all real.’

values of x,

(if) and for any two real numbersa,b (a (b), Ed— F(x) F'(x) is contmuous‘

in [a, b] except for at most a finite number of discontinuities (which may mclude

pomts of infinite dlscontmmty) and f F'(x) dx is convergent.

Alternative definition of contmuous variate.

. A random variable X defined on the event space § is qald to tie i
a continuous random variable if there exists a non- negatwe real
valued function f(x) such that (i) f(x) is lntegrable in (—oo -0)
and (u) the distribution functlon F(x) of Xls glven by |

E(x}—s f(t) dt for any real x.

The equivalence of the two definitions wxll follow from (5:8. 3)
and note (d) of § 5°8. If X is a continuous random varzable, thew
the probability distribution of X is called a continuous distribution.

".

57. Probability Density Fuuction (p.df) of “a Continuous
Distribution. e AR e v

In case of a continuous distribution, we denote F'(x) by f(x),

Where f(x) is called the probability density function (p.d.f.) of X,

F(x) being the distribution function of X. From definition, the
d¢ﬂslty function is continuous in any finite interval [a, b] except for at most

finite number of points of discontinuity. We note that F'(x) may not be defined

values of x and consequently f(x) may be undefined at some points.
In the ajternative definition of a continuous variate X, the non-

Dcgative real valued function f(x) is called a probability density
function of X, Here from the relationF(a;)=r f(t)dt we get

F'(3)=f (z) at a point of continuity = of f(a:). |
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5.6, Continuous Random Varlinblo.

Let. X be n random varinble deflned on an event space 5. 1€t
F(x) be the distribution function of X, Then the random varmblc
 is said to be continuous if

(/) the distribution function J(x) is continuous for all real

values of x, d
(if) and for any two real numbers a,b (a ( b), P F(x) = F'(x) is continuous

in [a, ] except for at most a finite numbcr of discontinuities (which may include

pomts of infinite dlscontmu:ly) and f F'(x) dx is convergent.

Alternative definition of camtnuous varlate.
. A random variable X defined on the event space S is said to be
a continuous random variable if there exists a non- ncgatwc real '
valued function f(x) such that (i) f(x) is integrable in (-o2; %)
and (u) the dlStl‘lbllt]Oll function F(x) of X is given by

F(J_c);:j 1 f(t) dt for any real x.

The equivalence of the two definitions ‘w'ill' follow from (5:8.3)
and note (d) of § 5'8. If X is a continuous random variable, thew
the probability distribution of X is called a continuous distribution.

57. Probability Density Fuuction (p.df) of a Continuous

Distribution.

In case of a continuous distribution, we denote F'(x) by f(x),
where f(x) is called the probability density function (p.d.f.) of X,
F(x) being the distribution function of X. From definition, the
density function is continuous in any finite interval [a, b] except for at most

finite number of points of discontinuity. We note that F’(x) may not be defined

Values of x and consequently f(x) may be undefined at some points.
In the alternative definition of a continuous variate X, the nor-

Degative real valued function f(x) is called a probability density
function of X, Here from the relation F(a;)=r f(1)dt we get
F'(e)=f(z) at a point of continuity « of f(z).
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Its on the Pl"’babmty density funcﬂu‘.

rtant Resu . 3
»8. Some Impo ion function F g

t and the correSpondmg distributi

continuous variate X. | A

! fx) > 0 forall x where’f x) is dé’ﬁ"ed (5. 8.1! a

‘We know that F(x) is a monotonic increasing function. g5 =
7'(x) > 0 whenever F'(x) exists.

. f(x) > 0 for all x, where J(%) is deﬁned

b -
I Pa<x<b=| f)ds (5.62
We have P(a < XL b)""Flb) -'F\a) 1
Now F (x) = f(x) is contmuous in [a b] except for at most a finite ﬂllmbe;

'(x) dx . g

of dlscontlnuxtles and So we have f F is convergent.

Then, j: /(%) dx=F(b) - Fla)=Pla < X < b).

X

. F(x)-=5_m fls)dt. (5.8.3)
We have, by (5.8.2), R
Pla < ng')=r finde

or, F(x)= Fla) =j 1) ds.

Proceeding to the limit ¢ — — o, we-get

Fx)-Lt  pa)= Lt [: }(z) dt

a— —cw Q —+ —po

. p x
g F(x)—F't—OO)=S ) dt

-

-00)-..0.

p—

| or, F(x)=J. f(t) ae sinéc B

Iv. rﬂ fx) dx=1.

(5.84)
We have, by (5.8.3), - -

K _ S dt=F(x).
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+, - proceeding to tho limit x —» oo,

Lt [ [N dt= Lt pix)=po)=1

W N X = 00
or, s:. S(x) dx =1,

V. P(X=a)=0, where a Is.a glven constant. (5-/8-5)
: ’ ,/ I3 4 ’ £

We have I(a (1 O)E'P(X-a) / /)4 P
Now X beinga contmuous random variable, F(x) is continuous

for all x. Hence F(x) is continuous at x=a.

Lt  FX)=mWa), * . , |

x—a=-0
ie, Fa-0)=Fa)

P(X=a)=F(a) - F(a - 0)=0,
i.e, P(X=a)= Ofor any real constant a,

Note: (a) We see that the “distribution function of ai
continuous random variable X is completely determined by the
corresponding probability density function f(x), using (5.8.3). So
the probability distribution of a continuous random variable is
completely determined by the corresponding density function f(x)-

(b) . We observe that the probability density function defined
in the two ways mentloned in § 57 may differ at some pomts but

they will determine the same ‘distribution function F(x) of a
X. Further we observe that if the

continuous random varlable
values of the p.d.f. (in any deﬁmtlon) be altered at finite number of

points or if the p.df. be deﬁned arbitrarily at finite number of
points where it is undefined, then the corresponding dlstrlbutxon
function F(z) is not altered. Lk

" (¢) We know that P(0)=0. If, however P(4)=0, we cannot
conclude that 4 is an impossible event. In this case, we say that
A is stochastically impossible. 'We now give an ‘example to show
that ‘an event may be stochastlcally impossible but not impossible.’

Let E be the random experlment of sclectmg a number at
random from the open interval (0, 9). Let X be the random variable
denoting the numbcr chosen Then an event ‘X =6 is not an

impassible event. But it can b2 shown that X is a continuous |
Scanned by CamScanner



154 MATHEMATICAL PROBABILITY

random variable and so P(X=6)=0. So the event ‘X=6 is a
stochastically impossible event but not an impossible ‘event.

(d) Every non-negative real valued piecewise continuous function

f(x) that is integrable in (— oo, o) and for whtch [ f(x) dx=1,

is the probability density function of a continuous distribution.
b (@) $OOAM = QUK LN & wxaN. (5.8.6)
It is sufficient to show that there ex:sts a dlstrlbutlon functlon
F(x) correspondmg to f(x) | ) '

We define a function F given by 5 f(t) dt=F(x) ,
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Density curve :

distribution,
VI. Probability Dijferential
Let X be a continuous random variable and éx > 0,
Then Plx < X < X+40x) = F(x+§x) - - F(x)=6xF"(¢),
=x+00x,0 <9 < 1, |
by Lagrange’s Mean Value Theorem of Differential Calculus.

