Magnetic Circuits

XY nTrRODUCTION

Two circuits are said to be coupled circuits when energy transfer takes place from one circuit to the other
without having any electrical connection between them. Such coupled circuits are frequently used in network
analysis and synthesis. Common examples of coupled circuits are transformer, gyrator, etc. In this chapter, we
will discuss self and mutual inductance, magnetically coupled circuits, dot conventions and tuned circuits.

XY seir-iNDucTANCE

Consider a coil of N turns carrying a current i as shown in Fig. 4.1. 7000
When current flows through the coil, a flux ¢is produced in the coil. i
The flux produced by the coil links with the coil itself. If the current @

flowing through the coil changes, the flux linking the coil also changes.
Hence, an emf'is induced in the coil. This is known as self-induced emf.

The direction of this emf is given by Lenz’s law. Fig. 4.1 Coil carrying current
We know that
9o i
£ = k, a constant
i
o=ki
Hence, rate of change of flux = k X rate of change of current
d_ di
dt dt
According to Faraday’s laws of electromagnetic induction, a self-induced emf can be expressed as
v N _y0di__di
dt dt idt dt

where L= M and is called coefficient of self-inductance.
i

The property of a coil that opposes any change in the current flowing through it is called self-inductance or
inductance of the coil. If the current in the coil is increasing, the self-induced emf'is set up in such a direction so
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as to oppose the rise in current, i.e., the direction of self-induced emf is opposite to that of the applied voltage.
Similarly, if the current in the coil is decreasing, the self-induced emf will be in the same direction as the applied
voltage. Self-inductance does not prevent the current from changing, it serves only to delay the change.

EEY| muTtuALINDUCTANCE

If the flux produced by one coil links with the other coil, placed closed to the first coil, an emf is induced in
the second coil due to change in the flux produced by the first coil. This is known as mutually induced emf.

Consider two coils 1 and 2 placed adjacent to each other as shown in Fig. 4.2. Let Coil 1 has N, turns while
Coil 2 has N, turns.

. Mutual flux
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Fig. 4.2 Two adjacent coils

If a current 7, flows in Coil 1, flux is produced and a part of this flux links Coil 2. The emf induced in Coil 2
is called mutually induced emf.

We know that
¢z o<y
@ =k, a constant
h
o =ki
Hence, rate of change of flux = & X rate of change of current 7,
dgr _ di
dt dt

According to Faraday’s law of electromagnetic induction, the induced emf is expressed as

1% =—N2%=—N2 ]C@Z—]\fzﬂﬁ=—1\4ﬁ
dt dt i dt dt

Ny ¢,
i

where M = and is called coefficient of mutual inductance.

XN COEFFICIENT OF COUPLING (k)

The coefficient of coupling (k) between coils is defined as fraction of magnetic flux produced by the current
in one coil that links the other.

Consider two coils having number of turns N, and N, respectively. When a current 7, is flowing in Coil 1
and is changing, an emf is induced in Coil 2.

M=N2.¢2

]
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Let k1=¢72
o}
=k ¢
M=N2 .kl¢l

]

If the current i, is flowing in Coil 2 and is changing, an emf is induced in Coil 1,

M= N1. o
I
Let k2 = ﬁ
)
o=k ¢,
M= N /.Cz $2
5}
Multiplying Eqs (4.1) and (4.2),
M2 = kik, XMXM = k2L1L2
I I
M =k\LiL,

where k= \kk;

XN NDUCTANCES IN SERIES

1. Cumulative Coupling Figure 4.3 shows two coils 1 and 2 connected
in series, so that currents through the two coils are in the same direction in
order to produce flux in the same direction. Such a connection of two coils
is known as cumulative coupling.

Let L, = coefficient of self-inductance of Coil 1

L, = coefficient of self-inductance of Coil 2
M = coefficient of mutual inductance
If the current in the coil increases by di amperes in df seconds then

Self-induced emf'in Coil 1 = -1, %

Self-induced emf'in Coil 2 = -1, %
Mutually induced emf in Coil 1 due to change of current in Coil 2 = — %
di

Mutually induced emf in Coil 2 due to change of current in Coil 1 =-M P

Total induced emf v=—(L+1L, +2M )%

(@41

..(4.2)

Coil 1 Coil 2

AR

i

Fig. 4.3 Cumulative
coupling

..(43)
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If L is the equivalent inductance then total induced emf in that single coil would have been

di
v=—L— ...(44
i “44)
Equating Eqs (4.3) and (4.4),

L=L+L,+2M

2. Differential Coupling Figure 4.4 shows the coils connected in series Coil1  Coil 2
but the direction of current in Coil 2 is now opposite to that in 1. Such a , m @L
connection of two coils is known as differential coupling. ,

Hence, total induced emf'in coils 1 and 2.

Fig. 4.4 Differential

. . . . coupling

v= —Ll ﬂ—ng'f' 2Mﬂ=—(L1 +L2 —ZM)ﬂ
dt dt dt dt

Coils 1 and 2 connected in series can be considered as a single coil with equivalent inductance L. The
induced emf in the equivalent single coil with same rate of change of current is given by,
di
v=—L—
dt

di di
S RV e
7 (Li+ Ly )dt

L=L1 +L2 —2M

X3 \NDUCTANCES IN PARALLEL

1. Cumulative Coupling Figure 4.5 shows two coils 1 and 2 connected in parallel such that fluxes
produced by the coils act in the same direction. Such a connection of two coils is known as cumulative
coupling.

Let L, = coefficient of self-inductance of Coil 1 ,i‘ At

L, = coefficient of self-inductance of Coil 2

M = coefficient of mutual inductance /

If the current in the coils changes by di amperes in df seconds then

Self-induced emf in Coil 1 =—-1; % Fig. 4.5 Cumulative coupling
. . . dip
Self-induced emfin Coil 2 = -1, ;

7000
i Coil 2

diy
dt
diy
dr

Mutually induced emf in Coil 1 due to change of current in Coil 2 = -M

Mutually induced emf in Coil 2 due to change of current in Coil 1 =-M

Total induced emfin Coil 1 =—1L, @— M@
dt dt
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. . . di di

Total induced emfin Coil 2 =—1, Ry Y
dt dt

As both the coils are connected in parallel, the emf induced in both the coils must be equal.

L o, 2
dt dt dt dt
diy dip
(LI_M)Ez(Lz_M)E
i _ (LZ _M)diz ..(4.5)
dat \L-M)a
Now, i=i+i
didi di
dt  dt  dt
(i)
L—M)d  di

L2_M+1 @
L-M )t
_(L1+L2—2M)di2

(4.6
L-M Jdt (4.6)

If L is the equivalent inductance of the parallel combination then the induced emf is given by
di

v=—L—

dt
Since induced emf in parallel combination is same as induced emf in any one coil,
PRy
dt dt dt

i1, dv, b

dt L dt dt
—Ll L-M @+M@
| \Li—M)dt dt

=—|L L=M) |2 (4.7)
LM dt

Li+L,-2M dlzzl L L,-M M @
L-m J)d L]\ L-m dt
L{2=M),p
L-M
Li+L,-2M
L-M

h

Substituting Eq. (4.6) in Eq. (4.7),
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Ll -LM+LM-M?
- Li+1,—2M
L -M?

T Li+L,-2M

2. Differential Coupling Figure 4.6 shows two coils 1 and n Coil 1
2 connected in parallel such that fluxes produced by the coils
act in the opposite direction. Such a connection of two coils is

> WW Coil 2
known as differential coupling. !
. . . di i
Self-induced emfin Coil 1 =-1; o
di Fig. 4.6 Differential coupling
Self-induced emfin Coil 2 = —L, 7;

Mutually induced emf in Coil 1 due to change of current in Coil 2 = M diy

Mutually induced emf in Coil 2 due to change of current in Coil 1 = M %

Total induced emfin Coil 1 =—1; di +M i
dt dt

Total induced emfin Coil 2 = -1, d£+ M@
dt dt

As both the coils are connected in parallel, the emf induced in the coils must be equal.
_L1@+M@=_L2@+M@
dt dt dt dt
Ly g g
dt dt dt dt

diy dip
L+ M) =L, + )2
(L )dt (L, )a’t

dl’]_(Lz'FM)dl'z

= .(4.8)
dt Li+M) dt
Now, i=q+p
di_di i
dt dt dt
(Lot M \di di
Li+M ) dt dt
_ L +M+1 @
L+M dt

_ Li+L,+2M d& (49)
L+M dt N
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If L is the equivalent inductance of the parallel combination then the induced emf is given by

di
v=—-L—
dt
Since induced emf in parallel combination is same as induced emf in any one coil,
di di di
Lo g9

—=L—-

dt dt dt

di _1(, dii_\di

dt L dt dt

M (M d_ di
L "\ L+M)dt dt

o Mgy |9 .(4.10)
L L+M dt

==

Substituting Eq. (4.9) in Eq. (4.10),
Li+ L, +2M \di, 1 [ L+ M dip

S ==L -M ==

L+M dt L L Li+M dt

L L+M -M

_ Li+M

T L+L+2M
L+M

LI, +LM-LM-M’
Li+L,+2M

L, -M?

Li+L,+2M

” SETI XN The combined inductance of two coils connected in series is 0.6 H or 0.1 H depend-
ing on relative directions of currents in the two coils. If one of the coils has a self-inductance of 0.2 H, find
(a) mutual inductance, and (b) coefficient of coupling.

Solution L;=02H, Ly =0.1H, L,,=0.6H

(a) Mutual inductance

Lom=L+L,+2M =0.6 ..(1)
Lyigr = Ly + L, =2M = 0.1 ..(i1)
Adding Egs (i) and (ii),
2(L1 +L2) = 07
L+, = 0.35

L, =035-02=0.15H
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Subtracting Egs (ii) from Egs (i),

(b) Coefficient of coupling

4M =0.5
M=0.125H
M 12
x 0.125

S JnL, No2x01s

” SETI XM Two coils with a coefficient of coupling of 0.6 between them are connected in series so

as to magnetise in (a) same direction, and (b) opposite direction. The total inductance in the same direction

is 1.5 H and in the opposite direction is 0.5 H. Find the self-inductance of the coils.
k=0.6, Ly =05H, Ly,=15H

Solution

Subtracting Eq. (i) from Eq. (ii),

Adding Eq. (i) and (ii),

Solving Egs (iii) and (iv),

Lgigs =L +L, —2M =0.5
Lem=Li+1, +2M =1.5

4M =1
M=025H
2(L1 +L2) =2
L+, =1
k= M
VLI,
0.6 = 0.25
NI
LiL, =0.1736
L =022H
I,=078H

()
...(ii)

...(iii)

(V)

” SETI NN  Two coils having self-inductances of 4 mH and 7 mH respectively are connected in

parallel. If the mutual inductance between them is 5 mH, find the equivalent inductance.

Li=4mH, L,=7mH, M=5mH

Solution
For cumulative coupling,

For differential coupling,

T L+l t2M  4+74205)

LL-M*  4x7-(57 _

TL+L—2M  4+7-2(5)

LL,-M* _ 4x7-(5)

=0.143 mH
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” Two inductors are connected in parallel. Their equivalent inductance when the
mutual inductance aids the self-inductance is 6 mH and it is 2 mH when the mutual inductance opposes
the self-inductance. If the ratio of the self- inductances is 1:3 and the mutual inductance between the coils
is 4 mH, find the self-inductances.

Solution
L
Lcum =6 mH, Ldiff =2 mH, ?= 13, M =4 mH
2
For cumulative coupling,
Ll - M?
Li+L,-2M
_ LL-4)
Ll + L2 - 2(4)
_ LiL,-16
Li+1L,-8
For differential coupling,
_ LL,-M?
Li+L,+2M
5Ll -)’
Li+L,+8
LL,-16
2= (i)
Li+1L,+8
From Egs (i) and (ii),
2(L1 +1L, +8) = 6(L1 +1, —8)
Li+ L, +8=3L+3L, -24

L+1, =16
But 1%=1.3
13L,+1L, =16
231, =16

L, =6.95 mH

L =131, =9.035mH

XA oot convenTiON

Consider two coils of inductances L, and L, respectively connected in series as shown in Fig. 4.7. Each
coil will contribute the same mutual flux (since it is in a series connection, the same current flows through
L, and L,) and hence, same mutual inductance (M). If the mutual fluxes of the two coils aid each other as



4.10 Circuit Theory and Networks—Analysis and Synthesis

shown in Fig 4.7 (a), the inductances of each coil will be increased by M, i.e., the inductance of coils will
become (L, + M) and (L, + M). If the mutual fluxes oppose each other as shown in Fig. 4.7 (b), inductance
of the coils will become (L, — M) and (L, — M). Whether the two mutual fluxes aid to each other or oppose
will depend upon the manner in which coils are wound. The method described above is very inconvenient
because we have to include the pictures of the coils in the circuit. There is another simple method of
defining the directions of currents in the coils. This is known as dot convention.

L, L, Ly Ly

Fig. 4.7 Dot convention

Figure 4.7 shows the schematic connection of the two coils. It is not possible to state from Fig. 4.7(a) and
Fig. 4.7(b) whether the mutual fluxes are additive or in opposition. However dot convention removes this
confusion.

If the current enters from both the dotted ends of Coil 1 and Coil 2, the mutual fluxes of the two coils aid
each other as shown in Fig. 4.7(c). If the current enters from the dotted end of Coil 1 and leaves from the
dotted end of Coil 2, the mutual fluxes of the two coils oppose each other as shown in Fig. 4.7(d).

When two mutual fluxes aid each other, the mutual inductance is positive and polarity of the mutually
induced emf is same as that of the self-induced emf. When two mutual fluxes oppose each other, the
mutual inductance is negative and polarity of the mutually induced emf is opposite to that of the self-
induced emf.

” SETI NN Obtain the dotted equivalent circuit for Fig. 4.8 shown below.

R
—
o ) :
v(t) (~0 C
o 0 [ 7
c/j Ly
Fig. 4.8

Solution The current in the two coils is shown in Fig. 4.9. The corresponding flux due to current in each
coil is also drawn with the help of right-hand thumb rule.
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4.7 Dot Convention 4.11

-

Fig. 4.9

From Fig. 4.9, it is seen that, the flux ¢, is in upward direction in
Coil 1, and flux ¢, is in downward direction in Coil 2. Hence, fluxes
are opposing each other. The mutual inductances are negative and
mutually induced emfs have opposite polarities as that of self-induced
emf. The dots are placed in two coils to illustrate these conditions.
Hence, current i(f) enters from the dotted end in Coil 1 and leaves
from the dotted end in Coil 2.
The dotted equivalent circuit is shown in Fig. 4.10.

Ly
.

0 3

Ly

Fig. 4.10

” SETNNN  Obtain the dotted equivalent circuit for the circuit of Fig. 4.11.

j4Q
j2 Q j3 Q
VRN AT

faWal JaWaWia N N N

[

LTI

j3 Q j5 Q j6 Q
Fig. 4.11

Solution  The current in the three coils is shown in Fig. 4.12.
The corresponding flux due to current in each coil is also
drawn with the help of right-hand thumb rule.

From Fig. 4.12, it is seen that the flux is towards the left
in Coil 1, towards the right in Coil 2 and towards the left in !

?4

j4 Q

j2Q j3 Q

Coil 3. Hence, fluxes ¢, and ¢, oppose each other in coils j3 Q j5Q j6 Q
1 and 2, fluxes ¢, and ¢, oppose each other in coils 2 and .

3, and fluxes ¢, and ¢, aid each other in coils 1 and 3. The Fig. 4.12

dots are placed in three coils to illustrate these conditions.

Hence, current enters from the dotted end in Coil 1, leaves j4Q

from the dotted end in Coil 2 and enters from the dotted end
in Coil 3.
The dotted equivalent circuit is shown in Fig. 4.13.

. J ;
3 Q i5 Q j6 Q
NGV g Sk

Fig. 4.13
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” SETNXNE  Obtain the dotted equivalent circuit for the circuit shown in Fig. 4.14.

j5Q g

j3Q

Fig. 4.14

Solution The current in the three coils is shown in
Fig. 4.15. The corresponding flux due to current in each coil

is also drawn with the help of right-h
From Fig. 4.15, it is seen that all the

and thumb rule.
three fluxes ¢,, ¢,, ¢,

aid each other. Hence, all the mutual reactances are positive

and mutually induced emfs have same polarities as that of

self-induced emfs. The dots are placed in three coils to
illustrate these conditions. Hence, currents enter from the

dotted end in each of the three coils.
circuit is shown in Fig. 4.16.

The dotted equivalent

6 Q

j4Q il

j3Q

i

Q

J5 Qi j2Q o j3Q
A ./m\ ./m\ ./m\ B

Fig. 4.16

” SETNNRN  Obtain the dotted equivalent circuit for the coupled circuit of Fig. 4.17.

——-j8 Q

q D
Bad | YK
4| -

100
(~)

+ —
50£0°V

Fig. 4.17

Solution  The current in the two coils is shown in Fig. 4.18 . The corresponding flux due to current in each
coil is also drawn with the help of right-hand thumb rule.
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> <~
i .
j5 Q ci j> j3Q
<\):"‘> /:r* i
——-j8Q
10Q
(~3)
o)
50£0°V
Fig. 4.18 ]
j5 Q 100 jBQ 18Q
. o P . L [ )
From Fig. 4.18, it is seen that the flux ¢, is in clockwise 7000 Jo— |
direction in Coil 1 and in anti-clockwise direction in Coil 2. \_/
Hence, fluxes are opposing each other. The dots are placed Mz
in two coils to illustrate these conditions. Hence, current ~
enters from the dotted end in Coil 1 and leaves from the A\
dotted end in Coil 2. The dotted equivalent circuit is shown 50 0°V
in Fig. 4.19.
Fig. 4.19

” SETNNRN  Find the equivalent inductance of the network shown in Fig. 4.20.
1H

0.5H 1H
i 1TH 4~ 2H 4 X 5H

> ST — T — 2O

Fig. 4.20
Solution
L=(L+Mp+Mp)+(Ly+ My + My)+(Ls + My + M)
=(1+05+D)+2+1+0.5)+(5+1+1)
=13H
” SETNXMON  Find the equivalent inductance of the network shown in Fig. 4.21.
1H
2H 1H
P 10H N 5H &% 6H N
—>——00 2000 000
Fig. 4.21
Solution

L=(L+Mpp—Mp3)+(Ly— M+ My)+(Lz— Mz — M»3)
=10+2-1)+(5-14+2)+(6-1-1)=21H
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” SETN RSN  Find the equivalent inductance of the network shown in Fig. 4.22.
k3=0.65

k=033 k=037
i o 12H# X 14H & X 14H
——000 SIDR ALDR

Fig. 4.22
Solution
M12 = M21 = kI\[Lll/z =0.33 (12)(14) =428 H
M23 = M32 = kz\llqlg =0.37 (14)(14) =5.18H
M3 = M3 = ks 3L =0.65\/(12)(14) =8.42 H
L=(L—Mp+Mp3)+(Ly — My — My) +(Ls + M3 — M3y)
=(12-428+842)+(14-5.18-4.28)+ (14+8.42—-5.18)
=3792H
” SETNXRYN  Find the equivalent inductance of the network shown in Fig. 4.23.
© 8H
o ¥ 2\
% 15H % 16 H
[ ]
O
A B
Fig. 4.23

Solution For Coil 4,
LA =L1 —M12 =15-8=7H

For Coil B,
LB=L2—M12=16—8=8H
1 1 1 1 1 15
—_——_—t—=—4—=—
L Ly Lg 7 8 56
L=§=3.73H
15

” SETNXMERN  Find the equivalent inductance of the network shown in Fig. 4.24.
10H

35H

000
&
T
000
S
I
o200
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Solution For Coil 4,
Ly=L+M;, —M;;=25+10—-10=25H
For Coil B,
Lg=Ly—My+ My =35-15+10=25H
For Coil C,
LC=L3—M32—M31=35—15—10=10H
1 1 1 1 1 1 1 9
—=—t—t—=—+—4+—=—
L L, Ly Le 25 2510 50

L=%=5.55H

” SETNXMEN  Find the equivalent impedance across the terminals A and B in Fig. 4.25.

4.15

5Q
Ao
2Q 3Q
g 20 .
R
ja4Q B Q
Bo
Fig. 4.25
Solution 2, =5Q, Z,=2+j4)Q, Z;=03+,3)Q, Zy =,2Q
72 . A\ 2
z=7,+ 225ty _ 5 CHNCEI-UD o9 4160
Zy+75-27, 2+ j4+3+j3-2(,2)
E¥3| courLep circuITs
Consider two coils located physically close to one another as shown i p
in Fig. 4.26. o M ~< o
. . . . . . + YV=ND +
When current i, flows in the first coil and i, = 0 in the second coil,
flux @, is produced in the coil. A fraction of this flux also links the Vi Ly Ly v

second coil and induces a voltage in this coil. The voltage v, induced
in the first coil is

ol

diy
=L — Fig. 4.26 Coupled circuit
dtl, o
The voltage v, induced in the second coil is
V) = ]\4ﬂ
dtl, -
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The polarity of the voltage induced in the second coil depends on the way the coils are wound and it is usually
indicated by dots. The dots signify that the induced voltages in the two coils (due to single current) have the
same polarities at the dotted ends of the coils. Thus, due to i, the induced voltage v, must be positive at the
dotted end of Coil 1. The voltage v, is also positive at the dotted end in Coil 2.