. Plx < X < x+48x)_ :
e Lt d ! — ]

:f .t is a point of continuity of #'(x)= f(x).
f(x)= Lt Plx < X < x+46x)

dx—=0 0x
It Px<X < x+dx)
dx->0 dx

since sx=dx, the differential of the variable X
Henceforth we shall write f(x) dx for P(x < X < x+dx) whlch

will actually mean Lt ¥ (x < X< x+dx) f(x).,
dx—0 ' dx

The expression P(x < X < x+dx) will always be used in the
above limiting sense and so there will be no ambiguity throughout
our discussion, The expression P(x <X< x +dx) which is taken
" to be equal to f(x)dx, - |

ie, [(x)dx=P(x <X < x+dx) | (5.8.8)
is called the probability differential of the continuous random
'varlable X. ' |

We now dlscuss some lmportant continuous dlstrlbutlons

39 Important Continuous Distributions.
I. Uniform or Rectangular Distribution.
A continuous random vanablc X, is said to follow a uniform
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sistribution , if its probability density function (p.d.fyjs g;, by

1 }
YRELEY P& L
fo)=g—gr @ <
- 0, elsewhere,
ek . . ’ '(509‘“
where a and b are the two parameters of the distribution,

We note that f(x) > 0 for all x.

Alea (7 ey deee (B 19%

b RCL |

The distribution function F(x) of X is given by
Fx)=0, ~» <x<a

_x-a .
b—a’a‘éxgb"’ »
=lb<x <, (5.9
\ 1 | e B i
fx) 7‘, i HpT
1 o LI - A bz ' r
_b—a: : gy l' 1
& !
-l! ! J ’ 1
—p e ’ :
@ % e R D b1
Fig. 5.9.1 ” 'Fig. 5.9.2

Rectangular Density Cupve - bty oo 07 8
g usity Curve ~ 'Rectangular Distribution Curve

‘ Note : The rectangular distribution gives a useful model f
random experiment iike ‘a point is chose i mode IQ
interval’. In this case, we are actu
variable X such that the probability of the event
sub-iatzrval’ is proportional to the length of the sy
X is uniformly distributed in the given interval,

‘X lying in any
b-interval, 1.e.,

1. Normal (m, o) Distribution. '

A confmm‘)us random variable _\.{, having (=, e Yias (o]
spectrum, is said to follow a normal distribution if jig Prodabilit
. . ¥ . . oy ] '
density function f(x) is given by y
(x—m)?

l - 5 — N
fix)= Zr_we 2 , °°<‘x<.»0 (5.9,3)

where o > 0. - ' -
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It is & probability distribution with two parameters 7,
i3 denoted by N(m, a).

In particular-if mea0, g, we say that the correspond:nsf,

random variable X is o Standard Normal Varlate.

1 _(x=m)* '
Since Ji}:r > 0nond e "ZT“)' is non-negative, for all values.

of x, hence f(x) > 0 for all x
Again S Slx) dx=. ,ﬁ!__._s = (ﬂ;# dx
. -® 21 ¢ )~

— (X ~m)?

=1 Lt SQ e 2 dx
' ; K ity

| i) o-m .
1 0 il A sz(T R . L
- dy |\
V“ lq-:f:o[ —P+m i 0 :‘ : b
»JZa' . : L :

where in the first integral we put y= -

|

=P+m "‘g  $ Q‘”"1
N Qoo
ml g ‘ 1 ‘I ® -y? i
l s e~ t dt + —_— | e dy,‘ / ,
. 5 ; K

smce the lntegrals are convergcnt

Sefil-g-

g and

= 2 )
Lt s N2 ""dm—: Lt So"’l" efu’ dy
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ribution is given by

The distribution function of a normal dist
(x—m)'
1 r 2¢* dx.

F\x) = Jz__o "
14

If X is a standard normal variate (i.e, m=0, s=1), the corre
:ponding density and distribution functions are given by

(- tﬂ

d»(x)=71-.=. e-% and ¢(x)=—17l§j e * dt. (5. ‘k

2n

105

$(x)

.
X

o
Fig. 5.9.3  Standard Normal Density Curve

‘l:'"‘ (Osl)

d(x)

=

0 S 3
. X
Fig. 5.9.4 Standard Normal Dijstribution Curve

One of the most important distributions in the theory of
-probability and statistics is the normal distribution and in the
foxe/goms chapters we sﬁudy this dlstnbntmn in detail.
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5_10, Distinetion between Discrete and Continuous Random

Variables. | ‘ |

(a) A random variable X is discrete when its spectrum 1sat

most an enumerable set, i.e., either finite or countably infinite,

whereas in the case of a continuous random variable, the spectrum
is-usually an interval or union of some intervals.

() The distribution function of a discrete random variable is
a step function, whereas in the case of a continuous random variable,

the distribution function £(x) is continucus for all x and inany

bounded interval [a b] F'(x) is continuous except for at most a finite
number of points of discontinuity. '
(c). In the case of a discrete random variable P(X=a)=0 if a

is not a spectrum point, while in the case of a continuous random

varlable P(X=a)=0 for any real number a, ‘
" (d) The random variable denoting the. number of telephone

,calls in.a given trunk line in a given interval of time is an example
of a discrete random vanable (see Poisson Process).n The r..ndam '
variable denoting the number chosen at random from a  giben.
interval, say (4, 7), is an example of a continuous random variable.
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'ﬁ(oms’ma\m&om ol covivmingul, POV down Vo0 0led g
( Theorem 3. Let X be an RV of the continuous type with PDF [, Let y = g(x)
e differentiable for all x and either g’(x) > 0 for all x or g'(x) = O for all x, Then

Y = g(X) is also an RV of the continuous type with PDF glven by

! Y
| -1 __d_ -] ’ ) 5 J,

) h(y) = |f[g (y)]'dyg o)y, ey <f
0, otherwise,

where o = min{g(—o0), g(-+00)} and 8 = max{g(~o00) g(+60)},

Proof. If g is differentiable for all x and g’ (x) > Oforall x, then £ 18 continuous
and stnctly increasing, the limits «, B exist (may be infinite), and the inverse function

x = g~ l(y) exists, is stnctly increasing, and is differentiable, The DF of ¥ for
‘ @ <y < Bisgiven by

PlY =y} =P{X =g~ '(y)l [' (g \( l))

The PDF of g is obtained on differentiation. We have
| ( hO) = Z-P(¥ <))
= f[g"l(y)lag"’ ». /
Sumlarly if g’ < 0, then g is strictly decrezi.sing and we have
P{Y <y}=P{X 2 g7 (y)}

=1-P{X<g ' (»)} = (Xisacontinuous RV)

so that

d
h o= — -1 i el |
0 =—flg” ] e O)
Since g and g~ are both strictly decreasing, (d/dy) g=!(y) is negative and (2) fol-
lows.

woer N = Wﬁwuo@l&\m
DT = T RO\ Mﬁr\& e Xiaen
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d _y
E;g ()’_)—

dg(x)/dx |y=g-1(y)

so that (2) may be rewritten as

3 hy) = —I &)

g/ prk

x=g=1(9)"" 1

Remark 1. The key to computation of the induced distribution of ¥ = g(X)
from the distribution of X is (1). If the conditions of Theorem 3 are satisfied, we
are able to identify the'set {X € g~!(—o0, yl} as (X < g~ '(»}or {X = g~ O
according to whether g is increasing or decreasing. In practice, Theorem 3 is quite
useful, but whenever the conditions are violated, one should return to (1) to compute
the induced distribution. This is the case, for example, in Examples 7 and 8 and
Theorem 4 below. 4, ; |

Remark 2. If the PDF f of X vanishes outside an interval [a‘, b] of finite length,
we need only to assume that g ‘isl,d.iffefghtiable"in‘_(a, b), and either g'(x) > 0 or
¢’ (x) < 0 throughout the interval. Then we take"’" EEPRTAYR SRR AN BIVBELILY 51,57 n

« = ming(@, ) and p=maxig(@, 8B

ey WHETRL ol s

in Theorem ? '

Example 5. Let X have the density f(x) = 1,0 < x < 1,and =0 otherwise.
LetY = ¢X. Then X =logY,and we have = ' |« | '

h(y)=l;‘-1. 0<logy<l,

that is, A i
1 1
-, <y<e,
h(y) =1y
0, otherwise.
If y=—2logx, thenx = e~Y/2 and
| h(y) = |;%e—?’/2| {13 0 < e¥2 21,
'.'= ';lg'e_ylzs,,‘ . 0<y<oo,
O P ! otherwise,
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Kxample & Lat X bdea nonnegative RV of the continuous type with PDF f, and
e > QLat Y = X% Then

- PIX <yY®)  ify >0,

The PDEof Y is given by

ho\) = f(yll,“) liylf“
dy

L éylfa—lf(yl/ﬂ)‘ y > 0,
0, y =<0

Example 7. Let X be an RV with PDF

e

R
-y
e xR —00 < X < 0.

F@) = Ton

Lat ¥ = X-. In this case, g'(x) = 2x, which is > 0 forx > 0,and < 0 forx < 0, s0
that the conditions of Theorem 3 are not satisfied. But fory > 0,

R Py <y =P-/=X=/}

where F is the DF of X. Thus the PDF of Y is given by

1 o |
—_— ) a : 0,
m=[ WD +F=yDL  y>

2y
0, y <0.
Thus
1 9
e")'/—‘ 0< Y,
h(y)= {2y
0, y =<0. \

Example &\th X be an RV with PDF

2x
flx) = =2 0.<x <m,
0, otherwise.

Let Y = sin X, In this case 8'(x) = cosx > 0 for x in (0, n/2) and < 0 for x in
{z/2, 7), so that the conditions of Theorem 3 are not satisfied. To compute the PDF
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2]} et fr-mmaaomcubndernaaenondseason N
' “\ l s ;}
Fig. 1. y%_- sinx, 0 <x <. 7
of Y. we return to (1) and see that (Fig. 1) the DF of Y is given by
P{Y<y} P{sz<y} 0<y<]l, |
P =P{O<X=<x)U <X =<m}
‘where x1 = sin~! y and x2 = Jr' — sin‘1 y. Thus
PIY <y} = f Fxdx + f @ s
2 by !
-@) -
(- Sl \
and the PDF of Y is givenby sl A e
2 | 2
' d (sin'y\" vdv| o fr~sinT! AEATLTTR T
h()’) _ AT, 1—;‘ ‘ : _y M s T
dy \ m Y Redyt 0 R gt o | gt

L 0<y< 1'.,," iy,

0, " otherwise,
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5.13. Mixed Distribution.

So far we have discussed distributions which are either discrete
or continuous. But there are distributions which are neither discrete
nor continuous. In fact, there are probability distributions where
the corresponding distribution is partly discrete and partly
continuous. Such a distribution is called a mixed distribution.
We give below a formal definition of a mixed distribution.

A distribution is called a mixed distribution, if the corres-
ponding distribution function F(x) can be expressed as a convex
combination of the form

F(x)=cF,(x)+(1 —c)F.(x) - (5.13.1)
where F,(x) is the distribution function of a discrete random

variable and F,(x) is that of a continuous random variable and
0<e< 1. | '
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Wo completo the disouaslon by glving tho following exampl

a mixed diateibution, ,
Lot ¥ bo u random varlablo with distribution funotion

givon by
0,580

J7(X) v ..}-2'_!,0 < X<l
[, 1 <X

‘—." ‘ 0 ~ (1,0) - %,

Fig. 5.13.1 Distribution curve of & mixed distribution,

From fig. 5.13.1, wo see that I‘(x) has a jump discontinuity a
x=0. In fact, F(x) is not always continuous, nor is it a sto
fi: +tion, Accordingly, thc oorraaponding distribiition lsamm
distribution, ot | |

Wo can write |

F(x)=5 Fy(x)+% Fa(%),

10,x <0
where rl(x)
lx>0
| [”0x<0 i
and ‘F’J(x)- x.0<..x<1
1x>1 bbbl i

F1(x) and Fy(x) aro the distrlbutlon funotlons of a discrete and

‘a continuous distribution | regpectively. | The probability densit
function f(x) corresponding to Fy(x) is given by .

1
ﬂx)"{ 0<x<1

Wo observe that f( |

In fact L F (g)= O,RF"(O)gl,etc. |
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4'14. 1llustrative Examples.

Ex. 1. Five balls are drawn from an urn containing 4 whzte
and 6 black balls. Find the probability dlstributian of the number
of white balls drawn without replacement.

Let X bo the random variable denoting the number of white
balls drawn from the urn, Then the spectrum of X is the set
0,12, 3, 4}, |

P 1 i 6 5 5
Now P(X=0)= Top. = P(X=l)-= Olfog‘XL =5
5

= [ — ] ng OaxL_S_ -1—0.
P(X=2) wop, — T

) 6" ‘
P(X=3)= Csx°0gx|3 —

:q
.
4
o
1O-PB 21’
Y0 %0005 188 it il i it s e r¥s e
P(X=4)=_"¢ ‘1 ,‘ Wby T of Ty i
i 0P, “a 5
Hence the requlred distribution at X is glven .by the spectr“
]
i
!
!
{
i
i
i
l
h
i
i
i
|
;

{0, 1, 2, 3, 4} with

PX=0)=72, P(X= 1) =y p(X=2) ,ﬁ, P(;X='3)=§5,, and
P(X'4) '=7[1'ﬂ" ' AL 5
Ex. 2. Consider the random experiment of tossing a fair coin

till a head appears for the first time. "Let X be the number of
tosses required, Find the dzstrzbut:on of X

AL T )
i

The spectrum of X is the set {I 2, 3 } ; i
Now pP(X=1)=pP{H}=%, P(X=2) P{ T, H)}=(%)*%,
P(X=3)=P|(T, T, I}= (3% e
P(X =n'=P{(T, T,.o...Ts Th=(8)"
(n—1) times '

and so on, where, ‘H’ denotes the outcome head in the ‘ﬁrst toss
(T, H) denotes the outcome ‘Tail in the first toss and head in the
Second toss’,eto, Thus the requxred dlstnbutlon lS gtven by X=i,
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170 MATHEYATICAL PRUBABIEELE.

Ex.8. Show that the functwﬂ [ x| in(~1,1) and zero eIseotery
is a posszb!e density functlon and ﬁ”d the corresponding diss,
bution function. :
(1x],-l<x<l
Let f(x)=+

L0 elsewhcre
We see that f(x) > > 0 for every .

Also, S ) dx-'_-.j: f(a_c)dx+t (%) dx+£ 17 dx

g _-'=o-|-r1 | % | dx40.

1 - - * :
=2j xdx, since | x| i8 an eveR function
o

and | x| =x foreveryxe(0, 1)
=1

Hence-, f(x) is a possible probability density function of soms_
distribution.
~ Now let F(x) be the corresponding distribution function.
If —w < x<—1, Hx)=j’ (1) dt=0.