The same reasoning applies if a current i, flows in Coil 2 and i, = 0 in Coil 1. The induced voltages v, and
v, are

1% =L2@
dtl; _o

di

and V| -m2
dt |~

The polarities of v, and v, follow the dot convention. The voltage polarity is positive at the doted end of
inductor L, when the current direction for i, is as shown in Fig. 4.26. Therefore, the voltage induced in Coil 1
must be positive at the dotted end also.

Now if both currents i, and i, are present, by using superposition principle, we can write

. VL
dt dt
d11 diz

=M, 2

? de Cdt

i A

O —~< O
+ +
Ly Ly
2 Vo
Mdi, Mdi
dt dt
o o

Fig. 4.27 Equivalent circuit

Now consider the case when the dots are placed at the opposite ends in the two coils, as shown in Fig. 4.28.

+ 0O
[ )
+ O

° —
O

ol

Fig. 4.28 Coupled circuit

Due to i), with i, = 0, the dotted end in Coil 1 is positive, so the induced voltage in Coil 2 is positive at the
dot, which is the reverse of the designated polarity for v,. Similarly, due to i,, with i, = 0, the dotted ends have
negative polarities for the induced voltages. The mutually induced voltages in both cases have polarities that
are the reverse of terminal voltages and the equations are
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=1 9y
dt dt
\%) =—Mﬂ+L2@
dt dt

O > ~€ O
+ +
Ly L,

v Vo
Mdi, Mdi
dr dt
o )

Fig. 4.29 Equivalent circuit

The various cases are summarised in the table shown in Fig. 4.30.

4.17

Coupled circuit Time-domain equivalent circuit Frequency-domain equivalent
circuit
q I h b
O —€ O O > —€ O
M
+ + + +
L e N joly joly
Vi Ly L V2 2 Vo
joMi, joMi,
o o o o
i A Iy i
O —€ O O > ~< O
M
+ + + +
£ joo jeolp
Vi Ly Ly V2 vq Vo
joMi, joMi,
o e hd o I o
iy ip i Iy Ip
o - o) < o o> -0
M
+ b + 4 + +
A Ly Jooly joly
2 L1 L2 Vo . Vo 1Z] V2
Maiy joMiy joMi,

_ o _ dt _ _ -
O O O O O
Iq i2 ig Iy i2
O O O O

Iy, < > <
+ ° + + +
Lo Jooly joly
72 Ly Ly Vs voow v
joMi, joMi,
o ° o o o o

Fig. 4.30 Coupled circuits for various cases
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” Example 4.15 Write mesh equations for the network shown in Fig. 4.31.

Fig. 4.31

Solution Coil 1 is magnetically coupled to Coil 2. Similarly, Coil 2 is magnetically coupled with Coil 1
and Coil 3. By applying dot convention, the equivalent circuit is drawn with the dependent sources.

The equivalent circuit in terms of dependent sources is shown in Fig. 4.32.

(a)

(b)

(©

d . . d . .
R, Ly M1za(l1fl2) Ly Mzsa(ﬁ—’z)

Fig. 4.32

In Coil 1, there is a mutually induced emf due to current (i, — 7,) in Coil 2. The polarity of the mutually
induced emf is same as that of self-induced emf because currents 7, and (i, — i,) enter in respective coils
from the dotted ends.

In Coil 2, there are two mutually induced emfs, one due to current i, in Coil 1 and the other due to current
i, in Coil 3. The polarity of the mutually induced emf in Coil 2 due to the current 7, is same as that of the
self-induced emf because currents i, and (i, — 7,) enter in respective coils from dotted ends. The polarity
of the mutually induced emf in Coil 2 due to the current i, is opposite to that of the self-induced emf
because current (i, — 7,) leaves from the dotted end in Coil 2 and the current i, enters from the dotted end
in Coil 3.

In Coil 3, there is a mutually induced emf due to the current (i, — 7,) in Coil 2. The polarity of the
mutually induced emf is opposite to that of self-induced emf because the current (i, —i,) leaves from the
dotted end in Coil 2 and the current 7, enters from the dotted end in Coil 3.

Applying KVL to Mesh 1,

, di d . . . d, .. diy
O—Riis— L2 My L —in) = Ro(is —2) — Lo (i —in) + Moy 22— My, P = 0
vi(t) =R gy " 12 dt(ll i) = Ry(iy —i2) Zdt(ll i)+ Mo i 2
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. di . di .
(Ri+R)i+ (L +Ijz+2M12)d7]—R212—(L2+M12+M23)7t2="1(t) ...
Applying KVL to Mesh 2,
Mpy—-My——L— (b —ij)—Ry(i =) L3 —+Myy— (G —i) - R, =0
2 » 2dt(2 D—Ra(ix —i1)— L3 7 23dt(1 2)— R
—R2 il—(L2+M12+M23)%+(R2+R3)l.2+(L2+L3+2M23)%=0 (11)

” Example 4.16 Write KVL equations for the circuit shown in Fig. 4.33.

Fig. 4.33

Solution The equivalent circuit in terms of dependent sources is shown in Fig. 4.34.

R

R, ;) c

R —
DR
+ I N
t ~))ve
M Mdi, M, i:) <>—
ot dt
Fig. 4.34

Applying KVL to Mesh 1,

. di di,
H-Rijg-Li—-M—=0
() 14 ldt di
. di dip .
Rig+Li—+M—7=wv(t ...
Vit L & 1(1) (1

Applying KVL to Mesh 2,

di diy A B B
ME—Lzz—Rﬂlz—13)—E£(12—l3)dt—vz(f)—0
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di di 1
M L2 Ry —i)—— (i —i3) dt = vy (¢
b =Ryl =) C{(’z i3) dt = vy(t)

Applying KVL to Mesh 3,

R o
—Ryis —*_[(ls —i)dt —Ry(i3—iy)=0
o

” Example 4.17 Write down the mesh equations for the network shown in Fig. 4.35.

=

=<
I@+

N e
]

Fig. 4.35

Solution The equivalent circuit in terms of dependent sources is shown in Fig. 4.36.

=

Applying KVL to Mesh 1,

Vi—-Z, - joLl, - joMl, -Z,(1, -1,) =0
(Zi + joLi+Zy) 1) —(Zy - joM) 1, =V,

Applying KVL to Mesh 2,

~Z,(I, =)+ joMY, — joL,1, =Z;1, =0
_(Z2 —](DM) 11 +(Z2 +jCL)L2 +ZL)12 =0

..(ii)

... (iii)

0

(i)
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” Example 4.18 Write mesh equations for the network shown in Fig. 4.37.

& D 3 O3DE
T

Fig. 4.37
Solution  The equivalent circuit in terms of dependent sources is shown in Fig. 4.38.

R

(-
= Ly S Ly S Ly
(-, (- (-

N
a . . a . . d i
Vi @ 0 Miz (i~ i) 0 My (i = o) é My = (i = )
Iy I . Iy d

Fig. 4.38

Applying KVL to Mesh 1,
. d . . d, . . diz
v(i)— Ry —Li— (G =) =My, — (i —i3)+ M3 — =0
() 1 ldt(] 2) 12 dt(2 3) By
d d diz
Rii+L— (G =)+ My—Gh—)— Mz —=v(t
i ldt(ll i)+ M, dt(lz 3)— My 7 v(?)

Applying KVL to Mesh 2,

dis d, . . d, . . d, .. d, .. dis
“Mpyy—+Mp—(h—b)—Li—(h—i)— Ly —(h —i3) =My — (i =i ) =My —=0

13 12 dt(z 3) ldl(2 1) 2d1(2 3)— M)y, dt(l ) — Mo 2
Mis B My Ly —i) A LS — i)+ Lo S — i)+ Moy (i — i)+ My 22 =0

13, 12 dt(z 3) ldt(z 1) zdt(z 3)+ M) dt(l 2)+ M3 &

Applying KVL to Mesh 3,
di3 d, . . d, . . dis d . . d, .. 1.

My Bt My S =)= Ly S (i —in) — L 24 My S (i — )~ My iy — i) —— [ i3 d = 0

B 21 dt(ll ir) det(l3 b)—1L i 3ldt(ll )= M3, dt(lz i3) ek

diy d . . d . . diy d . . d . . 1.
—Myz—=My— (=) +Ly— (3 —h)+ L3 —— M3 — (i} =)+ M3 —(h —i3)+— |;3dt =0
23 it 21dt(1 2) 2a’t(3 )+ 13 it 31dt(1 2) 32dt(2 3) st

..

)

...(iii)
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” Example 4.19 Write KVL equations for the network shown in Fig. 4.39.

R

TC

Fig. 4.39

Solution The equivalent circuit in terms of dependent sources is shown in Fig. 4.40.

Fig. 4.40
Applying KVL to Loop 1,
. . . dl] d12 dl3
D=RGi+i+i)—L My P2 M, =0
V() - R(i +i +133) 1 e 1B
L di dip dis .
RGy+iy +i3)+ L S My S22 - My &8 = (1
(i +ip +i3) " 127 137 v(?) @)

Applying KVL to Loop 2,
di dis

V() —RGi+i+i5)—Lp %_MME_MBE:O
R(i1+i2+i3)+14%+M21%+M23%=v(t) ---(1i)
Applying KVL to Loop 3,
V(t) = RGi + iy +13) — Ly %+M31%—M32%—éjlg dt=0
R(iy +1, +i3)+L3%—M31%+M32 %+éji3 dt=v(t) --.(iii)
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” SETNXWIN 11 the network shown in Fig. 4.41, find the voltages V,and V,

M=2H
3H 4~ X 5H
® o SR
+ - + -
vy Vo

i=s5e"a (1) () i=10eA

Fig. 4.41

Solution The equivalent circuit in terms of dependent sources is shown in Fig. 4.42.

, dis , dit
3H dt . 5H dt

I3
— T —<% > I 72
+ - + V. -
2

Vi

iy=5etA {) (E)g=1Oe4A

Fig. 4.42

From Fig. 4.42,

B=i+ih=5e"+10e"=15¢"A

v =3@+2%=31(5 eft)+2i(15 e ==15¢"-30e" =-45¢7'V
dt T dt T dt dt

vy = 5@+2ﬁ=51(15 e_t)+2i(5 e)==75¢"-10e”" =-85¢~'V
dt T dt dt dt

” SETNXWEN 11 the network shown in Fig. 4.43, find the voltages V,and V,

M=2H
J2H <N aH
7000 o0
+ - + -
2 vy

iy=10et A f) <£>@=1094A

4.23
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Solution The equivalent circuit in terms of dependent sources is shown in Fig. 4.44.

diy di
2H 2dr i, 4H 2t
-+ 7000 -+
+ v, - + -
i =10et A (f) <£>@=10€4A
Fig. 4.44
From Fig. 4.44,
B=i+ih=10e"+10e"=20e'A
v = 2@—2@ = 21(10 e")—2£(20 e)==20e"+40e” =20e”'A
dt dt dt dt
vy = 4%—2@ = 41(20 e")—2£(10 e')=-80e" +20e =-60e”'A
dt dt dt dt

” SET X WIE  Calculate the current i,(t) in the coupled circuit of Fig. 4.45.

> 0.1H <

30 sint@ 0.2H % E 0.2H
- °

Fig. 4.45

Solution The equivalent circuit in terms of dependent sources is shown in Fig. 4.46.

ix(9) io(f)
0.2 H 0.2H
.
30 sint @
, Ji
- 0.1% 015
dt dt
Fig. 4.46

Applying KVL to Mesh 1,

30sin1—029 10192 ¢
di di



Applying KVL to Mesh 2,

Substituting Eq. (ii) in Eq. (i),

Integrating both the sides,

—02%2 019y
dt dt
diy _,diy
de dt
30 sint—0.2(2dl2)+0.1dlzzo
di di
0392 _30 sin ¢
dt
D100 sin ¢
d

diy =100 sin ¢ dt

t
iy (1) =100 sin ¢ dr
0

= 100[—005 t];
=100 (1—cos ¢)

4.8 Coupled Circuits 4.25

(i)

” Example 4.23 Find the voltage V, in the circuit shown in Fig. 4.47 such that the current in the

left-hand loop (Loop 1) is zero.

2Q )
j2Q

+

520°V @

VN

1
Loop 1

Solution

+
5.£0° V@

Dl

Loop 2

D

+

P

Fig. 4.47

2Q

1Q

l4

jaQ jBQ

j21, 21,

|2/> évz

Fig. 4.48

The equivalent circuit in terms of dependent sources is shown in Fig. 4.48.
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Applying KVL to Loop 1,
50°=-21, —j411 +j212 =0
Q+jHL -2, =5£0°
Applying KVL to Loop 2,
—j2I = j3, -1, -V, =0
-2 =1+ /3) L=V,
Writing Eqgs (i) and (ii) in matrix form,
2+ j4 -j2 IL| [5£0°
-2 —+3)|[L] | V)

By Cramer’s rule,

5£0°  —j2
I = vV, —(1+,3)
T4 -2
—j2 —(1+/3)
ButI =0.
=540+ j3)+j2V,=0
v, = O£ _ 591, 15430y
j2
” SETN W WL Determine the ratio % in the circuit of Fig. 4.49, if I, = 0.
1
8 Q . 2Q
j2 Q
VRN
+ ® ° +
vi(~) 8 § Efm C )V,
b I I, ’
Fig. 4.49

Solution The equivalent circuit in terms of dependent sources is as shown in Fig. 4.50.

8Q 2Q

8Q 2Q

I

j21 21

Fig. 4.50
Applying KVL to Mesh 1,
V=81, - 8L —j2I, =0
@B+ + 21, =V,

..

)

..



Putting I, = 0 in Eq (1),
2L =V
Applying KVL to Mesh 2,
V, -2I, — j21, - j2I; =0
2L +(2+2) I, =V,
Putting I, = 0 in Eq (iii),
2+, =V,

From Eqgs (ii) and (iv),
Vo 2+ _2+,2

4.8 Coupled Circuits 4.27

= =1.412-45°V

Vi J2I, j2

(i)

... (iii)

)

” SEVIWIEW  For the coupled circuit shown in Fig. 4.51, find input impedance at terminals A and B.

o
v, @ §I5Q —-j8Q

4.52.

—-j8Q

—o
B
Fig. 4.51
Solution  The equivalent circuit in terms of dependent sources is shown in Fig.
A 30 j4Q J3-1)
T
j5Q
+
v, @ -
- I J31 1y
—o
B
Fig. 4.52

Applying KVL to Mesh 1,
V=34 — 4L - 3 (L - L)—j5(L -1)—j3 =0
(3+_]15) Il —]8 12 =V1
Applying KVL to Mesh 2,
BL-j50L-1)+81,=0
_]8 I; +_]3 I,=0
8
L=-21=-22671,
j3

.G

..(ii)
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Substituting Eq (ii) in Eq (i),
B+ 15 -8 (2.671)=V,
(B+3636) I =V,

Z = % =(3+/36.36) Q=36.48 £ 8528°Q
1

” SETNNXWINW  Find equivalent impedance of the network shown in Fig. 4.53.

2Q j24
o—AA—TI0
\J ° j6 Q
VRN “Q

AQ BQ

Zeq E—

-5 Q

Fig. 4.53

Solution The equivalent circuit in terms of dependent sources is shown in Fig. 4.54.

AN T —<C 2>

(e .
30
= %mg

+
Vi () é j4h,
) YIRS
|1 5Q I2
é 61, =50

Fig. 4.54

Applying KVL to Mesh 1,

V] —211 —j211+j4(11 —12)—j3 (I] —Iz)+j4 Il —5(11—12)+j612 =0
(T7=-73L-6+5L =V,

...
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Applying KVL to Mesh 2,

—j6I, =5(I, = I}) = jal, — j3(1, = I}) — j4l, + jo(l; = LI, )+ j51, =0
S+ =05+ 1,

12=(5“5)11 (i)
5+ j4
Substituting Eq. (ii) in Eq. (i),

. 5+ /5

(7= 3 - (5+]5)( it Jll—vl
+ j4
2, =N 7_ 5y BEPCHD) 565, a71500
I 5+ j4

” SETNWWIN  Find the voltage across the 5 Qresistor in Fig. 4.55 using mesh analysis.

j5669
159 ;109
wov ) % DE:
—j4 Q I,
Fig. 4.55

Solution The equivalent circuit in terms of dependent sources is shown in Fig. 4.56.

50 j5 66 1, 110 o /5661,
-
50.0°V @ D % /> 50
—/4 Q I
Fig. 4.56

Applying KVL to Mesh 1,
50£0°—-j5L—j5.661,-3—-j4) (I, -1,)=0
B+jDL -(3-j9.66)I, =50 £0° ...(1)
Applying KVL to Mesh 2,

—(3—_]4) (12 —Il)—jlolz —]566 I] —512 =0
-(3-j9.66)I; +(8+j6) I, =0 ...(i1)
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Writing Eqs (i) and (ii) in matrix form,
3+1 -(3-79.66)|[ I, | _[50£0°
—(3-9.66) 8+ 6 L| | o
By Cramer’s rule,
3+j1 50 £0°
—(3-,79.66) 0
3+1 -(3-79.66)
—(3-79.66) 8+ j6
Vso=51,=5(3.82£-112.14°)=19.1 £L -112.14° V

=382/£-112.14° A

” Example CWEN  Find the voltage across the 5 Qresistor in Fig. 4.57 using mesh analysis.

k=0.8
o 28 j5Q & /109

50.£0°V @ /> % /D 50

—j4 Q I
Fig. 4.57
Solution  For a magnetically coupled circuit,
Xy = kX, X,
=0.8,/(5) (10)
=5.66 Q

The equivalent circuit in terms of dependent sources is shown in Fig. 4.58.

s J5661 110 o /5661
-+ -+
50£0°V @ /D % /) 5Q
7/4 Q I
Fig. 4.58

Applying KVL to Mesh 1,

50 £0°= j5T,+j5.66 1, —(3— j4) (L —=1,)=0
G+ -(3+/1.66) 1, =50 £0° )
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Applying KVL to Mesh 2,
—(3—_]4) (12 —Il)—j1012 +]566 I,-51,=0
-3+j1.66)L;+(8+j6)I,=0

Writing Eqs (i) and (ii) in matrix form,
3+j1 -3B+j1.66)|[I; | _[50£0°
—(3+j1.66) 8+j6 I | 0

3471 50 £0°
~(3+,/166) 0
3+1  —(3+,1.66)
~(3+/166) 8+ 6
Vso =51, =5(8.62 £ —24.79°) = 43.1 £—24.79° A

By Cramer’s rule,

I, = =8.62 £-2479° A

” SETNWWLER  Find the current through the capacitor in Fig. 4.59 using mesh analysis.

3Q j4Q
00

+ BQ ° .
50.45° V /D g pQ /D —-BQ
- I I,

1

Fig. 4.59

Solution  The equivalent circuit in terms of dependent sources is shown in Fig. 4.60.

30 jaq 30i-b)

+
50£45°V @

Fig. 4.60

Applying KVL to Mesh 1,

50 £45° =G+ )1 — 3L L) - j5(I =) - 31, =0
(3+715) T, — j 81, =50 £ 45°

4.31

(i)

..
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Applying KVL to Mesh 2,

J3L= /50 1)+ 81, =0
—j8L,—j31, =0 )

Writing Eqgs (i) and (ii) in matrix form,
3+j15 =8| I; | |50 £45°
-8 3|1, | 0

3+715 50 £45°

By Cramer’s rule,

-8 0
I, = - - =3.66 £139.72° A
3+15 -8
-8  —J3

Ic =1, =3.66 £139.72°A

|| SETNTI XN  Find the voltage across the 15 Q resistor in Fig. 4.61 using mesh analysis.

200 A0Q
o 000
: .<_jj5 Q
120.£0° V @ /D 200 /) 150
- Iy I
Fig. 4.61

Solution The equivalent circuit in terms of dependent sources is shown in Fig. 4.62.

200 joQ j5i-l)

. 20Q
120.£0°V @ /D /> 1o
- h Bl k
Fig. 4.62

Applying KVL to Mesh 1,

120 £0°=20 I; — j20(T, - 1,)— j5 1, =0
(20+j20) I, — j 151, =120 £ 0° .G
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Applying KVL to Mesh 2,

JSL—j20(1, 1) 5101, 451 k) 151, 0=
—j151; H15 420)1I, #
Writing Eqgs (i) and (ii) in matrix form,

20+,20 15 |[L]_[120 £0°
—j15  15+20|| 1, | 0

20+ ;720 120 £0°

By Cramer’s rule,

_jl5 0
L=/ " 1 _253,1012°A
20+ ;20 —j15
15 15+j20

Visq =151, =15(2.53 £10.12°)=37.95 £ 10.12°V

” SETIIWIEN  Find the current through the 6 Q2 resistor in Fig. 4.63 using mesh analysis.

40
j2Q
° N
+
12040°v@ /> gﬁﬂ /> %jsg
- I I °
60
Fig. 4.63

Solution The equivalent circuit in terms of dependent sources is shown in Fig. 4.64.

4Q
+ BQ BQ
200£30° V @
- Iy j21 I
2 j2 (1~ 1)
6Q
Fig. 4.64

Applying KVL to Mesh 1,

120 £0°—4 1, - j3(I - 1,)+ 2L, =0
(4+ 3L —j51,=120 £ 0°

4.33

(i)

()
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Applying KVL to Mesh 2,

—j2L—j3(L -1 -8+ ,2(I; -I)-61,=0
—j5L+(6+ /151, =0

4+;3  —j5 [n]_[1202£0°
—j5 6+j15(| 1, | 0

4+j73 120£0°

Writing Eqs (i) and (ii) in matrix form,

By Cramer’s rule,

-j5 0

I, =" =7.68 £2.94°A
4+;3  —j5
-j5 6415

” SET I WY Determine the mesh current I, in the network of Fig. 4.65.

16 Q
7000
40 Iy

,)\15799 -BQ
7 NVN—

+ S 6Q
200£30° V r\) g A
= I I

1 2

Fig. 4.65

Solution The equivalent circuit in terms of dependent sources is shown in Fig. 4.66.

e Bli-k) 100

40 |3,> 7Q BQ

N

AQ
+ 6Q
200.£30° V r\)
- | I

1 J
¢ Y

Fig. 4.66

(i)
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Applying KVL to Mesh 1,
200 £30°—4 (I, - 13) —j4(I, - 1,)+ 513 =0
A+ —j4I,—(4+ )5 13 =200 £30° ...(D)
Applying KVL to Mesh 2,
—j5L—j4L-1)-(7-8) I, -1;)-(6-,4) 1, =0

AL+ (13— j8) I —(T— j13) 15 =0 ...(ii)
Applying KVL to Mesh 3,
—j16 L+ 50 -L)-12-(-j8 (I -1)-4(I;-L)=0
—(44 ST = (1= j13) L, +(23+ j8) I, = 0 .. (i)

Writing Egs. (i), (ii) and (iii) in matrix form,

4+ j4 —j4 -(4+j5 || L 200 £30°
—j4 13-j8 —(7-j13)|| L, |= 0
—(4+j5) —(7-j13) 23+,8 ||Ix 0
By Cramer’s rule,
4+ j4 —j4 200 £ 30°
—j4 13- ;8 0
—(4+j5) —-(7-j13 0
A ) e Gl A 1 =16.28 Z16.87°A
4+ j4 -j4 —(4+/5)

—j4 13—-78 —(7-/13)
—(4+j5) —(7-j13) 23+,8

” SETIWCEN  Obtain the dotted equivalent circuit for the coupled circuit shown in Fig. 4.67 and

find mesh currents. Also find the voltage across the capacitor.

5Q 5Q
] L] j2Q | P

/5 Q4| A A //SQ
(\ |

+ +
1040°V@ E\) 10£90°V

10 Q

Fig. 4.67

Solution The currents in the coils are as shown in Fig. 4.68. The corresponding flux due to current in each
coil is also drawn with the help of right-hand thumb rule.
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59 1 | = 158
4 29 Biy
J5Qdy | T 4:(/ J5 Q
- -1
5 | fr— +
10£0°V @ I I @104 90°V
%—ﬂog
Fig. 4.68

From Fig. 4.68, it is seen that two fluxes ¢, and @, aid each other. Hence, dots are placed at the two coils as
shown in Fig. 4.69.

) 2Q
5Q B  —/5Q 5Q
LIS -2

+ +
10£0°V ——-10Q 10£90°V

_ I 7

I2
Fig. 4.69

The equivalent circuit in terms of dependent sources is shown in Fig. 4.70.

50 j5Q 21

j5Q 2l

10£0°V 10£90° V
Fig. 4.70
Applying KVL to Mesh 1,
10£0°=(5+/5 L —j2L+ 101 +1;)=0
G-j5L -8, =10£0° ..(D)
Applying KVL to Mesh 2,

10+ 1)+ 51,— 2L +51,-10 £90°=0

—j8L+(5—-j51,=10£90° ...(i1)
Writing Eqgs. (i) and (ii) in matrix form,

5-j5 -8 [n]_[10£0°
—j8 5-j5||1, |10 £90°
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By Cramer’s rule,

102£0° -8
10 £90° 5- j5
I = ‘ "2l _ 072 £ -82.97°A
5-j5 -8
8 5-j5
5-j5 10.£0°
—j8 10 £90°
I = : o171 £106.96°A
5-j5 —j8
8 5-j5
Ve =—j10 (I +1,) = (- 10) (0.72 £ ~82.97°+1.71 £106.96° A)
=10.08 £ 24.03°V

XN conDuCTIVELY COUPLED EQUIVALENT CIRCUITS

For simplifying circuit analysis, it is desirable to replace a magnetically coupled circuit with an equivalent
circuit called conductively coupled circuit. In this circuit, no magnetic coupling is involved. The dot
convention is also not needed in the conductively coupled circuit.
Consider a coupled circuit as shown in Fig. 4.71.
d joM 2
e

v, @ joly % § jola é v,

Fig. 4.71 Coupled circuit
The equivalent circuit in terms of dependent sources is shown in Fig. 4.72.

I I,

~€

o jol,

v, @ @VZ

JjaoMl, jeoMi,

Fig. 4.72 Equivalent circuit
Applying KVL to Mesh 1,
Vi-joL I -joM]I,
JoL I} + joM I, ...(4.11)
Applying KVL to Mesh 2,
V,—jol, I, - joM 1, =0
JoM I+ joL, I, =V, ...(4.12)
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Writing Eqgs (4.11) and (4.12) in matrix form,
jo L jo ML Vv,
= ...(413
Consider a T-network as shown in Fig. 4.73.
l4

z, z,
N 1
I I

“0 [J= ©

Fig. 4.73 T-network
Applying KVL to Mesh 1,
Vi-Z, ,-Z;(L1+1,)=0
(Zi+Z) 1 +Z; I, =V ... (4.14)
Applying KVL to Mesh 2,
Ry =[(21[12)+1]]|3=1.43Q .. (4.15)
Writing Eqgs (4.14) and (4.15) in matrix form,
7,+7; Zs I; _ Vi
Z3 Zz + Z3 Iz B V2
Comparing matrix equations,
h+7s5=joL
Z3 = _] M
L+Z;=j0l,
Solving these equations,
Z] =ij1—ja)M=jw(L1—M)
Ly=jol,-joM=jo(l,-M)
Z3 = ] w M
Hence, the conductively coupled circuit of a magnetically coupled circuit is shown in Fig. 4.74.

I, Jo(L~M) jo (L= M) 1,
O T

v, @ % joM @iv2

Fig. 4.74 Conductively coupled equivalent circuit
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” SETN NN Find the conductively coupled equivalent circuit for the network shown in Fig. 4.75.

e j6
1 A IO
+
v1@ /D 1352% %/‘59 ,) 100
- I ° ° I,
20
Fig. 4.75

Solution The current I, leaves from the dotted end and I, enters from the dotted end. Hence, mutual
inductance M is negative.
In the conductively coupled equivalent circuit,
7, =ja)(L1—M)=ja)L1 —](DM=]3—]2=]19
Z,=jo(l, —M)=jol, — joM = j5—j2=j3Q
Z;=joM = j2Q

The conductively coupled equivalent circuit is shown in Fig. 4.76.

—Jj4 Q e 3 Q B Q
| F———
+
v, @ 20 100
_ |1 |2
2Q
Fig. 4.76
” SETIWREN  Draw the conductively coupled equivalent circuit of Fig. 4.77.
j6 Q
o B 47 X 0Q .
7000 7T
2 3Q
v, @ /) 4% 50
> I T o
Fig. 4.77

Solution The current I, enters from the dotted end and I, leaves from the dotted end. Hence, the mutual
inductance M is negative.
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In the conductively coupled equivalent circuit,
Z,=jo(L1 —M)=jol — joM = jS—j6=—j1Q
Z, = jo(L, —M)= jol, — joM = j10— j6 = j4 Q
75 = ](DM = ]6 Q

The conductively coupled equivalent circuit is shown in Fig. 4.78.
1Q j4Q

L

L
+ j6Q
& .
3_jayQl,

(

5Q

[

— |1

Fig. 4.78

” SET NI  Find the conductively coupled equivalent circuit of the network in Fig. 4.79.
40 1Q 2Q
+ °
v, /D 20 § 40
- Iy °
| ]

Fig. 4.79
Solution The currents I and I, leave from the dotted terminals. Hence, mutual inductance is positive

In the conductively coupled equivalent circuit,
7, =}(D(L1+M)=j(DL1+]COM= ]4+ ]2= ]6Q
7, =jw(L2+M)=ja)L2+jwM= ]2+]2=]4Q
Zy=—joM =—j2Q

(4-i2Q  j6Q j4Q

v1%|j ID Df/‘zg D[

Fig. 4.80

The conductively coupled equivalent circuit is shown in Fig. 4.80.

(2+/4) Q

[ —




Exercises

Exercises 4.41

4.1

4.2

4.3

4.4

4.5

Two coupled coils have inductances of 0.8 H
and 0.2 H. The coefficient of coupling is 0.90.
Find the mutual inductance and the turns ratio
N
Ny [0.36 H, 2]
Two coils with coefficient of coupling 0.5 are
connected in such a way that they magnetise
(i) in the same direction, and (ii) in opposite
directions. The corresponding equivalent
inductances are 1.9 H and 0.7 H. Find self-
inductances of the two coils and the mutual
inductance between them.

[0.4H,09H,0.3 H]

Two coils having 3000 and 2000 turns are
wound on a magnetic ring. 60% of the flux
produced in the first coil links with the
second coil. A current of 3 A produce a flux
of 0.5 mwb in the first coil and 0.3 mwb in the
second coil. Determine the mutual inductance
and coefficient of coupling.

[0.2 H, 0.63]

Find the equivalent inductance of the network
shown in Fig. 4.81.

7H

[10 H]

Find the effective inductance of the network
shown in Fig. 4.82.

2H
3H
o oS
A Al®
5H 4H
>~ 7
2H
O
Fig. 4.82

[4.8 H]

4.6 Write mesh equations of the network shown

in Fig. 4.83.
R Ly R,
SIS
+ ® ®
V(1) ,D Ly /) R ,) L3
> i AR A a
Fig. 4.83

[ d . . diy dis |
v=gR+L—G —i)+M,—+M;z;—
1R ldt(l 2)+ M, i 137

dis d
Ry(i3 —ip)+R3is + Ly —+ M3 — (i —i
> (i3 — i) + Ryl 3 13dt(1 2)

4.7 Find the input impedance at terminals AB
of the coupled circuits shown in Fig. 4.84 to
4.85.

(i)

3Q j4Q
Ao—ANA—T[00

N
39

5Q —j8Q
Bo
Fig. 4.84

(ii)
Ao

2Q 2Q

°

j5Q j5Q

Bo

Fig. 4.85
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(iii) 2Q }:_0\.5\ 1Q
[ ] [ ]
Ao L o0 00
—j3Q *
1020°v (™) e 50
jaQ -
Fig. 4.89
[19.2£-33.02°V]
Bo
4.11 Find the power dissipated in the 5 Q resistor
Fig. 4.86 in the network of Fig. 4.90.
j3Q
(@)(3+,36.3)Q  (b)(1+/1.5)Q 20 | 20 4 —a j4Q , 5Q
(c)(6.22+ j4.65)Q
+
4.8 In the coupled circuit shown in Fig. 4.87, find ~ 100£0°V 30
V, for which I, = 0. What voltage appears 7
at the 8 Q inductive reactance under this
condition? Fig. 4.90
668.16 W
50 2o 20 [ ]
AT 4.12 Find the current I in the circuit of Fig. 4.91.
+ ¢ ® +
10040°V_f\) j8Q j2Q @Vg 14 —/15Q “o 10Q j3Q
Fig. 4.87 100£20°V 70£-30° V

[141.52—45°V, 100.£0°V]

Fig. 4.91

4.9 For the coupled circuit shown in Fig. 4.88,
find the components of the current I, resulting

from each source V,and V.. 4.13 Obtain a conductively coupled circuit for the
circuit shown in Fig. 4.92.

[7.07£45°V, 1.

20

) B
20, j5Q —aj4Q

Fig. 4.88 pi ,
100£0°V 3Q -2 Q

[0.77£112.6°A,1.72.£86.05°A] -

4.10 Find the voltage across the 5 Q resistor in the
network shown in Fig. 4.89.

Fig. 4.92



20 2a

Fig. 4.93

Objecﬁve-Type Questions

Objective-Type Questions 4.43

—j1Q

4.1

4.2

4.3

4.4

Two coils are wound on a common magnetic

core. The sign of mutual inductance M for

finding out effective inductance of each coil

is positive if the

(a) two coils are wound in the same sense.

(b) fluxes produced by the two coils are
equal

(c) fluxes produced by the coils act in the
same direction

(d) fluxes produced by the two coils act in
opposition

When two coils having self-inductances
of L, and L, are coupled through a mutual
inductance M, the coefficient of coupling & is
given by

M M
k = b k =
(@) Ll (b) A
2M Ll
k = d = —
© LL, @ & M

The overall inductance of two coils connected
in series, with mutual inductance aiding self-
inductance is L;; with mutual inductance
opposing  self-inductance, the overall
inductance is L,. The mutual inductance M is
given by

(@ L+L, () L—L,

(c) %(LI_LZ) (d) %(L1+L2)

Consider the following statements:
The coefficient of coupling between two oils

4.5

4.6

4.7

4.8

depends upon

1. Orientation of the coils

2. Core material

3. Number of turns on the two coils
4. Self-inductance of the two coils
of these statements,

(a) 1,2and 3 are correct

(b) 1 and 2 are correct

(¢) 3 and 4 are correct

(d) 1,2 and 4 are correct

Two coupled coils connected in series have
an equivalent inductance of 16 mH or 8 mH
depending on the inter connection.

Then the mutual inductance M between the
coils is

(@) 12mH (b) 82 mH

(c) 4mH (d) 2mH

Two coupled coils with L, = L,= 0.6 H have
a coupling coefficient of £ = 0.8. The turns

. N
ratio — 18
2
(a) 4 (b 2
(¢) 1 (d 05

The coupling between two magnetically
coupled coils is said to be ideal if the
coefficient of coupling is

(a) zero (b) 0.5

(c) 1 (d 2

The mutual inductance between two coupled
coils is 10 mH . If the turns in one coil are
doubled and that in the other are halved then
the mutual inductance will be

(a) 5mH (b) 10 mH

(¢) 14mH (d) 20mH
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4.9 Two perfectly coupled coils each of 1 H self- J5Q o o j2Q
inductance are connected in parallel so as © 7000 000
to aid each other. The overall inductance in 109 . \» °
henrys is ! joQ gjzﬂ
(@) 2 (b) 1
1
(c) 2 (d) Zero °
Fig. 4.94
4.10 The impedance Z as shown in Fig. 4.94 is @ j29Q (b) j9Q
(c) j19Q (d) j39Q

Answers to Objective-Type Questions

41 (o) 42 (b) 43 () 44 (d) 45 (d) 46 (o)
47 (o) 48 (b) 49 (b) 410 (b)
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Solution Nodes 1 and 2 will form a supernode.
Writing the voltage equation for the supernode,

V| -V, =12/230° ...()
Applying KCL to the supernode,
Vi ¥,V s 600
12 -
(=/H)Vi +(0.5+ j0.5)V, =2.60° ...(ii)

Writing Eqs (i) and (ii) in matrix form,

1 -1 v ] _[12430°
—j1 0.5+ 05|V, | | 2£60°

By Cramer’s rule,

1 12£30°
—jl 2£60°
Vi = = 18554157420V
‘—jl 0.5+j0‘5‘

V.=V, =18.55£157.42°V

IEXN| SuPERPOSITION THEOREM

The superposition theorem can be used to analyse an ac network containing more than one source. The
superposition theorem states that in a network containing more than one voltage source or current source,
the total current or voltage in any branch of the network is the phasor sum of currents or voltages produced
in that branch by each source acting separately. As each source is considered, all of the other sources are
replaced by their internal impedances. This theorem is valid only for linear systems.

|| SENA RV  Find the current through the 3 + j4 ohm impedance.

50£90°V

Fig. 3.17

Solution

Step I When the 50 £90° V source is acting alone (Fig. 3.18)
NT
2, =5+ 8V 63593200 0000y
3+ 59
. 50£90°
6.35£23.2°

=7.87£66.8° A

T

Fig. 3.18
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By current division rule,

1" =(7.87£66.8°) B 4.15,853°A()
3+59

Step I When the 50£0° V source is acting alone (Fig. 3.19)

i4
Zy = j5+ 0D 74 /6820 @
8+ j4

50£0°

=——=742/-68.2° A
6.74£68.2°

T

By current division rule,

17 = (7424~ 68.2‘”)(&) =415/-9477° A(T)=4.152853° A({)
+J

Step III By superposition theorem,
1= +1"=4.15 £85.3° + 4.15 £85.3° =831 £85.3°A ({)

|| SETNTACEWEN  Dertermine the voltage across the (2 + j5) ohm impedance for the network shown in

Fig. 3.20.
jaQ -3 @
+ 20
50,0°V Q 20.£30° A
- j5Q
Fig. 3.20
Solution

Step I When the 50£0° V source is acting alone (Fig. 3.21)

50£0°

=————=542/-T7747° A
2+ j4+j5

Voltage cross (2 +j5) Q impedance
V= 2+4)5)(5.42 £-T7.47°)=29.16 £L-9.28°V

Fig. 3.21
Step I When the 20.£30° A source is acting alone (Fig. 3.22) j4Q -3 Q
By current division rule, I —
i4
1=(20230%)| =12 | =8.68.242.53° A 2e
2+ 9 Q 20/30° A
. j5Q

Voltage across (2 +;5) Q impedance

V7= (24/5) (8.68 £42.53°) = 46.69 £110.72° V Fig. 3.22
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Step 111 By superposition theorem,
V=V +V”=29.16 £-9.28° + 46.69 £110.72° = 40.85 £72.53° V

|| Example 3.19 Determine the voltage V ,, for the network shown in Fig. 3.23.

j5Q

A =2 QQ 40°A

Fig. 3.23
Solution
Step I 'When the 50£0° V source is acting alone (Fig. 3.24)

——j2Q

Fig. 3.24

V5 =5020°V

Step I When the 420° A source is acting alone (Fig. 3.25)

j5Q
A /20 D 4.20° A
50
B
Fig. 3.25

V:;B:O

Step 111 By superposition theorem,
Vs = Vs +Vig = 50£0°+0 =50£0°V
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|| SETN A CEWON  Find the current I in the network shown in Fig. 3.26.

140 8L H5Q 59
—
+ +
13 £25°V Q 3 /50° A 20 £-30°V
Fig. 3.26
Solution
Step I When the 13.£25° V source is acting alone (Fig. 3.27)
40  BQ 52 29

N
o I
Fig. 3.27
2 o
1,2124 5 _0057/4343° A (=)
-J

Step I 'When the 20£-30° V source is acting alone (Fig. 3.28)

40  BQ J5L 20
+
C 20 £-30°V
p -
Fig. 3.28

20£-30°V
62

17 =3.16£-11.57° A(«<-)=3.16£168.43° A(—)

Step III ' When the 3£50° A source is acting alone (Fig. 3.29)
40 pri3Q 5Q  5q

—
G 3 /50° A

Fig. 3.29
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By current division rule,

2

1”7 =34£50°x % =2.5620.23° A(«)=2.56£-179.77° A(—)
—J

Step IV By superposition theorem,

I=T+1"+1" =2.057 £43.13° + 3.16 £168.43° +2.56 £—179.77° A=4.62 £153.99° A (—)

|| SETN WIS Find the current through the j3 2 reactance in the network of Fig. 3.30.

5
[l
1
+ +
5.30°V r\) —j2Q % j5 Q @ 10/60° V
OO0
3 Q
Fig. 3.30

Solution

Step I 'When the 5230° V source is acting alone (Fig. 3.31)
-5 Q
| |
Il

+
5430°v@ — 2o g j5Q

OO0
j3 Q
Fig. 3.31
When a short circuit is placed across j15 Q reactance, it gets shorted as shown in Fig. 3.32.
r —j5 Q
||
[
n
5./30° v@ —-2Q
OO0
3 Q
Fig. 3.32
4 o
I'= 54307 =2.5/120° A(«)

—j5+ ;3
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Step I When the 10£60° V source is acting alone (Fig. 3.33)
—j5 Q
| ]
Il

+
—20 %/’5 Q @ 10./60° V

o0
j3Q
Fig. 3.33
When a short circuit is placed across the —j2 € reactance, it gets shorted as shown in Fig. 3.34
5Q

+
%/5 Q r\) 10.60° V

3 Q
Fig. 3.34
I”=w=54150°A(—>)=54—30°A(e)
—-j5+73

Step 111 By superposition theorem,
I=1'+1"=252120°+54-30°=3.14-621°A (<)

||m Find the current I in the network of Fig. 3.35.