If —-1<x<0, F(x)=§: f(1) dt= s 5 (0)) d:+] f(t)dt 7
—0+ K 76) di= j " (-nda-1-Z.
fo<x<1, A)=| _fdr
- j - f(x)‘dtf-l—'ﬁl 0 dt+5: 70 dt

(+] z '
=0—}' tdt+s tdt
-1 0
]

2

=5+
I 1< x <, Fa)= j £ty dt

S sl =j: f(x) dt +_E1 1) dt+j:- flo) dr
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Henoe the dlatributlon furiotion is glven by -

f0 g =00 <x< -1
| %"‘?‘;—'. -1 <X <0
F(x) =
[N
i A |

L1 , 1 ‘< X < 00, |
Ex.4. Can the following be probablllty mass functlom ?

) 2 for x=}% % for x=
‘ 1 for x=3% - 2 for x—-2
(@ Ax)= 1" fon, e b)) )= 2 for x=3
0, elsewhere. ” ' " 0, glsewfl?fe,
0L for x=-5 et emm
0'S for x=-—1 T
(©) fix)=1 02 for x=0
02 for x=1

0, elsewhere. |
| (@ Since f(P=-1< 0,1 f(x) s np_f a  probability mass-
function. ‘

(b) Although f(x) > 0 for every mass pomt Ef(x) A 1.

Hence f(x)is nota probabxhty mass functxon.

: ‘point and: 3f(x)=1, hence f(x)-
(¢} fix) > 0 for every spectrum point and xf( , f(x)

is a probability mass function of a distribution.

Ei. B. Evaluate the distribution function of the. following
~dism'bunon Spectrum of the randomvariable X is { -1, 0 2, 3} with

P(X==1)=%, P(X=0)=13, P(X=2)=3}, P(X=3)=

' Létf-lvix) be the aistxlbutnon_functlon.

If —oo <x< -1, Ax)=0. o

If -1gx<0,Ax)=PX=-1)=}% |

6 0< x < 2, Flx)=P(X=—1)+ H(X=0)=} + }=.
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If 2 < x < 3, Rx)=RX=— N+PI=0)+PX=2)
=}+31+ = -
If 3 < x<oo, Rx)=R(T=—D+PE=0+P(T=2)1pz_

i = 1
=%—1~§-+;+‘(

——
—— -

Bx.6. Let Fa) be the distribution function of a rgpy
warlable X. Prove that
() Pla< X < b)=Rb—0)—Fa-0),
(i) Pla < X < b)=Fb)—-Fa-0).
(i)‘ The event (@ < X<<d)can be expressed as
(@<X <b)+(X=a) '
v Pla< X< b)=Pla< X < b)+pX=a), 141
where we note that (@ < X < &), (XY=a) are mutually - exclusie
-&vents. '
Again we can write
@<XLh)=la< X < b)+(X=d).
S0 Pla < X < B)=Pla << X < B)+P{X=b).
Pa< X < b)=Pla <X < B)-P(X=b).
Hence,by (5.14.1) we get

Pa@< X<b)=Pla< X < 5)—P(X=b)+P(X=a)
= Rb)— Fla) — F(5)+F(b—0)+ Fla)— Fla="
=F(b—0)—F(a—0). _,

(ii) We have
@< X<bB=@< X<b)+(X=a),
where (a < X < b), (X=a) are two mutually exclusive eveats-
So Pa< X< b=pPla< X < b)+P(X=aq)
=F(b)— Fla) + F(e)-F(a—0)
=F(b)—F(a—0).
Ex. 7. Can the following funection bea d:smbutmu Junction !
0, —o < x <0
Flx) = H0<x<1
Hl<x<3
L3I<x< o,
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If s0, find the spectrum and probability mass function.

it is clear that F(x) is monotonicglly non-decreasing and non-
Jegative and  Fle)=1, F(—)=0. F(x) is a .step function,
giscontinuous to the left of the three step points 0, I, 3 and
continuous  t0 the right everywhere. Hence, F(x) is 8 possible

distribution function of a discrete random variable X. The:

gpectrum of
X is {0, 1, 3} with
P(X =0)=F(0)— F(0—0)=4%,
P(X=1)=F(1)-F(1-0)=§-}=%
p(X=3)=F@3)-F(3-0)=1-3=% |
which give the probability masses at the spectrum points and f.l:ig_se-
probability masses determine the required probability mass.

function.
Bx.8. Determine the value of the constant 'C such that fix)

defined by |
3 — - l
f(x):{ Cx(1-x),0 < x <
0, elsewhere
is a probability density functiofz. Find the corresponding distri--

bution function and P(X > g).
In order that f(x) is a possible probability density function,.

we must have

‘:. f(x) dx=1

ie, C [.1 x(1-x)dx=1
0

ie, C=0,
Let F(x) be the corresponding distribution function

In — < x <0, F(x)=0,
in 0<x <1, Fx)=6 j" (1 —1) di=3x% =23,
0

. 1-

ml<x <oo,‘F(x)=6s (1l =r)dt=1,
0

0, —0 <x<0

F(x)=-l It -2x", 0L x|

L1 < x < o
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Ex. 17. The probability of a product pr oduced by a machine |

be defective is 001. If 30 products are taken at random, find i}
probability that exactly 2 will pe defective. Approximate |
Poisson distribution and evaluate the error in the approximation,
As in Ex. 16, required probability=(92°)('0'l)’('99)2B=—“0'0276,‘
Since the probability of success is smgtll, we approximate
Poisson distribution, the parameter of the distribution beig
p=np=30%-01=03.
Hence the probability

—p =(0'233_2 e0-2=0'03337.

of gettivng exactly 2 defective

o
_.2 ! e

the error in the approximation = 003337 — 0:03276 = 0°0006
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Ex. 19. If there is a war every 15 years on the average, then ﬁnd
the probability that there will be no war in 25 years, |

i =number of changes per unit of time on the average =g Let
Z vz the random variable denoting the number of wars in the
interval (0, 25), when the unit of time is ome year, then X is
Poisson distributed with parameter p=it = {5 x 25=4.

probability of no war in the given interval of time

Ll //] o 5

e p° 78,
=P(X=0)= 0;" e
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Significance of the variance of a distributlon :
The expression X (x, =m)* [/, for the variance of X, when 1 is
" ,

(N

discrete and the expression J' (x =m)* [(x) dx for the Yariznce o

X when X is continuous, both give the mean value of (7 ~m,* iz
{ the

the long run. So the variance of X gives the mean value of the
squares of the deviations of the values of X from the mezn m 204

consequently a low value of Var (X) indicates that there is high
concentration of the probability mass near the mean znd z hizh
value of the Var (X) indicates that there is low concentration of the
probability mass near the mean m. Thus Var (X j gives 4 11‘/4:.";4;
measure of concentration of the probabtllty mass near the mezn,
i.e., if Var (X) is small, thcn it is highl s probable that values of

X will be very close to m and 1f Var (X) is Jarge, then it
probable that values of X will deviate much from the
So we can say that' Var (X) is a measure of dispersion o

’

distribution.
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~ Again, the expression ¥ (x, —m)n'f' and [ (x-—m)* f(x) dx both

give the moment of inertia of the distribution of probability mass
about the straight line through the centre of mass and perpendicular

to the line of distribution in the discrete as also in the continuous
case. |

- Standard Deviation : @

The standard deviation of a random variable X, denoted by
a(X) or by @ is.'-déﬁ_ned as the non-negative square root of Var(X), so
that o= + +/Var (X) ; i.e., o*=Var (X). (7.4.5)
It is to be noted that the unit of o is same as that of X . while that
“of Var (X) is equal to that of the squaré of X. |

Moments -

‘Let X be a random variable and a be a given real number,
The value of E { (X —a)}, if it exists, is called .the kth order
m_ément of X (or of the distribution of X' ) about a where k is a
positive integer. |
" Then E(X¥) is the kth order moment of X about the origin and
EX k¥}"is denoted by <, provided E(X*) exists. We sce that.