2/0°A
-2 Q 6 Q
]
+
80 jaQ @ 10230° A
Fig. 3.35
Solution *f|2|9 60 It
. i
Step I When the 10£30° V source is acting alone (Fig. 3.36) lo +
ZT=6+M=8.64424.12°Q 8 Q j4Q G\) 104£30°V
j4+8—j2 7
10£30°

=1.16£5.88° A

T = o ZA JA 1m0
8.64£24.12 Fig. 3.36
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By current division rule,

1= 1162588 x—I4  _0s6s81840A ()

8— 2+ j4

Step I When the 220° A source is acting alone (Fig. 3.37)

2/0°A
—j2 Q 6 Q
|(’]' I I
8 Q j4 Q
Fig. 3.37

The network can be redrawn as shown in Fig. 3.38.

-2 Q -2 Q
||

" [l ” 1

lo

8Q j4Q 6Q <D240°A 8Q

(1.85+j2.77) Q

(F) 220a

(a) (b)

Fig. 3.38
By current division rule,

1.85+ j2.77

I =2£0°x
1.85+ j2.77+8— 2

Step 111 By superposition theorem,
Iy =15 +15 =0.56£81.84°+0.67£51.83° =1.19.£65.46°

=0.67£51.83°A (1)

A(d)

”m Find the current through the j5 €2 branch for the network shown in Fig. 3.39.

1

j5Q 3Q —Jj4 Q
+ + +
10 £0°V 15.,90°V 20 £0°V

Fig. 3.39
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Solution

Step I When the 10£0° V source is acting alone (Fig. 3.40)
v

5Q 30 —j4 Q
+
10 £0°V
Fig. 3.40
—i4
Zr = j5 =Y _ 404261660 Q
3— /4
r=—1040 a3/ 6166°A (o)

T 40426166

1

Step I When the 15290° V source is acting alone (Fig. 3.41)

7, =3+ 5050 £ 8147 @ /5 30 4Q
Jj5—j4
+
, 0 _ 7407147 A 15.£90°V

T 2022/ 8147° >

By current division rule, Fig. 3.41
1" = 0.744171.47°><._;4_ =296/-8353°A(«)=296Z17147°A (—>)

—Jj4+ 5

Step III ' When the 20 £0° V source is acting along (Fig. 3.42)

P I

j5Q 30 —j4 Q
+
20 £0°V
Fig. 3.42
7; = —j4+@=3.474—50.51°9
r = & =5.76/50.51° A
3.47/-50.51°

By current division rule,

3
17 =576£50.51°X - =2.96/-8.53° A () =296 /17147° A ()
j
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Step IV By superposition theorem,

I=T+1"+1"=248/-61.66°+2.96£171.47°+2.96£171.47° = 4.86 /—164.41° A

|| SENN AW LN  Find the voltage drop across the capacitor for the network shown in Fig. 3.43.

20 ?g’ \ 20
+ +®_
2Q 10 £0°V
B i Xe)
5o 40 T
Fig. 3.43
Solution o
v
Step I When the 10£0° V source is acting alone n
(Fig. 3.44) 50 10 /0°V
@+/9)2-2) /1040
Ly =4+ —"—"F— -2Q
2+ j5+2— 2
=7£-591°Q j5Q 4Q
T = & =1434591° A
7£-591° Fig. 3.44

By current division rule,

2+ 5

————— |=1.54/3724°A (—)
24+ j5+2-;52

= (1.4345.91")(

Step I When the 20£45° V source is acting alone (Fig. 3.45)

0245V Lo
{~):
2Q
40 20
50 —‘V
Fig. 3.45
42+
Zr=(2- )+ 225 445/ 88400
4+2+j5
1= 204" 4653840 A ()= —446/5384°A ()

T 4482-884°



3.4 Superposition Theorem
Step 111 By superposition theorem,
I1=1+1"=1.5423724-4.46.53.84°=3.01£-117.78° A
V. =(—j2)I=(—j2) (3.01£-117.78°) = 6.02£152.22° V

||m Find the node voltage V, in the network of Fig. 3.46.

5./30°V
2 A
*—\ VN OO

10 £0° A D 50 20 jfoQ D540°v

Fig. 3.46
Solution

Step I When the 10£0° A source is acting alone (Fig. 3.47)

5/30°V

000

vy

PSS

10 £0° A D 5Q 2Q 09

Fig. 3.47
Applying KCL at Node 1,
Vi V-V,

—+
5 5430°

1,1 \= ! V, =10£0°
5 5/30° 5230°
(0.37- jO.DV; —(0.17— jO.1)V, =10.£0°

=10£0°

Applying KCL at Node 2,

Vi-wi V2, V2
5230° 2 j10

1 , ,
- Vv, + ! +l+L V,=0
5/30° 5230° 2 j10
—(0.17— j0.1)V; +(0.67— j0.2)V> =0

3.23

()

..(i)
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Writing Eqs (i) and (ii) in matrix form,
0.37-70.1 —(0.17—j0.1)|| V¢ _ | 10£0°
—(0.17-70.1)  0.67-,0.2 ||V, 1o
By Cramer’s rule,
‘ 0.37- ;0.1 10£0°
, —(0.17- ;0.1 0
v, = ( JO.D

037-j0.1 —0.17— j0.1)
~(0.17=j0.1)  0.67— 0.2

=8.57£4-336°V

Step I When the 520° A source is acting alone (Fig. 3.48)
52£30°V

ANN—T00

\'2%

5Q 2Q jloQ D540°A

Fig. 3.48

B/ SN £ T | TR
5/30°+5 2 /10
(0.61/~11.93°)V, =5.0°
V, =82/11.93°V
Step 111 By superposition theorem,
V=V, +V, =857/-336°+8.2/11.93°=16.624.12° V

|| SET NN Find current through inductor in the network of Fig. 3.49.

84£135°V
O
j2Q -1 Q
O ||
2,0°A D 20 Q 2./90° A
8/135°V
Fig. 3.49 ()
Solution 2o r,) 41 Q
. - . S {1
Step I When the 8£135° V source is acting alone (Fig. 3.50)
Applying KVL to the mesh, © .
8L135°—(— I’ = j2I' =0 T
I'= & =8/45° A («)=84-135°A (—)

jl Fig. 3.50



Step I ' When the 220° A source is acting alone (Fig. 3.51)

3.4 Superposition Theorem 3.25

2o -1 Q
o0
O
2/0° A D 20Q
Fig. 3.51 41"1 |Q
The network can be redrawn as shown in Fig. 3.52. H
By current division rule, 2 Q
oo

—j1 —j1
17 =200 —L|= 2,000 =L | = 2.£180° A(—)
—jl+ 2 j1

Step III ' When the 2290° A source is acting alone (Fig. 3.53)

2 -1 Q
[
000 N

20 Q 2290° A

Fig. 3.53

The network can be redrawn as shown in Fig. 3.54.
By current division rule,

17 = 24900(_711] =2/-90°A («<)=2290°A (=)

—jl+ 2

Step III By superposition theorem,

I=0I"+1"+1" =8 £—135°+2/180°+2.£90° =8.49/—154.47° A

220°A D §2 Q

Fig. 3.52

2Q

00

-ji1 Q
[ |
I

20 G 2,90° A
Fig. 3.54

|| SEINAEWIN  Determine the source voltage V so that the current through 2 £2 resistor is zero in

the network of Fig. 3.55.

30 20 40
AVAVAY
+
Vs j3 Q 30

Fig. 3.55

+
20£90°V
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Solution

Step I  When the voltage source V_ is acting alone (Fig. 3.56)

30 20 40Q
Vs ,D j3 Q ,D ——-3Q /)
- Iy Iy Iy
Fig. 3.56

Appling KVL to Mesh 1,
V=35 = 3L -1,)=0

G+ 3 - 3, =V, ()
Appling KVL to Mesh 2,
—j3( = T) =205 + j3(1; ~13) = 0
—j3L +21> + j3L; =0 ..(ii)
Appling KVL to Mesh 3,

-j3(I3 ~T,) - 413 =0
B +(4—- ) =0 ....(iii)
Writing Eqgs (i), (ii) and (iii) in matrix form,

3+3 -3 0o N

Vi
-3 2 j3 || (=] 0
0 3 4-j3]y 0
By Cramer’s rule,
343 V, 0
-3 0 3
oo 0 43 _©orav,
TB+3 -3 0 A
-j3 2 3

0 3 4-,3

Step I When the 20 £90° V source is acting alone (Fig. 3.57)

30 20 40
. +
j3Q i JO) 20£90°V
[ [ 1y <
Fig. 3.57

Applying KVL to Mesh 1,
=31 - 31 - 13)=0
B+ j3)I = j3I, =0 ..(0)



3.5 Thevenin’s Theorem 3.27
Applying KVL to Mesh 2,
-3 1) =20+ 3(1, - 1;) =0

—j3L +2L + j31; =0 ..(ii)
Applying KVL to Mesh 3,
J3(I5 —15)— 415 —20./90° = 0
7315 +(4— j3)I; = —20.290° ...(iii)
Writing Eqgs (i), (ii) and (iii) in matrix form,
343 -3 0 [h 0
-3 2 3 ||Ih]= 0

0 J3 4=3 1 -20£90°

By Cramer’s rule,

3+/3 0 0
-Jj3 0 j3
. 0 -20£90° 4- /3| —180- ;180
TUB+3 -3 0 TA
-Jj3 2 J3
0 73 4-j3
Step III By superposition theorem,
Lol +T, = (9+ j12)V, +(-180— j180) —0

A
(9+ j12)V, +(~180 — j180) =0
(9+ j12)V, =180+ ;180
V,=16.97/-8.13°V

XN THEVENIN’S THEOREM

Thevenin’s theorem gives us a method for simplifying a network. In Thevenin’s theorem, any linear network
can be replaced by a voltage source V, in series with an impedance Z., .

|| Obtain Thevenin’s equivalent network for the terminals A and B in Fig. 3.58.
30 —j4 Q B Q —j4 Q
| T oA
+ 40Q
50£0°V
- j6 Q

OB

Fig. 3.58
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Solution
Step I Calculation of V., (Fig. 3.59)

30 —j4 Q j5Q —j4 Q

A T —— 24

+ 40
50.£0°V # ,D Vo,

- | j6 Q
oB

Fig. 3.59
Applying KVL to the mesh,
50£0°-3-j4H)I-(4+j6)1=0
50£0°

= =687/£-1595°A
B-Jj4)+(4+/6)

Vo, =@+j6)1=(4+;6)(6.87 £-15.95°) =49.5 £40.35° V
Step Il Calculation of Z, (Fig. 3.60)
B - 44+ j6)

Zr, =(j5-j4)+ =483£-1.13°Q
= G T e )
30 —j4 Q jB5Q —j4 Q
|| B——] |——o4
40
<~ 2y
j6 Q
o B
Fig. 3.60
Step III Thevenin’s Equivalent Network (Fig. 3.61)
4.83 £-1.13°Q
oA
+
49.5 £40.35° V @
o B
Fig. 3.61
|| SETN LN Find Thevenin’s equivalent network for Fig. 3.62.
50 —j2 Q j5Q
|| o0 oA
+
10 £30°V 3Q 5Q
o B

Fig. 3.62



3.5 Thevenin’s Theorem 3.29

Solution

Step I Calculation of V., (Fig. 3.63)

50 —j2 Q j5Q
| LI oA
+
10 £30°V 3Q 5Q Vo,
- I A
o B
Fig. 3.63

Applying KVL to Mesh 1,
10 £30° = (5-;2) I, -3(1,-1)=0

®-j2) I, = 31,=10 £30° ...(D)
Applying KVL to Mesh 2,
=30, -1)-j51,-51,=0
3L+ @8 +/5L,=0 ...(i)
Writing Egs (i) and (ii) in matrix form;
8§—72 =3 ||| _[10£30°
-3 8+5||I,| | o
By Cramer’s rule,
‘8 —j2 10£30°
-3 0
I, =—————F—=0433297° A
8—j2 3
-3 845
Vi, =51, =5(0.433£9.7°)=2.16£9.7° V
Step Il Calculation of Z, (Fig. 3.64) 20 50
|| 000 oA
5-72)3 .
Zr = H@}w}n 5
5-j2+3 5Q 3Q 5Q < Zm
=[1.94-70.265+ j511|5=(1.94+ j4.735)||5
. o B
_(L94+JATINS _ 504 33400
6.94+ j4.735 Fig. 3.64
Step III Thevenin’s equivalent Network (Fig. 3.65)
3.04 £33.4°Q
o A
+
2.16 £9.7°V 9
o B

Fig. 3.65
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|| SEIN AN  Obtain Thevenin’s equivalent network for Fig. 3.66.

40 10 £0°V

2Q

j6Q

Solution

Step I Calculation of V.

40 10 £0°V

2Q

52/90°V
/) Vi
j6 Q | _j4 Q
_—|— 58
Fig. 3.67
Applying KVL to the mesh,
(2+ j6— jA)I=5290°=0
I= 5290 =1.77£45° A
2+

Vi, = (4) I+5 290° - 10 £ 0°= (4 £-90°) (1.77 £45°) + 5 £90° — 10 £0° = 18 £146.31° V
Step Il Calculation of Z, (Fig. 3.67)

4Q
0 A
2Q
] <~ Zm
60 T"“’
OB
Fig. 3.68

Zoy =4+ EHIOID 115, 440300
2+ 2

Step III  Thevenin’s Equivalent Network
11.3 £-44.93° Q

o A

+
18 £146.31°V f\D

o B

Fig. 3.69



3.5 Thevenin’s Theorem 3.31

|| SEINTA TN  Obrain Thevenin’s equivalent network for Fig. 3.70.

10 £0° A 5Q 20
A
3Q —j5 Q
B
Fig. 3.70 |
Solution
° j15 Q 2Q
Step I Calculation of V., (Fig. 3.71) 10.£07A !
By current division rule, L o A
oy 30 -5Q  Vm
I= w =13.42£26.57° A T
5—-j5+ /15 OB
Vi =(3)1 Fig. 3.71
=(5 £-90°) (13.42 £26.57°) = 67.08 £-63.43° V
Step Il Calculation of Z, (Fig. 3.72)
— S+ 7l 15 Q 20
Zoy = EPICHID) 500/ _g1860 02
—j5+54 15 B
Step III Thevenin’s Equivalent Network )
3Q —j5Q =< Zm
7.07 £-81.86° Q T
L oA oB
+
Fig. 3.72

67.08 £-63.43°V @

o B

Fig. 3.73

||m Obtain Thevenin’s equivalent network for Fig. 3.74.

+
20 £0°V f\)

Fig. 3.74
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Solution
Step I Calculation of V., (Fig. 3.75)

+
20 £0°V f\)

Fig. 3.75

O 2020°
"1+ 12+ 24
2020°

80+ 60

=0.49/-36.02° A

2 =02£-36.86° A

Vo= (12+,24) 1, - (30 +60) I,
= (26.83 £63.43%) (0.49 £-36.02°) — (67.08 £63.43°) (0.2 £-36.86°)
=033 £171.12°V

Step Il Calculation of Z,, (Fig. 3.76)
21 50

Ao— H ———o°B

12 jo4 30  j60

Fig. 3.76

Zy, = 2102+24) | 5060+ 760) _ 47 4 15650
33+ 24 80+ /60

Step III Thevenin’s Equivalent Network

47.4 /26.8° Q
|
oA

+
0.33 £171.12°V @

o B

Fig. 3.77



3.5 Thevenin’s Theorem

”m Find Thevenin’s equivalent network across terminals A and B for Fig. 3.78.

0 A
1Q 50
2.245° A {) .
2Q
10 £90° V
_ o B
Fig. 3.78
Solution
Step I Calculation of V., (Fig. 3.79)
0 A
g
1Q 5Q
2.,45° A D . Vo
2Q
10 £90° V
_ oB
Fig. 3.79

Applying KCL at the node,

Vin_, Vi ~10£90°
1+ 72 5

=2/45°

11
— = |V, = 2.245°42.290°
1+/2 5

(0.57 L= 45°)Vyy, =3.7.£67.5°
Vip = 6.492112.5° V

Step Il Calculation of Z, (Fig. 3.80)

O A
1Q
§ 5Q <~ Zy,
2a
OB
Fig. 3.80
L= 20E2D) g 50 o

B S5+1+ ;2

3.33
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Step III Thevenin’s Equivalent Network (Fig. 3.81)

1.77£45° Q
oA
+
6.49 £112.5°V @
o B
Fig. 3.81

|| SETN A CEILTN  Find the current through the (5+ j2) Q impedance in the network of Fig. 3.82.

5Q
+ 3Q 2Q
20 £0°V r\)
B 2Q Q 20 £0° A
5Q —|’ e
Fig. 3.82
Solution
Step I Calculation of V., (Fig. 3.83)
5Q \'Z
3Q 2Q
+
o A + o
20 £0°V f\) v () 2020°n
Bo- -2 Q
It
Fig. 3.83
Applying KCL at the node,
VvV, -20£0 . i _ 20.20°
5 2—-j2

1 1
-+t V= 20£0°+4.£0°
5 2-12

0.51£29.05°V; =24 £0°
V; =47.06£-29.05° V
Vin =V, =47.06£-29.05°V



3.5 Thevenin’s Theorem

Step I1  Calculation of Z, (Fig. 3.84)

5Q
3Q 2Q
A
Z1p
[ 7™
Fig. 3.84
Zr, = 3422272 429, 113500
5422
Step Il Calculation of I, (Fig. 3.85)
4.79£4-11.35° Q
A
| E—
+ 5Q
47.06 £-29.05°V f\D )
- It 2O
B
Fig. 3.85

_ 47.06/-29.05°
4.794-11.35°+5+ ;2

||m Find the current through the 5 2 resistor in the network of Fig. 3.86.

5Q
H00

640°AG> 5Q 4Q

Fig. 3.86

=4.73/-39.96° A

L

~2Q CD 4.,0°A

Solution

Step I Calculation of V., (Fig. 3.87)

v, Be oy,

6.£0°A CD +\Jl)t:\ 40 % -2 Q (D 4.20°A

:

Fig. 3.87

3.35
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Applying KCL at Node 1,
V, _
M -V
4 J5

+6£0°=0

1 1 1
—+— IV ——=V, =-6£0°
4 j5 Jjs
(0.25—-70.2)V; + j0.2V, = -6.£0°
Applying KCL at Node 2,
Vi=WVi V2 _y 00
J5 0 =j2

L Vi+ L1 V, =4.0°
J3 52

JO2Vi+ j03V, =4.20°

Writing Eqs (i) and (ii) in matrix form,
0.25-02 jO2| V;|_[-6£0°

j0.2 jO3|| Vo | | 4£0°
‘—640" j0.2

4.20° j0.3‘
V= —208/-12687°V
‘0.25 - 0.2 ]o.z‘

j0.2 j0.3
Vi, =V, =20.8£-126.87°V
Step Il Calculation of Z, (Fig. 3.88)

By Cramer’s rule,

j5Q
000
!

Zrh—> 4Q ——R2Q
i

4(=j2+ j5)

" 4— 2+ j5)

Fig. 3.88

Zr =24,/53.13°Q
Step III  Calculation of I, (Fig. 3.89)

20.8£-126.87°

2.4 /58.

e

3°Q

..(0)

(i)

—
L
2.4/53.13°+5 20.8 /-126.87°V r\) |
- L

Fig. 3.89



3.5 Thevenin’s Theorem 3.37

|| SETN TN 11 the network of Fig. 3.90, find the current through the 10 2 resistor.
5 £30°V

2Q

10Q

Solution
Step I Calculation of V., (Fig. 3.91)
Applying KVL to the mesh,
J2I-11-10£0°-51=0
(j2-6)I=10£0°
I1=1.58£-161.57° A
Writing V_, equation,
SI+10£0°-54£30°-0—-Vp, =0
5(1.58£-161.57°)-10£0°-5£30° = V1, = 0 Fig. 3.91
Vo, =5.322£-110.06° V

Step Il Calculation of Z, (Fig. 3.92) 20
NV oA
—i2
Zo=2+20792 _345, 510400 10
5+1-j2 5Q ~— Zm
—j2 Q
Step III  Calculation of I, (Fig. 3.93) 0B

3.48 £-21.04° Q

I Fig. 3.92
A 1g
.
5.32 /-110.06° V r\) 10 Q
= IL
B
Fig. 3.93

=0.4£-104.67° A

5.32/-110.06°
LT 3.48-21.04°410
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|| SEINACEIETN  Find the current through (4 + j6) Q impedance in the network of Fig. 3.94.

-j5 Q

20 /5Q 3Q |
00 |
+ 40 .
100 £0°V 50 £90°V
N P a
Fig. 3.94
Solution
Step I Calculation of V., (Fig. 3.95)
—j5Q

50 £90°V

20 /5Q
+
100 £0°V
1

Fig. 3.95

Applying KVL to the mesh,
100£0° =21 - j5I-31+ j51-50£90°=0
1=2236£-26.57T°A
Writing V., equation,
Vi =3I+ j5I-50£90°=0
Vi —(3—75)(22.36 £-26.57°)—-50£90° =0
V1, =80.61£-82.88° V

Step Il Calculation of Z, (Fig. 3.96)

20 50 30 *{5 Q
(L |
A
Z,
T B
Fig. 3.96

Z :W:ﬁ_zgég,mo Q
2+ j5+3-J5



3.5 Thevenin’s Theorem 3.39

Step I  Calculation of I, (Fig. 3.97)

6.2829.16° Q
A
L
N 40
80.61 ~/—82.88°V @ |
- L j6Q
B
Fig. 3.97

_ 80.61/-82.88°
6.28£9.16°+4+ j6

|| DET TN Obtain Thevenin's equivalent network across terminals A and B in Fig. 3.98.

| 4Q 2Q
AVAVAY, J_ m o0 A
PSS

+
1040°V@
> 21

=6.52£-117.34° A

L

o B
Fig. 3.98
Solution 1 4Q 2Q
000 o A
Step I Calculation of V., (Fig. 3.99) 1L —fo *
Applying KVL to th h, b2
pplying o the mes 100V ’\D v,
10£0°—41+ j11-21=0 > 21
1=1.6429.46°A _
o B
Writing V., equation,
& m el Fig. 3.99
10£0°—41-0—Vy, =0
10£0°—4(1.64.29.46°)— V1, =0
Vi, =3.69£-17°V
Step Il Calculation of I (Fig. 3.100)
From Flg 3100, | 40 2Q A

I=1 7300
Applying KVL to Mesh 1, -fAQ

.
10.£0° 41, + jI(T, —=1,) =21 = 0 100 £0°V r\) /) N :> Iy
10.£0°— 41, + jl1, — jl1, =21, = 0 - Iy I
(6— j)L + j1I, =10.£0° ...(i)
Applying KVL to Mesh 2,

21+ jI(I, —-T)) = j2I, =0 Fig. 3.100
2]1 +j1]2 _jlll —j2]2 =0

B
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2-jbL-j1I,=0 ...(i1)
Writing Eqgs (i) and (ii) in matrix form,
6—,71 1 [[I;]|_[10£0°
2—j1 —jl||{I,]" | ©
By Cramer’s rule,
6-j1 10£0°
2—jl1 0
I, =—F/————=2.71£-102.53° A
6—,1 jl
2—j1 —j1
Iy =1, =2.71£-102.53° A
Step III  Calculation of Z,
Zy, = Vm 3609217 50 855300
Iy 2.71£-102.53°
Step IV Thevenin’s Equivalent Network (Fig. 3.101)
1.36 £85.53° Q
o A
"
369 £-17°V ()
o B
Fig. 3.101
|| SETN LN  Find Thevenin's equivalent network across terminals A and B for Fig. 3.102.
20 4 Q
A
+
"
5./0°V
- T 0.2V, V,
1Q
o B
Fig. 3.102
Solution 20 j4Q
AN\ I ——o0 A
Step I Calculation of V., (Fig. 3.103) + +
) 5.20°V
From Fig. 3.103, . > /D T 0.2V, V= Vi,
I=-02V, .. () 1o |
Writing V., equation,
°B

—1+5£0°-0-V, =0



3.6 Norton’s Theorem 3.41

0.2V, +520°=V, =0
V, =6.2520°V
Vi =V, =6.2520°V

Step Il Calculation of I, (Fig. 3.104)

2Q
+
5.£0°V
- T 0.2V,
10
Fig. 3.104
From Fig. 3.104, 20 jaQ
V., =0 700 A
+

The dependent source depends on the g g0y
controlling variable V.. When V, =0, the > I
dependent source vanishes, i.e. 0.2V, =0 as N
shown in Fig. 3.105. 1Q

N=A=14—53.13°A B

1+2+ j4 .
Fig. 3.105
Step III  Calculation of Z,
2520°
Ty =¥ _ 020" _ o5 531300
Iy 1£-53.13°

Step IV Thevenin’s Equivalent Network (Fig. 3.106)

6.25 £/53.13° Q

i
L CA
+

6.25 20°V

OB

Fig. 3.106

EXJ| ~NoRTON’S THEOREM

Norton’s theorem states that any linear network can be replaced by a current source 1, parallel with
an impedance Z,, where 1, is the current flowing through the short-circuited path placed across the
terminals.
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|| SETNA N Obrain Norton's equivalent network between terminals A and B as shown in Fig. 3.107.
30 jAQ

25.20°V

Fig. 3.107
Solution

Step I Calculation of I, (Fig. 3.108)

When a short circuit is placed across (4 — j4) Q impedance,
it gets shorted as shown in Fig. 3.109.

30 4 Q
. AAAY o0 A
25 20°V
= Iy
B
Fig. 3.109 3Q jA4Q )
2520°
N = > 0 =5/-53.13° A
3+ j4 4Q
. ; <2y
Step Il Calculation of Z,, (Fig. 3.110) _50
—|— J
_GH/MA=T) 453,900 0 °B
3+ j4+4— 5 .
Fig. 3.110
Step III Norton’s Equivalent Network
0A
5 /-53.13° A D []4.53 £9.92°Q
oB
Fig. 3.111
|| SETN RSN Obtain Norton’s equivalent network at the terminals A and B in Fig. 3.112.
5Q
NV oA
1Q 4Q
10 £30° A D
20 4 Q

o B
Fig. 3.112



3.6 Norton’s Theorem

Solution
Step I Calculation of I, (Fig. 3.113)

50 A
1Q 4Q
10.£30° A D Iy
2Q 4 Q
B
Fig. 3.113
By series-parallel reduction technique (Fig. 3.114)
5Q
NV A
10.£30° A D [] 1.62 /58.24° Q Iy
B
Fig. 3.114
Iy =(10£30°) _16225824° ) 2.69£75° A
1.62£58.24°+5
Step Il  Calculation of Z,, (Fig. 3.115)
5Q
0 A
1Q 40
- ZN
2Q A Q
o B
Fig. 3.115

Zy =5+ UEIDEED o1 13040 0
1+ j2+4+ j4

3.43
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Step III Norton’s Equivalent Network (Fig. 3.116)

2.69 £75° A D [] 6.01£13.24°Q

Fig. 3.116

|| SEIN WY Find Norton’s equivalent network across terminals A and B in Fig. 3.117.

0 A
j4Q 10Q
4 /45° A
D .
3Q 25 /90° V
o B
Fig. 3.117
Solution
Step I Calculation of I (Fig. 3.118)
A
O
4 10 Q
4 /45° A D . In
3Q 25 /90°V
°B
Fig. 3.118

When a short circuit is placed across the (3+ j4) Q impedance, it gets shorted as shown in Fig. 3.119.

A
100Q
4 £45° A D . Iy
25 290°V
- B

Fig. 3.119



By source transformation, the network is redrawn as shown in Fig. 3.120.

3.6 Norton’s Theorem 3.45

A

42450 A (}) (1) 25.290° A § 100

Iy 4245°A D

(A) 252000 Yy

Fig. 3.120

Iy =4/£45°+2.5290°=6.03£62.04° A

Step Il Calculation of Z,, (Fig. 3.121)

oA
4 Q
10Q ~Zy
3Q
o B
Fig. 3.121
v =106 5 e 36,030 @
10+3+ j4

Step III Norton’s Equivalent Network (Fig. 3

122)

0 A

6.03 £62.04° A D

I:] 3.68 £36.03° Q

o B

Fig. 3.122

|| SETN NN Obtain the Norton’s equivalent network for Fig. 3.123.

10 £0°A
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Solution
Step I Calculation of I, (Fig. 3.124)

10 £0° A 5Q

F2xe)

Fig. 3.124

By source transformation, the network can be redrawn as shown in Fig. 3.125.

Writing KVL equations in matrix form,

5 5[] _[50«0° 50 £0°V
j5 0|l | o

By Cramer’s rule, 5Q
5 50£0°
5 0 ‘
L= — 1_10/-90°A o
5 J5
j5 0

Iy =1, =10£-90° A Fig. 3.125
Step Il Calculation of Z,, (Fig. 3.126)
5Q
5 Q
OO0 ol
2a ——j50 <2y
o
Fig. 3.126

_ 54 GHIE)

zZ
N 5+ j5— j5

Step III Norton’s Equivalent Network (Fig. 3.127)

5Q

10 £-90° A D []59

OA

oB

Fig. 3.127



3.6 Norton’s Theorem

|| SETN AW YN  Obtain the Norton’s equivalent network for Fig. 3.128.

+
10 £45°V f\)

Fig. 3.128
Solution
Step I Calculation of I, (Fig. 3.129)
Writing KVL equations in matrix form,
15-72 -10+,2 -5 I 10£45°

—-10+72 15-72 0 ||L|=| o
-5 0 15+;2]|1; 0

By Cramer’s rule,

15- 2 10245 -5

—10+/2 0 0
| -5 0 15+ ,2
2Tl15-2 -10+,2 -5
~10+72 15-j2 0
-5 0 15+,2
15- /2 1042 10245°
~10+2 15,2 0
-5 0
I =

15-j2 -10+j2 -5
~10+ /2 15-;2 0

+
10 £45°V f\D

3.47

=1£41.28° A

=0.49.3741° A

-5 0 15+ ;2
Iy =1, -1, =049£37.41-1£41.28° 0.51 —135°A
Step Il Calculation of Z,, (Fig. 3.130)

100 ;59 10Q 20 5Q

2 Q .
Zy o—
A B A
5Q 10Q
5Q 10Q j2Q
2.0

Fig. 3.130
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_5(10-;2) + 510+ ;2)

N = =6.72 Q
54+10—-,2 5+10+ ;2
Step III Norton’s Equivalent Network (Fig. 3.131)
0 A
0.51 £-135° A 6.72Q
o B

Fig. 3.131

|| Exa mple CW:LW  Find the current through the 8 Q2 resistor in the Network of Fig. 3.132.

50Q
. 80 10 Q
20.20°V (~) ()50 a
- AQ
Fig. 3.132
Solution
Step I Calculation of I (Fig. 3.133)
50
A
100
4
20 £0°V @ Iv G 5.20°A
B 5 j4Q
Fig. 3.133

When a short circuit is placed across the (10+ j4) Q impedance, it gets shorted as shown in Fig. 3.134.

5Q

+
20 £0°V r\) Iv G 5.0°A

Fig. 3.134



3.6 Norton’s Theorem 3.49

By source transformation, the network is redrawn as shown in Fig. 3.135.

4.20°A D 5Q In Q 5.0°A

Fig. 3.135
Iy =4£0°45£0°=9.0° A

Step Il Calculation of Z,, (Fig. 3.136)

50Q
A
o 10Q
Zy
o
B AQ
Fig. 3.136
5(10+ j4
v =0 54y 68700 A
5410+ j4 )
9£0°A 3.47 £6.87 Q
Step III  Calculation of I, (Fig. 3.137) 80
B
9/0°
=———=0.794-2.08° A .
LT 3.47,687°+8 Fig. 3.137

|| ET NN Obtain Norton’s equivalent network across the terminals A and B in Fig. 3.138.
51

~

] 100 Q | lfjsg A
1 °©

+

10 £0°V f\) 31109

Fig. 3.138
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Solution
Step I Calculation of V., (Fig. 3.139)

51
o
1 100 Q S
0 A
+ _ +11- e
n
1040°v@ %/’109 Vin
o B
Fig. 3.139
= _10£0° =0.1£-571°A
100+ 510
Writing V., equation,
10£0°-100T—(—/5)(51) -V, =0
10£0°—-100(0.1£=5.71°)+(j5)(5)(0.1£=5.71°) = V11, =0
Vi, =3.5485.1°V
Step Il Calculation of I, (Fig. 3.140)
51
1 100 Q | lfjsg A

+1 1=

N
1040°v@ %/’109 In

B
Fig. 3.140
By source transformation, the network is redrawn as shown in Fig. 3.141.
| 1000 50 -j251
4
n
10 £0°V @ i> %/‘109 r) In
N I I
B
Fig. 3.141
From Fig. 3.141,
I=1

()



3.7 Maximum Power Transfer Theorem 3.51
Applying KVL to Mesh 1,
10£0°-100 1, — j10(I; -1,) =0
100+ j10)I; — j10I, =10£0° ...(i1)
Applying KVL to Mesh 2,

—10(Ty =T,) + j5T, + j25T =0
—]1012 +]1011 +j512 +]2511 =0
7351, — j51, = 0

Writing Eqs (ii) and (iii) in matrix form, - (i)
100+ j10 —j10][1;]_[10£0°
j35 -S|I|L] | o

‘100+j10 10.£0°

By Cramer’s rule,

35 0
)= =0.6£30.96° A
100+ j10 — 10
35 —j5

Iy =1, =0.6£30.96° A

Step III  Calculation of Z,,

7, = Ym _ 35485.1°

=—————=1583/54.14° Q
Iy  0.6£30.96°

Step IV Norton’s Equivalent Network (Fig. 3.142)

0 A

0.6 £30.96° A 1‘) [] 5.83£54.14° Q

o B

Fig. 3.142

IEEA| mAXiMUM POWER TRANSFER THEOREM

This theorem is used to determine the value of load impedance for which

the source will transfer maximum power. v
Consider a simple network as shown in Fig. 3.143.

There are three possible cases for load impedance Z,.

I/m\\+
&
e

Fig. 3.143
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Case (i) When the load impedance is variable resistance (Fig. 3.144)

vy \2
Z.+Z; R +jX,+R;
V]

1|z —7r=x
! VR 4R + X2

The power delivered to the load is

I,

Vo[* R
\‘(Rc +RI,)2 it st

For power to be maximum,

PL = |IL]2 RL =

dp,

=

2 {R AR+ XV -2R, (R +R) | _

[(R+R;)* + X2T B
(Ry+R;)*+ X2 =2R, (R, +R;)=0
R2+2RR, + R} + X2 —2R, R, —2R} =0
RE+ X2 -R}=0

RI =R} +X?

———r
R, =R+ X}

0

Vil

Zs=Rs+jXs
.

Fig. 3.144 Purely resistive load

-|z,|

Hence, load resistance R, should be equal to the magnitude of the source impedance for maximum

power transfer.

Case (i) When the load impedance is a complex impedance with

variable resistance and variable reactance (Fig. 3.145)

2

I =——
LR E

Vi
JR+R ) +(X, + X, )

I1|=

The power delivered to the load is

Vsl” R,

Zs=Rs+jXs
|

JE Z =R +jX,

Fig. 3.145 Complex impedance load

vs@

P=[,[ R =

(Ry+ R +(X, + X))

For maximum value of P, denominator of the equation should be small, ie. X =—X.

_ [Vs[* Ry

P st T
R +R)
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Differentiating the above equation w.r.t. R, and equating to zero,

Py p (R +R,) -2R; (RS+RL):|_0
Y (Ry+ Ry’

(Ry+R,)* -2 R, (R, +R,)=0

RZ+2RR, +RF 2R, R 2R} =0

RI—R} =0
R =R
RL=RS

Hence, load resistance R, should be equal to source resistance R, and load reactance X,
should be equal to negative value of source reactance for maximum power transfer.

Z; = Zi =R _jXS
i.e. load impedance should be a complex conjugate of the source impedance.

Case (iii) When the load impedance is a complex impedance with variable resistance and fixed reactance
(Fig. 3.146) Zs=Rs+jXs

vV, I

2 vE '
‘ v,| VS® Z Z,=R. +jX,

I,

.| = B
VR 4R + (X + X, )P
The power delivered to the load is Fig. 3.146 Complex impedance load
V'R
Po=[L)" R = ‘ QI - 2
VR +Re ) + (X, + X;)
For maximum power,
dp,
dR;

v, (Ro+ R+ (X, + X)) =2 R, (R, +Ry) _
(R + R + (X, + X )Y
(Ry+ R )+ (X, + X)) =2 R (R, +R,)=0
RE+2R R +R+(Xo+ X Y -2RR-2R =0
RE4+(X,+X.)*-RI=0
R} =R} +(X,+X,)’
Ry =\RE+(X, + X, )’
=[R + (X, + X))
=Ry + jX, + jX /]|
Zo+ jX1|

0
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Hence, load resistance R, should be equal to the magnitude of the impedance Z, + jX;, i.e.
|Z+ jX;| for maximum power transfer.

|| SETNTI WY For maximum power transfer, find the value of Z, in the network of Fig. 3.147 if

(i) Z, is an impedance, and (ii) Z, is pure resistance.

NV 1]
+
A 2,
Fig. 3.147
Solution Z,=(6-,8)Q

(i) IfZ,is an impedance
For maximum power transfer, Z; = Z,= (6+j8) Q

(ii) IfZ, is aresistance
For maximum power transfer, Z; = |ZS| = |6 + j8| =10Q

|| SEINTI TN For the maximum power transfer, find the value of Z, in the network of Fig. 3.148

for the following cases:

(i) Z, is variable resistance, (ii) Z, is complex impedance, with variable resistance and variable reactance,
and (iii) Z, is complex impedance with variable resistance and fixed reactance of j5 £2

oA
20 3Q
10A D
50 5.20°V
oB
Fig. 3.148

Solution Thevenin’s impedance can be calculated by replacing voltage source by a short circuit and current
source by an open circuit.

o A
2Q
3Q ~—Z,
j5Q
o B

Fig. 3.149
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Th = % =(2.14+,0.9) Q
For maximum power transfer, value of Z, will be,
(i) Z, is variable resistance
Z; =|Zm|=[2.1+ j0.9|=2.28 Q
(if) Z, is complex impedance with variable resistance and variable reactance
Z; =71 =(2.1- j0.9) Q
(ili) Z, is complex impedance with variable resistance and fixed reactance of j5

Z; =|Zmy + j5|=[2.1+ j0.9+ j5| =6.26 Q

|| SET X LN Find the impedance Z, so that maximum power can be transferred to it in the net-
work of Fig. 3.150. Find maximum power.

3Q 3Q
N
5.0°V gjsg —_j3Q []zL
Fig. 3.150
Solution
Step I Calculation of V., (Fig. 3.151)
Ir 3Q 3Q
oA
+
|
+
5.0°V %jsg —-j3Q Vq
o
Fig. 3.151
z; =3+ 2875 _ g 71006570 0
3+j3-/3
T = A =0.754-26.57° A
6.71£26.57°
By current division rule,
1=0.7524- 26.57"><173 =0.75£63.43° A
3+/3-/3

Vi = (—/3)(0.75£63.43%) = 2.24/-26.57° V
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Step I1  Calculation of Z, (Fig. 3.152) 3Q 3Q

. . A
Z, =13 1,3)+31 (=3) °
=3 /-53.12°Q
=(1.8-,24)Q 3]39 —-3Q
o B

Step III  Calculation of Z,
For maximum power transfer, the load impedance Fig. 3.152
should be a complex conjugate of the source impedance.

Z,=(18+,24)Q
Step IV Calculation of P (Fig. 3.153)

(1.8-j2.4)Q
A
| E—
+
2.24 £-26.57°V «’\D (1.8+j2.4)Q
B
Fig. 3.153
2 2
2.
Py = Y 12240 _ 5
4R, 4x1.8

|| SETN IR Find the value of Z, for maximum power transfer in the network shown and find

maximum power.

Solution
Step I Calculation of V., (Fig. 3.155) h lo
o 5Q 7Q
= 10020% _ ¢ 94— 63.43° A
5+ 410 y
10020° 100 £0°V @ g+ Vm-o
= =472/70.7° A -
7-j20 10Q —j20 Q

Fig. 3.155



3.7 Maximum Power Transfer Theorem 3.57

Vi, =V, —Vp =(8.94£—-63.43°)(j10)—(4.72.£70.7°)(— j20) = 71.76 £97.3° V
Step Il Calculation of Z, (Fig. 3.156)

5Q 7Q

A
Ao— — °B
T ]
j10Q —j20 Q
Fig. 3.156
.1 _ .2 Z o 14 4_ o
2 =210 | 7(=j20) 50490 0£790°_ _ 1923- j0.18) @

= +
54710 7-,20 11.18£63.43° 21.194-70.7°

Step III For maximum power transfer, the load impedance should be complex conjugate of the source
impedance.

Z,=(10.23 +,0.18) Q
Step IV Calculation of P (Fig. 3.157)

(10.23-0.18) Q
A
L

+
71.76 £97.3°V r\) (10.23+0.18)

Fig. 3.157

2 2
1.
Pmax=|VTh_‘ =—|7 76‘ =125.84 W
4R, 4x10.23

||m Find the value of load impedance Z, so that maximum power can be transferred to
it in the network of Fig. 3.158. Find maximum power.