—E(X)—m, the mean of X. | ¥

Let the mean m=E(X) exist. Then E{(X —m)¥}, if it cxist'é;’,i;f
called the kth order central moment of X and is denoted by)'."uk,-‘
We.o_bservc that y1=E(X—m)=E(X)—-m=m—m=0, fi
and pe=E { (X —=m)?}=Var (X). A

The moment E{(X' —a)"} is also called a raw moment of order k

‘The significances of the central moments g, y“etc will be
given at the end of this section.

RBIGHOH between raw moments and central moments :

Let X be any random variable having -tts mean m. If k be any
Positive integer, by binomial expansxon

(X —m)! =§"(- 1y () X"-!’mr.‘.

r=0,
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Then by (7.2.9),

r=0

e [tk—-z (-1) ( ) LT m"

E[(X—m)k] Z( 1)'( )E(X""')m.

£ (744

where px and <} are the kth order central moment and raw moment

of order k. ity
Since «,=1 and 4‘, =mywe get

"Z(—l)'( )4,..rm" i

r=0

g — 2« M+oLom®
—(2_2mg+m’
: —"12 m\, o by ali pdb e ook
o Z : ( l)‘l‘ ' )*8—' ’n'r
1'::. '
=9‘8."73"2m>+-‘3'."1m:’;\“',‘°_(0m3‘»' W

=« —3:(-,-m+2m3 , b

r=0
—’(4“443m+6°(2m, 3m4 2
and so on. . |
Conversely, «g=#4,+m?,
°(3=#3+3ﬂam+msr !

Xy Py +Agm+Opgm® +mt

and so on.

}"Z CEAM DS g

—'4ﬁ(sm+6-‘{!m —'41 ’"3']'"'34

(7.47)

(7.4.8)
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1. Binomial distribution
- Let X be a binomial (n, p) variate.

Then m=mean ef X=E(X) |

' _Z () ’(l—p)""‘

t.=o

t=1

_Z 2 !(n-—z) v p%(l -—p)u-z \
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or, M= ”’Z = (f)xl(n 1P =

n=-1
=m > ("71) pr-pneit =it

i=0
=np (p+1-p)»-? - .
e | (7.4.20)

Again we have, E{X(X —1)}

-—Zz(i 1() {1 —py*$

=0

=n(n—1)p* 2 .) (1-p*

l=‘.-

=nin— ”PZ )p!(l—p)"-=--'?,-j=f—2 .

—n(n l)p’(p+1—p)" ’—n(n Dp?.
Hence;by (7:4.11) &
Var (X)=E{X(X— 1)} m(m — 1)
=n(n—1)p* —nplnp—1)
=np(np—p—np+1)
=np(1 —p). | - (7.4.2])
The corresponding sta}ndard deviation o(X). is then‘gi_ven' by
o(X)= ¥np(1 —p)= (7.4.22)

Now we find the raw moments «,, <5 and «,..
n

«=E(X?)= Z & (':')P‘(l -t

, {=0

+Z (7} pta-prs
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*s‘E(X’)=n(ﬁ—l)p’{ 2 ”_z)ps’-s(l ?p)"“" }

+Z (,)p‘(l -t

=n(n—1)p* Z(n 2)1,71(1 p)“"’"+E(X)

=0

where j= i 2
=n{n—1p*(p+1-p)" 3 4np, by (7.4.20)
=n@—Dp*+np. - (14D
$e= BRI Z e (7 )p 1- p)"" il
_Z{M 1)(: 2)+3:(: 1)+;}() e(‘l__P),.-,-.
t=0 . X ‘
_n(ﬂ 1)(" 2)") Z('; g)pt—s(l p),._
0 A= Bl g
S
- nin=in-2p0 > (773) - )ﬂ
=0 : A
+3n(n—1) l%(ﬂii) P
P it p(Ql -__P) -+ np,
. A ] j——;-—3]'—-i-—2
! -n(n 1)(" 2)P°(P+l—- )ﬂ 8+3n(n 1)(p+1 p)n-9p3+np
=n(n— 1)(" 2) 8+3n(n I)P’+np ) i (7424

Similarly writing l"—i(z— (i -2)i<3)+6ili—1)i—-2)
_ +7z(z—-1)+”

[ Put i4=ii—1)i- 2)(!—3)+Ai(i 1)(1—2)+Bz(i— 1)+Ci and
"puttmgz—-l 2,3 find 4, B, C. ]

We get « ~n(n 1)(n 2)(n 3) p4+6n(n 1)(n-- 2)p
; . ‘ | +7n(n-1)P“+"p
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The corresponding central moments Uay
from (747) i
4y =Var (X)=np(1 —p), PR (7.4.25)
(1 =3 — 3kom+2m3 e
-n(n 1)(n 2)p3+3n(n—1)p° +np 3npi (n 1)p* +np}
+2n’p?

gy iy’ then follows

=np(n®p? —3np* +2p + 3np — 3p+1 3n’p’+3np
- 2 2
=np(2p*® — 3P+1) , T ek
=np(1 —p)(1 —2p). g (7.4.26)
Bty =%, —4tgm+6x,m? —3m* | |
=n(n—1)(n—2)(n—3) 4+6n(n 1)(n 2)p +7n(n 1)p? +np
—4npin(n—1)n—2)"p +3n(n—1)p2+np}
~ +6n? “{n(n 1)p ’+np]- -3n4p*
=np(3np® —-6np2+3np 6p"+12p-'-—7p+1) | |
=np(p—1) 3np(p—1)—(6p2 —6p+1)} '

=np(1—p) {1 +3p(L-p)n 2} \_;_.;T?_UAlﬂ
g _np(L—p) 1+ 3p(1 — p)in—2)} |
Hence Ba= ‘4 e p)~ e
143p(lmpiin=2) o oyl bp(li g o
np(l —p) * np(1 —p) 428

; —p(1—=2p)_ :1-2
- and yl_—:f‘_;;=”l’(1 p)(1 253)=V 13_’
{np(1-p}t* np( _ p)

ot (g e e (1.4.29)
p1='}’12=_"""—'— : “.-‘:! i} R e 1.8
np(l —p) -

2. Poisson distribution :

Let X be a poisson u variate. . |
Then m=mean of X =E(X) ‘ ™ s

B N it
‘Zg‘e = e 2,
i=1
o J
=yue pzfl-_‘-“ j=i-1
j=0 J . : 7 _ ;
e B (7.4.30)
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... Again,we have E{xX(x-1t
, o
ii—1) e PB_
i=0
T T

3___.8‘—“#”9‘5 02
o, & i=2)) .