3Q

2Q

+
50 £45° V @ :/ 2
— L

0Q

Fig. 3.158
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Solution
Step I Calculation of V., (Fig. 3.159)

3Q
20

+ +0A
50 £45° V f\) Vo

- 78, 00
Fig. 3.159
= & =447/-18.43° A

3+2+ 10

Vin = (2+ 710) 1= (2+ j10)(4.47./-18.43°) = 45.6.£60.26° V

Step Il Calculation of Z,, (Fig. 3.160)

3Q
2Q
Ao
Zt,
Bo
100
Fig. 3.160
2+ 1
Zoy =220 _ o6k j072) @
3+2+ 10

Step Il Calculation of Z,
For maximum power transfer, the load impedance should be complex conjugate of the source

impedance.
Z, =(2.64 -0.72) Q

Step IV Calculation of P (Fig. 3.161)
(2.64 +j0.72) Q

L A
+
45.6 £60.26° V @ (2.64 - j0.72) Q
B
Fig. 3.161
2 2
P = Ym0 19561 15691

4R,  4x2.64
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"m Determine the load Z, required to be connected in the network of Fig. 3.162 for

maximum power transfer. Determine the maximum power drawn.

aQ
00
4 ,0°A 2Q 4Q z,
Fig. 3.162
Solution
Step I Calculation of V., (Fig. 3.163)
Qe
000 A
I I,
4£0°A 2Q 49y,
oB
Fig. 3.163
2
I, =440°x——=1.3154-9.46° A
6+ j1
Vi, =41, =4(1.315£4-9.46°)=5.26£-9.46° V
ke
IO 0 A
Step Il  Calculation of Z,, (Fig. 3.164)
402+ i1 2Q 4Q ~2Zy,
™ = a2+ jb =1.47£17.1°=(1.41+ j0.43) Q
442+ 1 °B
Step III  Calculation of Z, Fig. 3.164
For maximum power transfer, the load impedance
should be the complex conjugate of the source impedance.
Z,=(141-;0.43)Q
Step IV Calculation of P___(Fig. 3.165)
(1.41+0.43) Q
A
L1
+
5.26 £-9.46° V @ (1.41-/0.43) Q
B
Fig. 3.165
2 2
52
P = 1 L5201y gy

4R,  4x141
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||m In the network shown in Fig. 3.166, find the value of Z, for which the power
transferred will be maximum. Also find maximum power.

5£60°Q 10 £-30°Q
1 1
L | E—

+

+
10 £0°V f\D z 95490°V

N

Solution
Step I Calculation of V., (Fig. 3.167)

+
E\) 5.290°V

Applying KVL to the mesh,
10£0°—(5£60°)I - (10£-30°)T-5£90° =0
11.18£4-26.57°—(11.18£-3.439)I=0
I=1£-23.14° A

Writing V., equation,

10£0°—=(5£60°)I -V, =0
10£0°—-(5460°)(1£-23.14°) =V, =0
Vi =6.71£-26.56°V

Step Il Calculation of Z,, (Fig. 3.168)
5 /60°Q 10 £-30°Q

L] L]
al

ZTh
il

Fig. 3.168

_ (5£60°)(10£-30°)

Zo =
s 60°+10./-30°

=4.47/33.43°Q=(3.73+ j2.46) Q
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Step III  Calculation of Z,
For maximum power transfer, the load impedance should be the complex conjugate of the source
impedance.

Z; =Zm =(3.73 - j2.46) Q
Step IV Calculation of P___(Fig. 3.169)

(3.73+j2.46) Q
A
LI

+

6.71 £-26.56°V r\D (3.73-j2.46) Q

Fig. 3.169

Vil (6.71)2
Pmax = =
4R; 4x%x3.73

=3.02W

|| SETN RN [ the network shown in Fig. 3.170, find the value of Z, so that power transfer from

the source is maximum. Also find maximum power.

9 Q j9Q
+ j9Q
10 £0°V r\) 00
Z, 8Q
Fig. 3.170

Solution

Step I Calculation of V., (Fig. 3.171)
Applying Star-delta transformation (Fig. 3.172)

j9Q j9 &
Z|=Z2=Z3=m='3g ng
79+ j9+ jO 10 £0°V r\) \o OO
V., = Voltage drop across (8 +/3)Q impedence A V+ -
Th 8Q
10.£0° B

=8+ j3))———=8.544-1631°V
8+ j3+ 3 Fig. 3.171
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10 £0°V r\D

Fig. 3.172
Step Il Calculation of Z,, (Fig. 3.173)
j3Q
j3Q
j3Q [I ~Zy
80
O
Fig. 3.173
i3(8+ j3
Zoy = 342855 55180400 Q= (0.72+ j5.46) @
j3+8+/3)

Step III  Calculation of Z,
For maximum power transfer, the load impedance should be the complex conjugate of the source
impedance.

Z; =T, =(0.72 - j5.46) Q

Step IV Calculation of P__ (Fig. 3.174)

max

(0.72 + j5.46) Q
A
[—

+

8.54 /-16.31°V f\) (0.72-/5.46) Q
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|| For the network shown in Fig. 3.175, find the value of Z, that will transfer maximum
power from the source. Also find maximum power.

100

100 £0°V 5V

Fig. 3.175
Solution 40 j10Q
Step I Calculation of V., (Fig. 3.176)
From Flg 3176, 100 £0°V 5V,
V, =41
Applying KVL to the mesh,
100£0°-41-;710I-5V, =0
100£0°—-(4+ j10) I-5(41)=0
I= 100 20 =3.85£-22.62° A
24+ j10
Writing V., equation,
100 £0°—4I-Vg, =0
100£0°—-4(3.85 £-22.62°) -V, =0
VTh =86£3.95°V
Step Il Calculation of I, (Fig. 3.177)
From Fig. 3.177, 40 ;,X A j10Q
Vx = 411 +

Applying KVL to Mesh 1,

4
W =

U
(6)]

<

3

100 £0°V
100 £0°-41, =0 -
I] =25A
) Fig. 3.177
Applying KVL to Mesh 2,

—j10I, -5V, =0
—j101, —=5(41)) =0
—j101, —5(100) = 0
I, =504£90°A
Iy =1 -1, =25-504£90° = 55.9/-63.43°A
Step III  Calculation of Z,
_Vm,  86£3.95°

™y 55.9/-63.43°

=1.54.£67.38° Q= (0.59+ j1.42) Q
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Step IV Calculation of Z,
For maximum power transfer, Z; = Zty = (0.59 - j1.42) Q

Step V' Calculation of P___(Fig. 3.178)
(0.59+/1.42) Q

L A
.
86 £3.95°V f\) (0.59-1.42) Q

B

Fig. 3.178

Vol (86)°
P = - =31339W
4R,  4x0.59

EXY| ReciPROCITY THEOREM

The Reciprocity theorem states that */n a linear, bilateral, active, single-source network, the ratio of excitation
to response remains same when the positions of excitation and response are interchanged.’

|| SETN RN Find the current through the 6 2 resistor and verify the reciprocity theorem.

-ji1Q
|
I

+
5400\,(\) %ﬂg 20

1Q

Fig. 3.179
Solution

Case I Calculation of current I when excitation and response are not interchanged (Fig. 3.180)

1Q —/‘1| |Q
i |
y % 10
5.,0°V f\) / 2Q
- I I,
Fig. 3.180

Applying KVL to Mesh 1,
5£0°—-1L — j1(I; -1,) =0
(1+ DI, — j1I, =5£0° ...(1)



Case Il

3.8 Reciprocity Theorem 3.65

Applying KVL to Mesh 2,
—]1(12 —Il)+j112 -2I,=0
—j111+212 =0 ()
...
Writing Eqs (i) and (ii) in matrix form,
1+51 —j1|[I; | _[5£0°
-1 2 ||L|"| o
By Cramer’s rule,
1+/1 5£0°
—j1 0
I, =—"———+=13945631°A
I+,1 —j1
-jl 2
I=1,=1394£5631° A
Calculation of current I when excitation and response are interchanged (Fig. 3.181)
1Q —/‘1I lﬂ
I /) /) 20
1Q
Iy % I, N
5.£0°V
Fig. 3.181
Applying KVL to Mesh 1,
—111 —]1(11 —12) = 0
(I+/DL =, =0 (D)
Applying KVL to Mesh 2,
—]I(IZ - Il)+ ]IIZ —212 —5400 = 0
—ji +2I, =-520° ...(i1)

Writing Eqgs (i) and (ii) in matrix form,

1+j1 =[] [ o
-1 2 ||| 7 |-520°

By Cramer’s rule,

0 —Jj1
-5£0° 2
I = =1384-123.69° A
I+1 —j1
-jl 2

I=-1, =139.456.31° A

Since the current I is same in both the cases, the reciprocity theorem is verified.
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|| SETN AR 11 the network of Fig. 3.182, find the voltage V_and verify the reciprocity theorem.

10Q 5Q

20 £90° A D
3
/sQ 29 v,

I

Fig. 3.182

Solution

Case I Calculation of voltage V_when excitation and response are interchanged. (Fig. 3.183)

10Q j5Q

20 £90°A (D

By current division rule,

10+ j95)
A0+ j5)+(j5-Jj2)
V. =(—JI, =(—j2)(17.46£77.91°) =34.92 £/-12.09° V

I, =(20£90°) =17.46Z7791° A

Case Il  Calculation of voltage V_when excitation and response are interchanged (Fig. 3.184)

(e}
+ I,
100
v,
5Q 20 £90°A
o
Fig. 3.184
—j2
1, = (20.£90°) (=/2) —3.12./-38.66°A

(—=j2)+ 10+ j5+ j5)
V. =10+ 5T, =10+ j5)(3.12£-38.66°) = 34.88 /- 12.09°V

Since the voltage V_is same in both the cases, the reciprocity theorem is verified.
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|| SEIN AR N Find I and verify the reciprocity theorem for the network shown in Fig. 3.185.

20
10 20
|
40Q i

+
10 £45°V

Fig. 3.185

Solution

Case I Calculation of I when excitation and response are not interchanged (Fig. 3.186)

3 A0 29 g 20
I
.
10 £45°V 4Q BQ 2
= Iy I I3
Fig. 3.186

Applying KVL to Mesh 1,
10£45° -3+ jH1, -4 -1,)=0

(7+ j4) I, —41, =10£45° ...(1)
Applying KVL to Mesh 2,
-4 1) -(1-,2) 1, - j3(1, - 15)=0
4L +(5+ j)1, - j315=0 ...(i1)
Applying KVL to Mesh 3,

;L -1)-21 - j21;=0
3L +(24+5)1,=0 ...(ii1)
Writing Eqgs (i), (ii) and (iii) in matrix form,

7+j4 4 0 I 10£45°

-4 5+j1 =3 ||LL|= 0
0 -j3 2+j5|| 15 0
By Cramer’s rule,
T+j4 -4 10£45°
-4 5+ 0
0 -j3 0
I = =0.704£30.72° A

T+ j4 4 0
-4 5+ -3
0 -j3 2+j5

I1=1;=0.704.230.72°A
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Case I Calculation of I when excitation and response are interchanged (Fig. 3.187)
20

3Q /4@ }_«1/\% 2Q
2O
I /) 40 Be 3
Iy |2’«> |3,<> %10445°V
Fig. 3.187

Applying KVL to Mesh 1,
-G+ -4, -13)=0

(7+ L -4l =0 ...(0)
Applying KVL to Mesh 2,
—4(L-L)-(1-72) 1, -3 -13)=0
=4 +(5+ jD)1, - 313 =0 ...(i)
Applying KVL to Mesh 3,
—j3(03-T1,)-21; — j2I5 +10£45° =0
—731, +(2+ j5)15 =10£45° ...(ii1)
Writing Eqgs (i), (ii) and (iii) in matrix form,
7+j4 -4 0 L 0
-4 5+ 1 =3 ||I|= 0
0 —-j3 2+j5]|| 15 10£45°
By Cramer’s rule,
0 -4 0

0 5+1 —=j3
10£45° —j3 2+ 5

I = ‘ =0.704.£30.72°A
7+j4 -4 0
4 5+;1 —j3
0 —j3 2+5

I=1, =0.704£30.72°A

Since the current I is same in both the cases, the reciprocity theorem, is verified.

EX]| MiLLMAN’S THEOREM

Millman’s theorem states that ‘If there are n voltage sources V,, V,. ... V with internal impedances Z,,
Z,, ... Z respectively connected in parallel then these voltage sources can be replaced by a single voltage
source V. and a single series impedance Z.

v _V1 Y +V. Y, +...+V, Y,
" Y, +Ys+...+Y,
1 1

Z el /| S
"TY, Y+Yy+...tY,
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2.15 Find the value of current /.

AV

20Q

0.474 Q

A

2V
Fig. 2.259
[0.25 A]
2.16 Determine the value of current flowing through the 10 Q resistor.
40 240 13Q
NV A% A%
280 2120 2300 2170
12Q 10 Q 30 Q
NV A% A%
18|O \
Fig. 2.260
[3.84 A]
2.8 SUPERPOSITION THEOREM

It states that ‘In a linear network containing more than one independent sources, the
resultant current in any element is the algebraic sum of the currents that would be
produced by each independent source acting alone, all the other independent sources
being represented meanwhile by their respective internal resistances.’

The independent voltage sources are represented by their internal resistances if given or
simply with zero resistances, i.e., short circuits if internal resistances are not mentioned.

The independent current sources are represented by infinite resistances, i.e., open circuits.

A linear network is one whose parameters are constant, i.e., they do not change with
voltage and current.

Explanation Consider the circuit shown in Fig. 2.261. Suppose we have to find current
1, flowing through R,.
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@

Ry Rs
AN A%
e § R, § Ry
Fig. 2.261 Superposition theorem

2.8.1 Steps to be followed in Superposition Theorem

1. Find the current 7} flowing through R, due to independent voltage source ‘V”,
representing independent current source with infinite resistance, i.e., open circuit.

R1

Rs3

A%

2R

A%

Fig.2.262 Step1

Ry

2. Find the current 7} flowing through R, due to independent current source ‘/°,
representing the independent voltage source with zero resistance or short circuit.

R4

Rs
AN

N

5,

17

Ry

®

Fig.2.263 Step2

3. Find the resultant current /, through R, by the superposition theorem.

L,=1+17

20

\Y

2Q

Example 1
Find the value of current flowing through the 2 Q resistor.
5Q
4%

40V _—_—

|
‘ I

10 Q

— 10V

Fig. 2.264
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Solution Step I: When the 40 V source is acting alone

7 5Q 7 2Q
e ATA —

40V -

10Q

Fig. 2.265

By series—parallel reduction technique,

I 5Q
VN

40V —— 1.67 Q
Fig. 2.266
40
1= =0A
5+1.67
From Fig. 2.265, by current-division rule,
10
I'=6x =5A(>)
10+2
Step I1: When the 20 V source is acting alone
1 5Q 2?‘\/ 2Q
— |l —
10 Q
Fig. 2.267

By series—parallel reduction technique,

Fig. 2.268

5+1.67

3A



Superposition Theorem  2.119

From Fig. 2.267, by current-division rule,

10
I” = 3x =25A(«)=-25A(>)
10+2
Step I1I: When the 10 V source is acting alone
5Q 2Q
NV N
2100 — 10V
Fig. 2.269
By series—parallel reduction technique,
20
NV
33303 10V

Fig. 2.270

., 10
33342
Step 1V: By superposition theorem,
I=1r+1"+1"
=5-25+1.88
=438A(—>)

— 1.88 A (—)

Example 2

Find the value of current flowing through the 1 Q resistor.

4Q

T 1

100V ——

Fig. 2.271
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Solution Step I: When the 100 V source is acting alone
1 4Q

100V = 10 §29

Fig. 2.272

By series—parallel reduction technique

1 4Q
> NV
100V = 20670
Fig. 2.273
1= 100 =2141A
4+0.67
From Fig. 2.272, by current-division rule,

I =214l x —2— =1427A ()
142

Step II: When the 50 V source is acting alone

A
J_50 \%
2Q
e 3
Fig. 2.274
By series—parallel reduction technique,
1
50V
$1.330
1Q
Fig. 2.275

50
1”7 = =2146 A (1) =-2146A{
1+1.33 M )



Step I11: When the 40 V source is acting alone

4Q

M
1

A~

Fig. 2.276

By series—parallel reduction technique,

0.89§

2Q

Fig. 2.277
-0 14.29 A
0.8+2
From Fig. 2.276, by current-division rule,

7= 1429 2 = 1143 A (1)
4+1

Step IV: By superposition theorem,
I=r+1r+1”
=1427-2146+11.43
=424A 1)

Example 3

40V

Superposition Theorem

2.121

Find the value of current flowing through the 8 Q resistor.
5Q 10 Q 12Q

{M S50 Sso

4V

-6V

Fig. 2.278
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Solution Step I: When the 4 V source is acting alone

;] 5Q L 10Q 12Q
i VAYAY
r
4v— §15Q 80
Fig. 2.279

By series—parallel reduction technique,

1 5Q I 10 Q 1 5Q I
> AN > > AN -
4V — §159 48Q 4V §159
(a) (b)
I 5Q
Yy
av—— § 7450
(c)
Fig. 2.280
= =0.32A
5+7.45

From Fig. 2.280(b), by current-division rule,

15
I, = 032x———— =016 A
15+14.8

From Fig. 2.279, by current-division rule,

=0.096 A ({)

I’ = 0.16x 12
12+8

Step II: When the 6 V source is acting alone

5Q 10 Q 12Q
NV A%

§15Q §89 —6V

Fig. 2.281



Superposition Theorem  2.123
By series—parallel reduction technique,

10 Q 12Q 120

AN AN ———
)
3750 S8a 6V 137502 280 6V
(a) (b)
12Q I
NN -
50603 —6v
(c)
Fig. 2.282
6
1= ——=035A
12+5.06
From Fig. 2.282(b), by current division rule,
13.75
I”7=035x————— =022A{)
13.75+8
Step 111 By superposition theorem,
I=r+1
= 0.096 + 0.22
=0316 A1)
Example 4
Find the value of current flowing through the 4 Q resistor.
12Q 4Q
A NV

40V 250 230 G 8A

Fig. 2.283
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Solution Step I: When the 40 V source is acting alone

;] 12Q r 4Q
et A'A% > NV
a0V 250 230
Fig. 2.284
By series—parallel reduction technique,
1 12Q I I 12Q
e > VW
a0V $50 g70 a0V

(@)
Fig. 2.285

;=20
12+2.92

From Fig. 2.285(a), by current-division rule,

=2.68A

5
' 268X —— = -
I s~ LI2A() = L12A()

Step II: When the 8 A source is acting alone

g 2920

(b)

12Q

40

N\

A%

250

230

Q 8A

Fig. 2.286

By series—parallel reduction technique,

3.53Q

4Q

)&

230

G 8A

(a)

7.53Q

Fig. 2.287

A X

N

G 8A

(b)



Superposition Theorem

From Fig. 2.287(b), by current-division rule,
” 3

1" = 8x =228A(«)
7.53+3
Step I1I: By superposition theorem
I=r+1"
=-1.12+2.28
=1.16 A(«)

Example 5

2.125

Find the value of current flowing in the 10 €2 resistor.

20
A
1
: Soa  ()ea  Zso
10V

Fig. 2.288

Solution Step I: When the 10 V source is acting alone

2Q
NV
1Q
2100 250
10V
T
Fig.2.289
By series—parallel reduction technique,
7 I
y
1Q 1Q
10Q § 7Q § 412 Q
10V 10V
T |
(a) (b)
Fig. 2.290
10
1= =195A

1+4.12
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From Fig. 2.290(a), by current-division rule,

=195x—" =08A W)
7+10
Step II: When the 4 A source is acting alone
2Q I
ANN—

7

103 100 (Dan Zse

Fig. 2.291
By series—parallel reduction technique,

2Q
ANN——=

A ~

09103 G 4A Zs0 29103 G 4A

$s50

(a) (b)
Fig. 2.292

1= 4x =253A
291+5

From Fig. 2.291, by current-division rule,

1
17 = 2.53x% . =023A 1)

+10
Step 111 By superposition theorem,
I=r+1
=0.8+0.23
=1.03A )
Example 6
Find the value of current flowing through the 8 Q resistor.
8 Q
NV

5A<D 2120 2300 G 25A

Fig. 2.293



Solution Step I: When the 5A source is acting alone

r 8Q
W\,

sa(}) 2120 2300

Fig. 2.294

By current-division rule,
, 12
L
12+8+30

Step II: When the 25 A source is acting alone

=12A(>)

r 8Q
A%

1203 2300 (3 25A

Superposition Theorem  2.127

Fig. 2.295
By current-division rule,
I"=25X——— =15A(>)
30+12+8
Step 111: By superposition theorem,
I=r+1
=12+15
=162A(>)
Example 7
Find the value of current flowing through the 4 Q resistor.
2Q
NV
5Q 6 Q
v 240
20V T 6 Q

Fig. 2.296
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Solution Step I: When the 5 A source is acting alone

2Q
NV

5A® 6Q
5Q

6Q

Fig. 2.297

By series—parallel reduction technique,

2Q
W o .
6Q NV
5A 4Q
CD 2 5A CD 28730 S40
273 Q
(a) (b)
Fig. 2.298
From Fig. 2.298(b), by current-division rule,
8.73
I'= 5x =343A1)
8.73+4
Step II: When the 20 V source is acting alone
2Q
NNV
6 Q
I 5Q ’ §
4Q
20V T 6 Q
Fig. 2.299
By series—parallel reduction technique.
I 5Q I I 5Q
e VYAV > e A'AY%
20V Z60 2100 20V 23750

(a)
Fig. 2.300

(b)



Superposition Theorem

20
1= =229A
5+3.75
From Fig. 2.300(a), by current-division rule,

I” = 229x 6
6+10

=086 A1)

Step Il1: By superposition theorem

2.129

I=r+1
=3.43+0.86
=429A 1)
Example 8
Find the value of current flowing through the 3 (2 resistor.
2Q
NN
5Q 3Q
5A (D
10 Q 4Q T 20V
Fig. 2.301

Solution Step I: When the 5 A source is acting alone

2Q

A%
5Q 3Q

5A CD

10Q 4Q

Fig. 2.302

By series—parallel reduction technique,
r 2Q

5A<D 2150 30

Fig. 2.303
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By current-division rule,

r=sx—2 —375A0)
15+2+3
Step II: When the 20 V source is acting alone
2Q

5Q

10 Q
Fig. 2.304
By series—parallel reduction technique,
I I
200% 240 —20v
(a)
Fig. 2.305
1= 2 —6a
333

From Fig. 2.305(a), by current-division rule,

— 20V

(b)

I”= 6% =1AM=-1A¢
oia S LAM=-1AW)
Step 111: By superposition theorem,
I=r+1
=3.75-1
=275A )
Example 9
Find the value of current flowing in the 1 2 resistor.
C
2Q 3Q
WA ANV
4V —_— 1Q

Fig. 2.306



Superposition Theorem

Solution Step I: When the 4 V source is acting alone

2Q 3Q
NV
7
av—_— 10
Fig. 2.307
By current-division rule,
4
= T 133A 1)
Step II: When the 3 A source is acting alone
2Q 3Q
7
10 3A
Fig. 2.308

By current-division rule,

I =3x% 2 =2A)

1+2
Step Il11: When the 1 A source is acting alone
VA
2Q ~ 3Q
NNV
1Q
Fig. 2.309
Redrawing the circuit,
12
3Q
2Q 10
1A
Fig. 2.310

By current-division rule,

I =1 2 0.66A (1)
=1 X —=0.
2+1

2.131
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Step IV: By superposition theorem,
I: 1/+1/I+1/1/

=133+2+0.66
=4A®)
Example 10
Find the voltage V.
A
6V 5Q
5A 10V
B
Fig. 2.31 [Dec 2014]

Solution Step I: When the 6 V source is acting alone

,_—O+A

5Q

Vag'

6V

Fig. 2.312

Vig =6V
Step 11: When the 10 V source is acting alone
A

+
5Q

’”

Vag

mnv _
LOB
Fig. 2.313

Since the resistor of 5 € is shorted, the voltage across it is zero.
Vi =10V
Step Il11: When the 5 A source is acting alone

°A
%59




Superposition Theorem = 2.133
Due to short circuit in both the parts,
V143”’ — 0 V
Step 1V: By superposition theorem,
Vig = Vg + Vag”" + Vig™”
=6+10+0
=16V
Example 11
Find the voltage across 4 k€.
1kQ 87
AAA 1
1omA (1) §4k9 —— 25V §3kg
Fig. 2.315 [May 2016]

Solution Step I: When the 10 mA source is acting alone
1kQ

10 mA (D 4kQ 3kQ

Fig. 2.316

Since 3 k€ resistor is connected in parallel with short circuit, it gets shorted.

1kQ

10mA (1) 4 kO

Fig. 2.317
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By current division rule,

I'=10m x lklf% =2mA)
Step II: When the 25 V source is acting alone
1 kQ
1
4 kQ — 25V
3kQ

Fig. 2.318

Since 3 kQ resistor is connected in parallel with 25 V source, it becomes redundant.

25
= =5mAW{)
4k + 1k
Step Il1: When the 15 V source is acting alone
1kQ 15V
i
'
1
4 kQ
3 kQ
Fig. 2.319

Since series combination of 4 kQ and 1 k€ resistor is connected across a short circuit, it
gets shorted.

=0
Step IV: By superposition theorem,
I=0I'+1"+1"
=2mA+5mA+0
=7mAW)



Superposition Theorem

Example 12

2.135

Find the current through the 5 Q resistor:
5Q 10 Q

24vl 2A<D §209 —36V

Fig. 2.320

Solution Step I: When the 24 V source is acting alone

5Q 10Q
AYAYAY A%

24N —/— 20Q

Fig. 2.321

By series—parallel reduction technique,

I 50

24N —— 6.67 Q

Fig. 2.322

24
= —2.06A (=) =—2.06A
5+6.67 =) )

Step II: When the 2 A source is acting alone

By series-parallel reduction technique,

5Q 10Q 5Q

2A<D 20Q 2A<D 6.67 Q

(a) (b)
Fig. 2.323
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From Fig. 2.323(b), by current-division rule,

1”"=2x

6.67
5+6.67

= .14 A (<)

Step I11: When the 36 V source is acting alone

By series-parallel reduction technique,

5Q I 10 Q Ji 10 Q
20Q —— 36V 4Q — 36V
(a) (b)
Fig. 2.324
1= 6 _ 2.57A
10+ 4
From Fig. 2.324(a), by current-division rule,
2
1”7 =2.57x 0 _ 2.06 A («)
20+5
Step IV: By superposition theorem,
[ — II + I/, + I/’/
=-2.06+1.14+2.06
=1.14A(«)
Example 13
Find the value of current flowing through 30 £ resistor.
30 Q
Wy
10V/10Q = 20
Q 2A/20Q £200
T 100 V
Fig. 2.325 [Dec 2015]
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Solution Step I: When the 10 V source is acting alone

30Q 1
J_ A
10V
2200 $22 200
10 Q
Fig. 2.326
By series-parallel reduction technique,
30Q 1
T MA
10V
§ 200 $1.820
10Q
(a)
I I

1ovJ— 10v£
20 Q ?31.82 Q D %12.289

10 Q 10 Q

Fig. 2.327
=10 +1102.28 0454
From Fig. 2.327(b), by current-division rule,
I’= 045 XL: 0.17A (=) =-0.17A (<)
20+31.82

Step II: When the 24 source is acting alone

77 30Q
M

1003 (Dea 2200 S20 Sa200

Fig. 2.328
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By series-parallel reduction technique,

1”7 30Q

AMA——
2a(}) 6670 1.820
(a)
7
2a(}) 6670 $31.820
(b)
Fig. 2.329
By current-division rule,
17= 2XL= 0.35A (¢«)
6.67+31.82
Step-111: When the 100 V source is acting alone
30Q ;m
wy
20
1002 § 20Q 2200
.|_ 100 V
Fig. 2.330

By series-parallel reduction technique,

30 Q Il// I///
WA
20 Iz 20
6720% § 200 36670Q%
T 100V 100V
(a) (b)



Superposition Theorem = 2.139

2Q
129402
J_ 100 V
(c)
Fig. 2.331
100
I= —=6.69A
12.94+2
By current-division rule,
I” = 6.69x————=236A («)
20+36.67
Step 1V: By superposition theorem,
I=r'+1"+1"
=-0.174+0.35+2.36
=254A («)
Example 14
Find the value of current flowing through the 5 Q resistor.
5Q 10 Q
AN A
24N — 2A 10 Q — 10V
Fig. 2.332 [May 2015]

Solution Step I: When the 24 V source is acting alone

50 10 Q
A% A% ;50

—
T

24V — 10 Q 24V 5Q

Fig. 2.333
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24

I'=—"=24A(>)=-24A (<)

5+5

Step Il  When the 2 A source is acting alone

50 g~ 100
A AN
2A 100

(a)

Fig. 2.334

7 =2x——=1A(c)
5+5

Step III' ' When the 10 V source is acting alone

Fig. 2.335

50 100
A A

10Q —-— 10V

(a)

I = L =0.75A
10+3.33
By current-division rule,
10

" =0.75x%
10+5

Step IV By superposition theorem,
I=I"+17+1"”
=-24+4+1+05

=-09A («)

I=09A

(=)

=0.5A(«)

5Q§

2a(D)

(b)

333Q§

— 10V

(b)



Superposition Theorem

Example 15

2.141

Find the value of current flowing through the 4 Q resistor.
6V

Fig. 2.336

Solution Step I: When the 5 A source is acting alone

)

5A 2Q 4Q
Fig. 2.337
By current-division rule,
2
I'=5x =1.67A ()
2+4

Step II: When the 2 A source is acting alone

J &

Fig. 2.338
By current-division rule,
17 =2x =0.67A
2+4 )
Step Il11: When the 6 V source is acting alone
6V

2Q > 4Q
r

Fig. 2.339
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Applying KVL to the mesh,
20" —-6-41"" =0
I"=-1A{)

Step IV: By superposition theorem,
I — 1/ + 1// + I///

[Dec 2014]

=1.67+0.67-1
=134A{)
Example 16
Find the value of current flowing through the 5 Q resistor.
2A
D
N
3Q 6 Q 6 Q
AN ANV ANV
5A(D S50 2100 230
AL L AW
2Q 10V 40
Fig. 2.340
Solution Step I: When the 5 A source is acting alone
3Q A 6 Q 6 Q
AW F AN AN
Q) § 50 ; 100
I I I3
5 MW AW
2Q 4 Q
Fig. 2.341

Writing equations in matrix form,
1 o o][n] [5

-5 23 -10||1, [=]0
0 -10 23]|1,| [0



I;=0.58 A
I'=sI,-1,=5-134=3.66A ()
Step 11: When the 10V source is acting alone

Superposition Theorem  2.143

2 6Q 6Q
% A AW
I I
W I AN
20 10V 40
Fig. 2.342

Writing KVL equations in matrix form,

23 -10][1,] _[10

-10 23 ||| |0
1,=054A
L=023A

I"=-1,=-054A (1)
Step III: When the 2 A source is acting alone

()

-/

2A

AW AN

/ 6Q

10Q

) i)
I I

AN A

B 2Q 4 Q

Fig. 2.343

Writing equations in matrix form,
23 -10 0 || 0
-10 23 -6||L,|=|0
0 0 1|14 -2



2.144 Basic Electrical Engineering

I,=-028 A
I,=—0.64A

1”=-1,=-028 A ({)
Step 1V: By superposition theorem,
I=0'+1"+1"”
=3.66-0.54 +0.28

=34A
Example 16
Find the value of current flowing through the 3 Q resistor.
9Q
AVAYAY,

AYAYAY; AVAVAY
7Q 5Q
29; §3Q
@M
|+
4V
Fig. 2.344

Solution Step I: When the 4 V source is acting alone
9Q

Fig. 2.345
Writing KVL equation in matrix form,

R RN

I'=1=039A ()

[Dec 2012]



Superposition Theorem = 2.145

Step Il  When the 15 A source is acting alone

Fig. 2.346

Writing the current equation for the supermesh,
L—1, =15 (1)
Writing the voltage equation for the supermesh,
-9, -5,-L)-7(,-L,) =0
-161,-55,+121; =0 (2)
Applying KVL to Mesh 3,
—2L-T7(;-1)-5;-1,)-3;=0
=71, -50,+17; =0 3)
Solving Eqs (1), (2) and (3),
I"=L=317A )
Sep III  When the 5 A source is acting alone

9Q

NN\
D,

NN\ AAYAY;

7Q 5Q

2Q : : 5A D 30
IZ I3
Fig. 2.347

Applying KVL to Mesh 1,

91, -5, - I) -7~ 1,) =0
211, -7, — 51, =0 (1)
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Writing the current equation for the supermesh,
IL—1;=5 2)
Writing the voltage equation for the supermesh,
2L, -7, -1)-5U;—1)) -3, =0
121, -9, -8, =0 3)
Solving Eqs (1), (2) and (3),
I”=1=-246A ()
Step IV By superposition theorem,
I=I"+1"+1"=039+3.17-246=1.1A
Vio=31=3(1.1)=33V

Example 17
Determine the value of current flowing through R; = 2 € in the circuit shown in Fig. 2.348.
2Q
A
5A
()
N
10 1Q
A ANN—

evi-: <D 4A §RL=ZQ

Fig. 2.348 [May 2013]

Solution Step I: When the 6 V source is acting alone

2Q
NN
1Q
1Q 1Q
AN AN , A
6V T ;RL:ZQ 1 : §RL=ZQ
B
(a) (b)

Fig. 2.349



Superposition Theorem

6 _
I'= o 2A ()

Step I  When the 4 A source is acting alone

2Q
AAYAY
10 /1D 10
AYA%AY A%
I
) <D4A ) §RL=2Q
I I3
Fig. 2.350
Applying KVL to Mesh 1,
41, -1, -1, =0
Writing the current equation for the supermesh,
L—1; =4

Writing the voltage equation for the supermesh,

-1, 1) - 1(;-1)—-2=0
21, -1,-3,=0
Solving Egs (1), (2) and (3),
I"=L=-067TA ()
Step III  When the 5 A source is acting alone

20
N\

5A

()

N

10 10

NV NN

144

Fig. 2.351

2.147

(1

)

)
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Simplifying the circuit,

5A 5A
- S
~ )

1Q
AYAVAY AAYAY:

10 Y
AVAVAY,

AN I 2q

l 1Q (b)

(a)
Fig. 2.352

1
I=5x——=167A (1)
1+2

1
1”7 =—1.67 x 5 =-084A )

Step IV By superposition theorem,

I=I+1"+1"=2-067-084=-049A ({)

Sz

Example 18
Determine the value of current flowing in the 1 £ resistor.
2Q
vV
1o g
5A 3Q EN
vV
2Q

Fig. 2.353

[Dec 2013]



Solution Step I: When the 5 A source is acting alone

I

103

Superposition Theorem

S2a

Simplifying the network,

10

I

1Q

By current-division rule,

Step Il When the 3 V source is acting alone

&

1Q§

2Q
VAV
5A ;39
VAYAVAY
2Q
Fig. 2.354
1.2Q
VI
1Q
Fig. 2.355
, 1.2
I'=5x———=1875A (1)
1.2+1+1
2Q
VvV
»
3Q
3V
gm
,D
VAYAYAY
2Q

Fig. 2.356

2.149
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Applying KVL to Mesh 1,
21,-3-3(,-1;) =0

51, -3 =-3 ey
Applying KVL to Mesh 2,
3-2L,-2(l,-1;) =0
4,-21; =3 )
Applying KVL to Mesh 3,
“3L-1)-2(L-15)-1;=0
-31,-2,+6,=0 3)
Solving Eqs (1), (2) and (3),
1,=-0.66 A
1,=07A
1, =-0.09A

17=-1;=0.09A
Step III By superposition theorem,
[=1"+1"=1875+0.09=1.965A ({)

Example 19
Find the value of current flowing through the 6 (2 resistor.
1(1 v 20
| l VvV

4A<D §109 gsg Q e §GQ

Fig. 2.357 [May 2014]

Solution Step I: When the 4 A source is acting alone

2Q
|
w® D Eee D EeD)
6 Q
I4 I I3

Fig. 2.358
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Writing equations in matrix form,
1 0 0] 4
-10 17 5|1, |=|0
0 =5 11|44 0
I'=r,=123A )
Step Il  When the 10 V source is acting alone

10V 20
I AN
”
§1OQ D ;59 D ;69
14 I
Fig. 2.359

Writing KVL equation in matrix form,
17 51| -10
5l
I"=L=-031A1)

Step III  When the 3 A source is acting alone
2Q

10 Q gsg Q 3A ;69

Fig. 2.360

By series-parallel reduction technique,

V&
17!2; 5Q (T 3A ;69 3.869; Cf 3A

(a) (b)

Fig. 2.361
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By current-division rule,
3.86

3.86+6
Step IV By superposition theorem,

7”7 = 3% =1.17A ()

[=+1"+1"=123-031+1.17=2.09A ()

3

Exercise 2.6

2.1 Find the value of current flowing through the 1 Q resistor.
1Q

2Q

30 1A<D 2Q

10V
_|_

Fig. 2.362

2.2 Find the value of current flowing through the 10 Q resistor.

10 Q 30 Q

2.3 Calculate the value of current flowing through the 10 € resistor.

10A D 5Q 20Q 100V

Fig. 2.363

10 Q
AVAVAY,
4Q 20
25V<1’> 7Q C‘:)QV
2Q 3Q
Fig. 2.364

[0.95 4]

[0.37 A]

[1.62 4]
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2.4 Find the value of current flowing in the 2 Q resistor. Also, find voltage across the

current source.

1Q 3Q
2Q
8V _|_ 1A
Fig. 2.365
[34,9V]
2.5 Find the current /..
5Q 20 Q
—>1X
24V —/—= 2A 20Q —~36V
Fig. 2.366
[-0.93 4]
2.9 THEVENIN’S THEOREM

It states that ‘Any two terminals of a network can be replaced by an equivalent voltage
source and an equivalent series resistance. The voltage source is the voltage across the
two terminals with load, if any, removed. The series resistance is the resistance of the
network measured between two terminals with load removed and constant voltage source
being replaced by its internal resistance (or if it is not given with zero resistance, i.e., short
circuit) and constant current source replaced by infinite resistance, i.e., open circuit.’

Fig. 2.367 Thevenin’s theorem

Explanation The above method of determining the load current through a given load

resistance can be explained with the help of the following circuit.
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R1 R3 R1 R3

AAAY; A% A NVN—O0 A

+
Vo R, R S V— R, Vin
B ©B

(a) (b)
R Ry
AN\ OA AN\ A
Ry R, Ry, Vi —= ’_> R,
I
oB B

(c) (d)

Fig.2.368 Steps in Thevenin’s theorem

2.9.1 Steps to be followed in Thevenin’s Theorem

1. Remove the load resistance R; .

2. Find the open circuit voltage Vpy, across points 4 and B.

3. Find the resistance Ry, as seen from points 4 and B with the voltage sources and
current sources replaced by internal resistances.

4. Replace the network by a voltage source V', in series with resistance Ryy,.

5. Find the current through R; using Ohm’s law.
IL — VTh

Example 1

Find the value of current flowing through the 2 Q resistor.

—_—10V

Fig. 2.369

Solution Step I : Calculation of Vo,
Removing the 2 Q resistor from the network,



Thevenin’s Theorem

50 20V 5
- 1

A
YW I 0 Vo
+
sov— I §1og _‘,

1m0V

Fig. 2.370
Applying KVL to the mesh,
40-5/-20-10/=0
157 =20
I1=133A

Writing Vo, equation,
10/ -V +10=0
Vi = 107+ 10
=10(1.33)+ 10
=2333V
Step II: Calculation of Ry,
Replacing voltage sources by short circuits,

5Q A B
AN 0 Rrn

§1OQ

Fig. 2.371
Ry, =5110=3.33Q
Step I1I: Calculation of I;

3.33Q

A
23.33V—— /—> 2Q
Iy

B

Fig. 2.372

- 2333 438 A

L 33342

2.155
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Example 2

Find the value of current flowing through the 8 Q resistor.

5Q 10 Q
AaaY Ay,
250 V §5 Q
|
il
75V
Fig. 2.373

Solution Step I: Calculation of 'V,
Removing the 8 Q resistor from the network,

;] 5Q 10 Q
— = AW oA
+
250 VT § 50 Vi
/| oB
75V
Fig. 2.374
= 2% _osa
. . 5+5
Writing Vo, equation,
250 -5[-Vy,=75=0
Vi = 175 =51
=175-5(25)
=50V
Step II: Calculation of R,
Replacing voltage sources by short circuits,
50Q 10 Q
A% A% 0A
§5 Q R
oB

Fig. 2.375

Ry = (5]15)+10=125Q
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Step IlI: Calculation of I,
12.5Q

A
50V ) 8Q
I
B
Fig. 2.376
=0 —oan
12.5+8

Example 3

Find the value of current flowing through the 2 Q resistor connected between terminals A and B.