J
;-.f-", j=i-2"

@
=@ —“F'z

e h i=0-
\

: —e_" " »e’ =‘|3. ¥ e ' 

Hence,by (7 4.11)

Var (X) E{X(X l)} m(m =1)
=p —"(ll 1) o gt N v (7, 43'])-
‘The COTI‘CSPOdeg standard dev1at10n o(X) 18 then givenby

o-(X)__.\/p, et (143

We now find.
t
he' Taw moments a(, o(, and «,.

-:,;-_E(Xa):.zig e_ﬂui

’ i=0Q° ! ‘ .

= pt
2 1(1“1)+1}-—_~ ‘

1=0) i

=p M 9 g ] g
¢ “Z(,ﬂ_-y,—! +E(X)

t=9
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Z“,s e f_‘. _‘—Z{z(z—l)(z—2)+3z(i 1)+i}e

fi=0a 1% RS CT R
— lys —-u A=g . .k
oo z o3 e
e (1—3)1 u &=
Rl —
=e " p° }“ +3e " Hyu2 Z !.L,—l‘+u
j=o ~ ° jir=o J ‘# ¥
e Puset £ 3e T F 1t 4u % S
=u3 4+ 3 4 p. E ) g (7.4.34)

'V‘.«..‘;‘

. Z{: i — 1) —2) - 3)+6;(:— 1)(: 2)+7z (;-

+=0 | ‘ \ ” ‘
=e Fput ,u" ”y , ,
e -n (,__54) | ﬂ Z: (i—3) ‘
—!‘- 3 it Y
+7e Ry Z i ?(‘.'*":.2) !+E( X)
Feit £ TR > a0 ’_‘_
—C ZT‘-‘_GB £ Z +7e ¢ ZI jn|+P-

j=0 ' jr=0 ‘ j"=0

= e Futel' + 6e ™ Fusel +Te” Puret+n
= l"+6p.3.+7ﬂg+y. l (7.4.35)

The corresponding central moments pg, ug, e then follow.
from (7.4. 7)

na=Var (X)=p, (7.4.36)
H3=og —3,m+2m3
= (3 4+ 342 4 ) — 3(n? +u)p+24°
A4 ) (7.4.37)

= U,
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By —’.4—4",1‘}‘6(27}1’-‘3”14
={(u*+6¢% +7u* -ru) 41£(ﬂ’+3u +u)+6112(u2+u)

043&

(7.4.39)

(7.4.40)
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g, Normsl distribution :

Let Xbe. thg random variable having normal (m, o) distribution.
Then the probability density function f{x) is given by
~(x—m)2

1 203 ‘ _
—— S e o , 0> & :
The mean of normal (m, o) distribution is then equal to
‘ _ o0 _(x -—m)? e
Vno TSRSV O

—

movided the integral is absolutely convergent.
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{ 0 . (x—m\’ ' 1 ©  _lz—m)a
Now i s Lt ~ 200 dx and ——.— S e 20’“
Vigo) (x m)‘e. | J21r0‘_ i

o0 ) ;(:r— m)l

0

are absolutely convergent and i S s e 20% dx=1,
270/,
(:c-—m)a
Hence, S xe 29% (x is absolutely convergent and its
Vamol
1 ® _(r=—m)2 U ".. e _@-m2
Value is ——— s (x....m) e 203 dx+m. — [ e 202 dx .
=m.

So the mean of normal (r}r, ) dlstnbutxon is cqual to m.

Then for any fixed posmvc mteger k

o ' —(x-—-m)! Bk
F:k+1—'s 4/_0- (x— m)”“" e 7“’ L AX
et n o ,.-.‘i" P ) %

— 1- It S (x m)ak-n erx
V2o Bg—>o0 ¥
By——®» B .
Ba—m GO
1 . o <ty :__z_l :
Lt s akt1p 2 g
vZﬂ BQ'—*N (Gz) - T ‘ ..z’ |

4 ’ £ %, . c
where z-f?f-"

—z’

—z’
since the integrand z***le 2 is an odd function of z and the
integral is absolutely convergent.

Rorsy=0, k=1;2,30 wuinds o ‘ (7.4.53)
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- X—nr
. where z=

202k > Y | | =
=7?_" z?*e 2 dz, since the integrand z3%e 2
) ,

isan even function of z and the integral is absolutely convergent
5. e g

2021. a =21
% ,fiJ z*%e 2 dz (B > 0)

2_“ ]
V2ﬂ B—3>0

(21)" -t\/i;—t where %—t ,

°-'—-s|ts. .

_ 242k
v

2kg2k
Hax="7 P(""‘n)

Changing k to k—1, we get

2k-1 2k-3
Hyk—-g = d-— P(k —q)-
v n ‘

=20t Lt = 20— = 2k- 110

' [ L+ H=Clk=3+1)=(k~3) Tk-4),
"y gy =(2k— 1)o? . pgr-a

={(2k—1)o2}{(2k—3)0%} Hyy-s "

"{(2" l)o,}{(2k 3)“’}{(215 5)0’} Ug- o

- =12k - 1)°’H(2k 3)aﬂ} o,
—-135...(2k 1)oak [-'- py=1 1 (7.4.59)
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From zbove, we then get

Var (X)=pga=02 and i(X)=0o, (7.4.60)
_ps 130 —3 v
BZ—,;Z_ ~a~;‘~~' y 71— Vs /7461/‘
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Moment generating fanetion :

The moment generating function of a random variéble_ X “about
-, pumber 4, is a real valued function of g real - variable -\t\?::}enof\c;‘d
by My-o and defined by My o : AR where My. , ()= Fjot 55
(e d, provided the expectation exists for ¢ | g' R, 4 .bei‘n-g th;

Jomain of definition of the corresponding | moment generating

function. We observe that in any case 0¢ 4 for any random

yariable and SO moment generating function is always defined a
4=0. By the statement ‘“moment generating functidh exists”. ‘we
actually'mean that moment generating function is defined at’,leas{%
at one point other than ‘Zerp.”"lTh‘en (i) if X be discrete,Athe-\'

momient generating function of X about g is defined by
Mx_a(t)=2;ze_t_(kxk'_a)flc £ i (751)

g provfded the series is absolutely convergent and where P(X=x;) = f;,
x; being a point of the spectrum of X and ¢ belongs to the domain
of definition of "the . -moment . g:e,ncra‘ting fun'c_t_i‘on,and () if X be
contimuous, the- ﬁ\ioment; .generating function of - X about a is

To - S T
defined by M X—a(t)=\s et flx)dx (15.2)

g} ; 11 JPR : ,

provided the integral is‘absolutely;conv_érgeﬁt for all\\t-‘--belonging
to the domain of definition of th'e: momcnt'.“generatingt‘ function and
f(x) is the probability deng‘ity fu,n"ctio'n‘ of X. | B |

For a=0, (i) if X be discrete, the moment génergt'ihg function
of X, about origin, is defined by M)=3 fe, (183
Provided the. series is absolutely convergent and- (ii) if X-be
Cmﬁinuous; the moment generating function of X, about origin, is

df‘-‘ﬁngﬁ_l; by - My(t)= S et=f(x) dx, (154
Provided the integral is absolutely conircﬂr‘g‘ent‘,'xk;'fk, /(x) haying
the YSual meanings. © . sl | ")
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- We shall now show that under certain conditions, moments of o
random variable'X (assuming that the moments ‘exist ) ‘about ¢ cap
be obtained from the corresponding mome_nt generating functig,

My a(') PR iy

A g ", b “\.‘L " i
Case I Let Xbe dxscrete.» -Here;" el ny. inny & b
; o0 5,-‘ ’(xh a) o Do inTy ;
.\'—a(t ia fk’ 4 AT Y50y

provided the series is absolUtely’ convergent. © We ‘assume that the
above - series: can be differentiated term by ‘térm any number of
txmes wnh reSpect to tin the domam of deﬁnltlon A of M 1=all).

Then [j MX_,, (t) ] -y ST (xz.—a)"f:.—dr 5"

where 'y is the moment of X about a for r—I 2
... Case II, LetX -jbe Vcon‘tlnuo_us Here

o TN Mglalt) = s e"““""ﬂxJ dyj !

"—prowded the’ 1ntegral is absolutely convergent. We assume that the

‘integral “can- be’ dlfferentlated with” I'GSPCCL to t under the integral
_sxgn any number of times. Then '

M5 o i
iet] 5 <>M
Afor f’ il 1 2 £ 3’ _.4.:‘,, A .‘ A f.' '."_‘.r FERYL CRETI RS

[
f "f'"‘

Thus we see that under the COIldlthllS mentnoned above the r-th

.moment &y of : a random varlable X dlscrete or contmucus abou!
a ngen number a, xs g1ven by

",

; V

[di x-e@}] e
d"l : ‘_0 TN Y
lf a=0, then we wrlte a(, for -c and then we e get

,‘_.“" [d M\(f)]

i onia PB4 (158
drt 1 2 3 '
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Now we note that if My_,(f) can be expanded in a power series

int, then

Mx-a(8)= Z[d j‘f,“;,"(')] é—, . @s)

=0

from which we can state that the r-th order moment of X about
. tr ] .
g is the coefficient of - in the expansion of My_,(f) as a power

series 1n 7.

Some Important Properties :

(i) Mx-a()=e""*Mx(1), R (7.5.8)
provided Mx(1) exists.” "R gk |
(ii) If cis a constant and Z, U and - X .are random varzables
connected by Z=cX, U=c+ X, then -~
Mi(iyo= Mty F R eyt
Myl =e® Myl), -7 Tos i pEr R Sl | g gy
| provided Mx(t) exists. S T e
_ Praof (¥) Mx..a(t) EfetX-%} , \
' -—E{e“‘e'”} e ‘”E(e“), by (728)
=e "‘Mx(t) e Ty
(fi) Mg(t)=Ef{e!*}=E{e'°*'*} = Mx(ct). -
Molf)=Efet?}= E{e! X} = etE{et X}
=e®t Mx(t).
From now, ‘unl‘es“s otherwise stated, by moment generating

function of a random varlable X we shall mean moment generating
function about zero.
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1. Binomial distribution : |
" Let X be binomial (n, p) variate. Then the moment"generating
function Mx(8) is given by |

Mxtr)=$g et* (§) pH=p)"

= 5 (Deetra-pmr

k=0
=(1=pt+pe’)l® |
| —(pe‘-l-q)" where q 1— p
Thus the moment generaﬂng E unctlon is given by |
Mx(t) (pe‘-l-q)" for allte R - - (7.5.12
We know that - in such a* case characteristic function can be

obtained from Mx(f), replacmg t by it.
So the correspondmg charactenstlc functlon 18 grven by

o ¢x(z) (pe“+q)" T (7.5.13)
" where | i= ,J 1
2. Poisson distnbutlon

‘ ‘ : ratln
Let X be a Poisson u varmte Then the moment genera™™
function Mg(t) is given by

w

M, (1) = z etk e_":’l?

K=0

&

SR

..-."'I't N ) (uet)k
Bl
i RREISTRE " VALIA: )

(15

=e

P t N, 7 gl '
=e Bt -'-'-e‘u'(e ’1')',“for all ¢t € R.

—
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Replacmg t by it, the correspondmg charactemstm function is

it . 1
given by éx(t)=e" € ) (7.6.15)

3. Normsl dtstribution 2 e
Let ¥ be a normal (m, 0') vanate Theﬁ from (7.5.13) the
moment generating functlon Mx(t) is given by
M) ="+ % for all £ ¢ R
Then the corrcsponding characteristic function $«(¢) is given by

TR G S (1.6.16)
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7.8. Illustrative Examples : AR
,Ex. 1. A point P is chosen at random on @ ling segment AB of

length 2. Find the expected values of. (i) AP..PB, (if) | AP-PR|
(i) max {AP, PB}; PRI R DY R
O b B

Fig. Tt ks Sismilit

Let O be the middle point of ABand X be the random variable ‘
denoting the length of OP prefixed with proper sign. "Then X hgs

uniform distribution in (=1, ). 'So if f(x) be the probability

density function of X, then

e
ﬂx)—i—l' if l<x< ’

- '=—4"0, elsewhere.
i) E (4P .PB)=E {I+X)(—X}=E (*-X*)

I..“

L ) PR
"= ’_ 2 s 5%
S @xt). gy

i -y (o) =2

) E(| AP-PB|)=E(|1+X~1+X |)=E(|2¥ D)

SRR i s v 7 LR A
i -S-; I 2.x ‘il dx—'S-: !
N e RO |
< s dx:[
Isolx.l dx l Ox
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E [ maXx {AP, PB}]
_E [max {{+X,1-X})

;S‘ max {+x,I—x L gy
- 2!

(L i)

i 1 SO max {J T N

; 55? . t+x, 1—x} dx+i-l~ SO max {I+x,.l—x}"a§.
Now, max d+x, I-x}=14+x if x >0 &
gnd max fl4x, l=x}=1-x if < 0.

so, E [ max {{+X, I-X}]

—IS° 1-x) de+ L (g
=3 ), (=) x+TS (I+x) dx

=51 +3 )+21(’2+1:) 0

El 2. Find E(X ) for the following denszty funcnan

f(x) . when 0<x<1
=2 (3—x)  when 1 <x<2
o, elsewhere. [ C. H. (Econ)'91]
=S * ) dx | | Sy
i e
o) et

=4 142 02 -P=1 T
Ex. 3. 1 f the prababilzty density funcnon of a random variable

X'is given by f(x)=C e (z2+23+3) o L x < %, find the value
of C, the: expectation and variance of the distribution.

s S g [ C. H. (Math) ’89]
WC;havg C‘Sm e"(x’+2m+3) dxi= 1

o, C g gﬂ(ﬁl)’ e-? dx=1

: (o = z ‘ T i
or, Ce—ﬂs e P dz=1, (xH1=2)
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E(Xz)_._v (9‘\/"-—0-*- Vi)=3

Sog Var (X)=E(x N —{EX)}2
§-(-1)2=},
Ex. 4. If a person gaing or loses an amount equal to the number*
appearing when . a balanced Jie Is rolled once according to whether

the number is even or odd how much money can he expect from the
game in the long run ? - [ C. H. (Econ.) ’92] |

Let X be the random variable denoting the amount of gain or
loss as mentioned in the problem Then the 3pectrum of X 1s '
_{-12 34-56} i
Here P(X--—i) 1 for i= 2 4, 6and
P(X= —1)—1 for i=-=1 3,
Thc required expectatlon 1s FEX :
E@)=(-142-3+4-546 =5

Ex. 5. If a person gets Rs. (2x+5) wherf' x denates the number ‘
appearing when a balanced die is. rolled once, ,then how much money

can be expected in the long run per game ? i gt C H. (Econ.) ’89]
If X be the random varrable denotmg the number appearmg on

the die, then | i g LT

P(X= x)=—l"for x= 1 "2,,,_3,-4;"5.'?,_'6.._ i

The required expcctatlon is
Z‘ 2x+5) L= iy 2(1+2+3+4+5+6 )+30 L0

So,the person can expcct Rs 12 per game in the. long run;

Ex. 6. Find the expectation of the rmmber of” failures preceding
the first success in an mﬁmte sequence of Bermm!lz trials with
Probability of success p- o |

Let X be the random variable denotlng the number of farlures"“\ *
Preceding the first success. Thcn the spectrum of X is the enumcra—
bl ‘ . WAUAG"

e_sel 1,001, 2,800, 05k i
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" Nows P(X=i)=(1-p)'p for i=0,1,2..
| ®

Then, E(X)":Z 1’“"‘?)‘1"""1’2 {(1=p)i,
<

$ =0

Now Z £( —p)‘

—Hl“'p)+2 (l-p) +3 (1 -—p)3 }
—(l=p) {142 (1=p)+3 (1=p)*+ e}

We know that the infinite *“scri,cs 14 2x+43x% 4453 1

convergent and its sum is‘(i —x)"2if [x] <.
Now, 0< 1-p <LI. Hencea l+2 (1 —p)+3 (1-p)2
absolutely convergent and 1ts sum 1s i 1= (1 = p } 3,
So, E(X)=p(1-p){ 1+2 4t -p)+3(l —p)’ - }
=p 1 —p){ Lo @pytl o
_p(-p_1-p
- p“ AP BT P |
Ex. 7. Atarget Is. fired ot ad bt 10 imes." If ‘the shors are
fired independently 'and if the’ probabzlzty of a htt in each shot is p,
Jind the expectation of sheIl consumption. '

Let X; be'the random vanable denotmg thc number of shells
fired after the (i — 1)th’hit to make the 7th h1t fori=1, 2, 10.

Then (X;=r) denotes the event ( r = 1)failures before the rth
shell hits the target’, where r is a posmve mtegcr

Now, P(X;=r)=(1—p)™'p and the spectrum of X is the set
of all positive integers. Then

Ew)=> ra-prip
K r=1 R AR

=p {14+2(1—p)+3(1-p2+~}
i =p 1N —p)}‘”,smcL:0<1—P<1'

Lp b

Tnt
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. p o
rhius We see (X;) - and this is true for every 4, vHCnce,
| e ulred .expectation of shell consumption is

T X X )

=EX,)+E(X;)+ - *+E(X

10) - (see chapter VIIT)
=10 E(x,)=10 ‘
)

(1t will be proved in the next chaptcr that
if E(XI): E(Xﬁ)s ( n) exlSt then

EX,+Xq+- +X..) E(X1)+E(X,)+ +E(Xu)]

Ex. 8. Ift is a positive real number and the prababihty ma;ss '
function of a discrete random variable X is given by

fx)=e* (1-e~t)=1 for x=1,23 .
=0,  elsewhere,

then find the mean and vanancc of X .
[« -}

0= > ¢t (e )’.',I‘._‘x

z=1
C oo

LA ey
W E
'-*{1+2(1—e-t)+3 (l—e *)2
=et {1-(1—et)}-2

: smcehere 0< l—e ¢ <1
=¢t o8t = ! J ‘

=et, i
So the required mean is et
Again, E { X(x - 1)}

=Z (x 1) e" (1—9 ‘)”‘ 1 |
='e“2 . (x;l) ! —e"‘)""l

,_,e"t { 2 1. (1—;e't)+3 2 ( ‘_e t)2+43 (l —e~1)3 4. 3]
wher (l—e t){12+32(1 e‘t)+34( l "t)2 }’
“nye the mfmlte series within the second bracket is absolutcly
Sent fO[ all t> 0.
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Nowwcknowthat. °f|"|<l AR |
(1— x)-1=l+x+x2 +'x e (781)
The right hand side of (7.8.1) bcmg a power series in x, we cay
differentiate both sides of (7.8.1).any number of times for | x | < L

Differentiating twice with: respcct to. x. both sides of (7, A1)

we get
(1___.__2 ¥ =2.1+3.2. x+43. 2 o
Now, 0 < 1-—e7f < 1, since we have'? > 0.
So, 12+230 e‘}+34(1-y¢p ...... |
2 A ,
T 2 e
Hence,we gct E [ X(X 1)]—e“ (1-—e ty 2e3‘
{ Al "“‘_..2eat(1 e~ z) ‘
So the requu‘ed vanance is E [X(X 1)]—-m(m 1)
_.282t (l—e t)_.et (et__l) [. Rl E(X) ]
=e2t—gbt. ‘ ‘

Ex.9. A special dxe wzth n+1 faces zs marked in its faces the
numbers 0, L, z,, "—_—1 The dle is unbfased Let X be
_ (R (B AN (e Tb_

the random vanable denotmg the number on the uppprmost face.
Find (a)E X), (b) Var (X) and (c) coe ﬁc:ent of skewness of th
distribution of XL

. Here P( —ﬂ) ‘ 1'1 fbr.i=0,1’2,._..,...,,_

CE(X)= D) ——-~1==-—-——(1+2+ +m)=4.

Ll 1
ey Z T4

| ol e n(n+1)2n+
Tatn+1);
2n+'1 13 n+2

i Y ™, ¢
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© Coefficient of skewness is given by

© Now, #s=E {(X-$)°}
=E(X’)—3E(X’)+-“|E(X)_—g

( ) 2n+l+n %

n+l

1 {n(n+1)} _2n+1
n3(n+1) 2 “an

_n+1 2n+1
4n 4n .

+1

+ 1

et

T 2nldmg AR
Hence, y1—0 P
Ex. 10. Find the mean, vanance and the coefﬁczent of skewness
of the cantmuous dzstrzbunon wnh probabzlzty denszty functzon

given by o o
flx)= 1-—|1 x[,0<x<2 feio 16
=0 gl el.sewhere

If-X be'the corresponding ran_d‘om\-.v‘anable, then the mean is
E(X)=§ 1-|1-x]| )x dx

1-11-x])xdx+ § (A REE ADRA T

I
O ey b o

:q.-s OtmmryH Oy

+
»‘-N
|—n

{ 1- (1 i X)} x dx +g {_1 b (x —1)} x ‘?x’[ I

b -1,“. i

a A b 0T o4 ..‘”j“‘r.-"; ! i 4 AN
‘ P it o AR 5 ! A
=\ dx+--§ (2x=x?) ds 0] s e
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AT
V ‘ h
/
[ i

2
|
i
BE
,._i x"(l 1+x)dx+§ x’(l x+1) dx
|

x3 dx+§ (2x’—x3)[dx Y.

R

=i+}§_1_5’='%. - 1

So,var (X)=E(X3) - {E(X)}’ %_1=%,

63 =E{X -1)3}
=E(X?)~ 3E(X9)+3E(X)-h1
=E(X®)-3.3+3-1

=E(X3)-%+4+2 ‘
-] wren ""4 <241 deog

1.

.-_-I x4 dx+§ (2x’--x4)' dx—3

=3+§=-H—3=
'So,coefficient of skewness is
% 3 Lo -ff} =0.

s gt L4 2 e . i
: 1 _‘7,;,"-7_;,- i'_‘.A;._--"‘_.;a it gl e ('Y
2o S S TR R T U e i Lt A
RRRE 2 TS SUF U SN ), SR

x* (1- |1 x|)dx+§ % (1= | 1-x|),
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