Fig. 2.377

Solution

Step I: Calculation of Vy,
Removing the 2 € resistor connected between terminals 4 and B,

20 10 30
— =
L
D 129> —4v
TP
Fig. 2.378

Applying KVL to Mesh 1,
2-20-12(,-1,) =0

141, - 121, =2 (1
Applying KVL to Mesh 2,
-12,-1)-1,-3,-4 =0
—121, + 161, =—4 2)
Solving Eqs (1) and (2),

L=-04A
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Writing Vo, equation,

Vi —3L,—4=0

Vi = 4 + 31,
=4+3(-04)
=28V

Step II: Calculation of R,
Replacing all voltage sources by short circuits,
20 1Q 3Q

A
12Q R,

51
Fig. 2.379
Ry, = [I2] 12) + 1][|3=1.43 Q

Step III: Calculation of I,

1.43Q
A
28V ) 20
Iy
B
Fig. 2.380
I, = =0.82 A
Los+1.67
Example 4
Find the value of current flowing through the 8 Q resistor.
12Q 10 Q A 4Q
AN AV AW
12 Q
24V — % 12Q § 8Q
-|— 32V
B
Fig. 2.381 [May 2015]

Solution Step I: Calculation of 'V,
Removing 8 Q resistor connected between A and B,



24V —

Fig. 2.382

Applying KVL to Mesh 1,
24-121,-12(,-1,)=0
241, - 121,=24

Applying KVL to Mesh 2,
-12(,-1,)-101,—-41,-121,-32=0
-121,+381,=-32

Solving Eqs (1) and (2),
1,=0.69 A
I,=-0.63 A

Writing Vo, equation,
Vin—40,—121,-32=0
Vin=32+4(-0.63) + 12 (-0.63)

=2192V
Step II: Calculation of Ry,
Replacing all voltage sources by short circuits,

12Q 10Q 4Q
AN AMAA l
A
§1ZQ Rth 12Q
i
(@)
10 Q 4Q
A
6Q R 12Q
i
(b)
Fig. 2.383

Ry =8Q

Thevenin’s Theorem  2.159

(1

2



2.160 Basic Electrical Engineering

Step 1lI: Calculation of I}

8Q
AW A
2192V — > 8Q
I
B
Fig. 2.384
21.92
I, =——=137A
8+8
Example 5
Find the value of current flowing through the 10 £ resistor.
6Q 20
10V 1Q 3Q 10Q
T I
1
20V
Fig. 2.385
Solution
Step I: Calculation of Vy,
Removing the 10 Q resistor from the network,
6Q 2Q
M= A VAVAV= OA
+|- +
10V — /) 1Q /) 3Q Vi
I, DA -
||—o8
20V
Fig. 2.386

Applying KVL to Mesh 1,
10-6/,-1(,-1) =0

71, -1, =10
Applying KVL to Mesh 2,

—1(I,~1,)-2I, 3, =0

(1
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I,—-6L, =0
Solving Eqs (1) and (2),
I, =024 A
Writing Vo, equation,
3L, -V, —20=0
Vi =36,-20
=3(0.24)-20
=-19.28V
=19.28 V (terminal B is positive w.r.t A)

Step II: Calculation of R,
Replacing voltage sources by short circuits,

2.161

2

6Q 2Q
OA
1Q 30 ~— Ry,

OB

Fig. 2.387

R, =[(6]]1)+2]]|3=1.47 Q
Step III: Calculation of I,
1.47Q
O A
IL
19.28V—(— U 10 Q
OB
Fig. 2.388
10
I = 6x =1.68A(T
t 10+2 )
Example 6
Find the value of current flowing through the 10 £ resistor.
10 Q 30 Q

J"IOO Vv

10A 5Q 20 Q T

Fig. 2.389
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Solution
Step I: Calculation of Vy,
Removing the 10 Q resistor from the network,

AVr, B 30 Q
+ - -
10A(4 50 200 C 100 V
D) .
Fig. 2.390
For Mesh 1,
1, =10
Applying KVL to Mesh 2,
100 —-307,—20, =0
I, =2A

Writing Vo, equation,
5=V, —20L, =0
Vi =51, — 201,
=5(10) —20(2)
=10V
Step II: Calculation of Ry,
Replacing the current source by an open circuit and the voltage source by a short circuit,
RTh

AlB 30 Q
5Q|£ %ZOQ

Fig. 2.391
Ry =5+(20]130)=17 Q
Step III: Calculation of I,

17Q

NN A
10V — /) 10Q
IL
B
Fig. 2.392
L=-29 —037A

51167
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2.163

Example 7
Find the value of current flowing through the 40 £ resistor.
50 Q 10 Q
25V —— 20 Q 40 Q — 10V 30 Q
Fig. 2.393

Solution

Step I: Calculation of Vy,

Removing the 40 Q resistor from the network,
50 Q 10 Q

25V —— ;20 Q Vin —_— 10V ;30 Q

Fig. 2.394
Since the 20 € resistor is connected across the 25 V source, the resistor becomes redundant.
Voo =25V
Applying KVL to the mesh,
25-50/-10/+10 =0
1 =0.58A

Writing Vo, equation,
Vip—10I+10 =0
Vip =10 ()10

=10(0.58)-10

=—42V

=4.2 V (terminal B is positive w.r.t. A)
Step II: Calculation of Ry,
Replacing the voltage sources by short circuits,

50 Q 100
A A
] O
200
Ry 00 500 R
(] o
B B

Fig. 2.395

10Q
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Ry, =50]10=833Q

Step IlI: Calculation of I,

=Y
3.33+2

Example 8

42V —

8.33Q
NV OA

IL
\\/) 400Q

OB

=0.09A (T

Fig. 2.396

Find the values of current flowing through the 10 £ resistor.

Solution

Step 1. Calculation of V,
Removing the 10 Q resistor from the network,

60Q 2y 10 Q
AN [— W\
;49 §1SQ —_— 20V
Fig. 2.397
2V
6Q + —
= | Vo =
+ \}_2 B +
+ +
Q 15Q — 20V

3_4

Fig. 2.398



Writing Vo, equation,
41, +2 =V, — 151, =0
Vi =41, +2 151,
=4(5)+2-15(1)
=7V
Step II: Calculation of Ry,
Replacing voltage sources by short circuits,

6Q R 50
O O
A ¢ B
4Q 15Q
Fig. 2.399

Ry, =64+ (5] 15)=6.15Q
Step III: Calculation of I,

6.15Q

A% OA
7V —— 10Q

Iy

OB
Fig. 2.400
50
I, = —— =043A
1+1.33
Example 9

Thevenin’s Theorem 2.165

Determine the value of current flowing through the 24  resistor.
3;%\/ \%z
220V ——
24 Q
50 Q 5Q

Fig. 2.401
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Solution

Step I: Calculation of Vy,
Removing the 24 Q resistor from the network,

+ +
30Q 20Q
I P Ver — U
1 g ThO 2

220V —

A B
+ +
50 QL S50
Fig. 2.402
I, = 220 _ 275 A
30+50
22
I, = 0 _ 8.8A
20+5
Writing Vo, equation,
Vi 301, =201, =0
Vi =201, — 301,
=20(8.8)—30(2.75)
=935V
Step II: Calculation of R,
Replacing the voltage source by short circuit,
300 20
RTh
A B
50 Q 50
Fig. 2.403
Redrawing the circuit,
30 Q 20Q
A B
50 Q 5Q
Fig. 2.404

Ry, = (30 || 50) + (20| | 5)=22.75 Q
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Step IlI: Calculation of I,

2.167

A
93.5Q—— /D 24 Q
I
B
Fig. 2.405
_ 93.5 _
L2275+ 24
Example 10
Find the value of current flowing through the 3 Q resistor.
4Q 5Q
§3 Q
1Q 8Q
20
[
1
50V
Fig. 2.406

Solution

Step 1. Calculation of V,
Removing the 3 Q resistor from the network,

Fig. 2.407
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Applying KVL to Mesh 1,
50-2L,-1(;-1,)-8,—-1) =0

111, - 91, =50 (1)
Applying KVL to Mesh 2,
—41, -5, - 8(L, — 1)) — 1(,, - 1,)=0
91, + 181, =0 2)
Solving Eqs (1) and (2),
1, =7.69 A
I, =385A

Writing Vo, equation,
Vin = 5L, -8, —1;) =0
Vip =5L+ 8 (I, = 1))
=5(3.85) + 8(3.85—-7.69)
=-1147V
=11.47 V (the terminal B is positive w.r.t. 4)

Step II: Calculation of R,
Replacing the voltage source by a short circuit,

40 5Q
Ao
RTh
Bo
10 8Q

Fig. 2.408
A
/4%)\%/59\
20
10 8Q
B

Fig. 2.409

2Q

Redrawing the network,

2
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Converting the upper delta into equivalent star network,

4%2
R= 22 —0730
4+2+5
4
Ry=—X 10
4+2+5
R _—iiz—_0919
344245 7

Fig. 2.410

Fig. 2.411

Simplifying the network,

1.82Q

1.73Q 8.91Q

B
Fig. 2.412

Ry, =1.82+(1.73]18.91)=3.27Q
Step III: Calculation of I,

3.27Q

1147V

Fig. 2.413
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Qf:u+292=183A(ﬁ

Example 11

Find the value of current flowing through the 20 £ resistor.
120V

%159

Solution

Step 1. Calculation of Vy,
Removing the 20 Q resistor from the network,

120V

|1

1 la '
45V +oA
l1 vTh

B

15Q

D:

ANMNE ANE
10Q 5Q
[}
AN |

|
- |
5Q 20V
Fig. 2.415
Applying KVL to Mesh 1,
45-120- 151, -5(, - L) - 10/, -1,) = 0
301, - 151, =-75
Applying KVL to Mesh 2,
20-5L-10,-1,)) -5, 1)) =0
—151, + 201, =20
Solving Eqs (1) and (2),

I, =-32A
L=-14A

(1

2)
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Writing Vo, equation,
45 -V, —10(, - 15) =0
Vip =45-10 (1, - 1)
=45-10[-3.2—-(-14)]
=63V

Step II: Calculation of Ry,
Replacing voltage sources by short circuits,

ba
R 15Q
10 Q B 50
5Q
Fig. 2.416
Converting the delta formed by resistors of 10 €2, 5 Q and 5 Q
into an equivalent star network, (L A
B
R =10 550
20 R, 150
R =100 _550
20 R, R,
_5x%5

Ry=——=125Q
20 Fig. 2.417

25Q 15Q

250 1250

Fig. 2.418
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Simplifying the network,

B
25 Q§ §16.25 Q

Fig. 2.419

Ry, =(16.25]2.5)+2.5=4.67Q
Step I1I: Calculation of I;

4.67 Q

63 V-

Fig. 2.420
63
I, = —=255A
4.67+20
Example 12
Find the value of current flowing through the 3 Q resistor.
12Q
sa(}) S0 Z3o

.|_ 42V

Fig. 2.421

Solution
Step I: Calculation of Vy,
Removing the 3 Q resistor from the network,

Fig. 2.422
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Writing equation for Mesh 1,

1,=6 (1)
Applying KVL to Mesh 2,
42 -12(l,-1,)-61,=0
—121,+ 181, =42 (2)
Solving Eqs (1) and (2),
I, =633 A
Writing Vo, equation,
Vip =61,=38V
Step II: Calculation of R,
Replacing voltage source by short circuit and current source by open circuit,
A
120 6Q Ry, -
B
Fig.2.423
Ry, =612=4Q
Step III: Calculation of I,
40
AAYAY A
38V —_— D 30
IL
B
Fig. 2.424
I, = 38 543 A
4+3
Example 13
Find the value of current flowing through the 30 L resistor.
15 Q 60 Q 30 Q
AVAVAY; NV AVAYAY,
150V — 13A 40 Q — 50V
Fig. 2.425 [May 2016]
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Solution
Step I: Calculation of Vy,
Removing the 30 Q resistor from the network,

i

15Q 60 Q
- — + — & Vm o3
1778
150 V—_— ) 13A ) 40 Q
i lp -
Fig. 2.426

Meshes 1 and 2 form a supermesh.
Writing current equation for supermesh,
L,—-1,=13
Writing voltage equation for supermesh,
150 — 157, — 607, — 401, =0
151, + 1007, =150
Solving Eqs (1) and (2),
I, =-10A
L, =3A
Writing V', equation,
405, =V, —50 =0

Vi =40, — 50
=40(3) - 50
=70V

Step II: Calculation of Ry,

50V

(1

2

Replacing the voltage sources by short circuits and the current source by an open circuit,

15Q 60 Q

0
A

40 Q

RTh

B

Fig. 2.427

Ry, =751140=26.09 Q
Step III: Calculation of I,

26.09 Q

Fig.2.428

70V ) 30Q
IL



I, = ———
L 26.09+30

Example 14

70

=125A

Thevenin’s Theorem

2.175

Find the value of current flowing through the 20 L resistor.

10 Q

0

Solution
Step I: Calculation of Vy,

Removing the 20 Q resistor from the network,

5 ACD

From Fig. 2.430,

Step II: Calculation of Ry,

;5 Q 20Q =100V

Fig. 2.429

10Q
4

A
§5 9 Vin —=100V

_T B

Fig. 2.430

Vi, =100V

Replacing the voltage source by a short circuit and the current source by an open circuit,

10 Q

5Q

ba

Rn 5Q Ry
P P°
(b)
Fig. 2.431
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Step IlI: Calculation of I,

0Q
AVAYAY A
100V—— /D 20Q
IL
B
Fig. 2.432
100
20
Example 15
Find the value of current flowing through the 20 L resistor.
10 Q 20 Q 5Q
AVAVAY
10V T 4Q 8Q G 2A
Fig. 2.433
Solution
Step 1: Calculation of Vo,
Removing the 20 Q resistor from the network,
100 + _ 50
V= 2 Vrn g ¥ =
+ _
10V —— D 40 8Q D G 2A
I - * I
Fig. 2.434
10
I, = =0.71A
10+ 4
L, =2A

Writing the V1, equation,
45, -V, +81,=0
Vin =4 (0.71) + 8 (2)
=18.84V
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Step I : Calculation of Ry,
Replacing the voltage source by short circuit and current source by an open circuit,

Rty R,
10Q t 50
AVAVAY, O O AVAVAY: —0 o—
A B A B
o
4Q ; § 8Q 2.86 Q 8Q
o
(a) (b)
Fig. 2.435
Ry, =10.86 Q
Step Il : Calculation of I;
10.86 Q
A
18.84V — D 20 Q
IL
B
Fig. 2.436
18.84
= —— =0.61A
10.86 + 20
Example 16

2.177

Find the value of current flowing through the 5 Q resistor.

100 50 V 20 50 V
] ]
100V —=— 5Q 20 3Q
Fig. 2.437

Solution
Step I: Calculation of Vy,
Removing the 5 Q resistor from the network,
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N O:b

>/ +
AAAA

N

te)
AN

w

te)

100V =/
B9~ 1+ Iy =
Fig. 2.438
Applying KVL to Mesh 1,
100-107,+50-21,-2(,-1)=0
141,-21, =150 (1)
Applying KVL to Mesh 2,
-2,-1)+50-31=0
-21,+515,=50 (2)
Solving Eqs (1) and (2),
I, =12.88A
L, =1515A

Writing the V5, equation,
100-107, = Vp, =0
Vi =100 —10 (12.88)
=-288V
=28.8 V (terminal B is positive w.r.t. 4)
Step II: Calculation of R,
Replacing voltage sources by short circuits,

10 Q 2Q
Ad
Rn 20 30
)
(a)
10 Q 2Q 10 Q 3.2Q
NNV
Al AS
R, ;1.2 Q Rrn
BY B}
(b) (c)
Fig. 2.439

Ry =10]32=242Q
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Step IlI: Calculation of I,
242 Q
A
IL
28.8V—— U 5Q
B
Fig. 2.440
28.8
= =3.88A(T
bo24245 L
Example 17
Find the value of current flowing through the 10 £ resistor.
10 Q
AVAAY,
2Q 2Q
15V=—F— 1Q ; 1Q
I 10V
1Q
Fig. 2.441
Solution
Step I: Calculation of V,
Removing the 10 Q resistor from the network,
15V
Fig. 2.442
Applying KVL to Mesh 1,
-15-21,-1,-15)-10-1,,=0
41, —-1,=-25 (1)
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Applying KVL to Mesh 2,
10-1(,,-1)-2,-1,=0
-1, +4L, =10 (2)
Solving Eqs (1) and (2),
I, =-6A
L =1A

Writing V', equation,
Ve +2L,+21, =0
Vin =21, + 21,
=2(-6)+2(1)
=-10V
=10V (the terminal B is positive w.r.t. A)

Step II: Calculation of R,
Replacing voltage sources by short circuits,

- R
A B

2Q 2Q

1Q §1Q

1Q
Fig. 2.443
Converting the star network formed by resistors of 2 Q, 2 Q and 1 Q into an equivalent
delta network.
Ry
A B

2Q 2Q

1Q §1Q

10
Fig. 2.444
2%x2

R =2+2+ 22 28Q
2x1

Ry=2+1+ == =40
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2x1
Ry=2+1+ —=4Q
2
O RTh O
8Q
40 40
1Q 1Q
(a)
——— 0 Rm o——
Y B
8Q
AVAYAY -_ o Ryy 00—
A B
1.33 Q
NN NN\
0.8Q 0.8Q
(b) (c)
Fig. 2.445
Ry, =133 Q
Step III: Calculation of I,
1.33Q
A
/
10V UL 100
B
Fig. 2.446
10
I, =——— =083A(T
b133+10 "
Example 18
Find the value of current flowing through the 1 Q resistor.
1A
()
N
2Q 3Q

AV —— 1Q G>3A

Fig. 2.447
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Solution

Step I: Calculation of Vy,
Removing the 1 Q resistor from the network,
1A

4V 2 Q 3A

Fig. 2.448
Writing the current equation for meshes 1 and 2,
I, =-3

Writing Vo, equation,
4-2,-L) -V, =0
Vip =4-2(-3-1)
=4-2(-4)
=12V
Step II: Calculation of Ry,
Replacing the voltage source by a short circuit and the current source by an open circuit,

o} O
2Q 3Q
aYAYAY
Al !
Reh
B
I I
Fig. 2.449
Ry, =2Q
Step IlI: Calculation of I,
2Q
A
12V ) 10
IL
B

Fig. 2.450



Example 19

Thevenin’s Theorem

2.183

Find the value of current flowing through the 3 Q resistor.

2Q 1Q

10\/{% g2 ()1

;zg

Fig. 2.451
Solution Step I: Calculation of Vy,
Removing the 3 Q resistor from the network,
2Q 1Q

1ov% 20 (D1oa

O A

Vi

Fig. 2.452

By source transformation,

o B

2Q 1Q
AAA= AVAVAY,
.
2Q
10V —— D P
I _|_20V

0A

Vi

Fig. 2.453
Applying KVL to the mesh,
10-2/-21-20=0
41 =-10
I=-25A
Writing Vo, equation,
10-2/-Vy =0

Ve = 10-21

o B
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= 10-2(-2.5)

=15V

Step I1I: Calculation of Ry,
Replacing voltage source by a short circuit and current source by an open circuit,

Step III: Calculation of I;

2Q 1Q
OA
2Q Rn
o B
Fig. 2.454
Ry =Q2)+1=1+1=2Q
2Q
A
15V = D 3Q
I
® B
Fig. 2.455
2+3

Example 20

Find the value of current flowing through the 60 £ resistor.

10 Q

80V

VVV

50 Q

;609

;509

Fig. 2.456

[May 2014]
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Solution Step I: Calculation of Vy,

10 Q
- +

" -
.
50 Q l 50 Q
80V — D > Ao* ;

Vi I

o, B O-

Fig. 2.457
Writing KVL equation in matrix form,

60 0[5 [80

0 1201, |0
1,=2.67A
L=133A

Writing Vo, equation,
80—-10(/, - 1) — Vqy,— 10, =0
Vi, =80—10(/;, — I,) — 101,
=80-10(2.67-1.33) - 10 (1.33)
=533V
Step II  Calculation of Ry,
Replacing voltage source by short circuit,

8.33Q
100 VAV J)
NV A

50 Q A gsog R
R TB
B VAN
AN I 8330
10Q :

(a) (b)
Fig. 2.458

Ry, =16.66 Q
Step 11l Calculation of [,
16.66 Q

VAV
53.3V " D 60 Q
I

Fig. 2.459
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533

[ =———=07A
L 16.66 + 60

2.1 Find the value of current flowing through the 6 € resistor.

4A<D §109 §59 Q 3A §69

Fig. 2.460
[2.04 A]
2.2 Find the value of current flowing through the 2 Q resistor connected between
terminals 4 and B.

2Q 12V 2Q 6V 4
A—| |
4Q 5Q
0V —_— § 10 Q 2Q
4A —|- 8A
B
Fig. 2.461
[1.26 A]
2.3 Find the value of current flowing through the 5 € resistor.
5Q
NN
-4 40V 20V 30V
100V —— % =
§20 S 60 7Q 50V 4Q
1 AN
20V 10Q
Fig. 2.462

[4.67 A]
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2.4 Find the value of current flowing through the 20 € resistor.
15Q 40 Q 21Q

Fig. 2.463
[1.54 4]
2.5 Calculate the value of current flowing through the 10 Q resistor.
10 Q
AVAVAY
AVAVAY;
4Q 2Q
+ —
25V (_R 7Q (%12 \%
AYAYAY
2Q 3Q
Fig. 2.464
[1.62 4]
2.6 Find the value of current flowing through the 2 € resistor.
50 20|V 2Q
vV [
40V _‘7 10Q —_— 10V
Fig. 2.465
[9.375 A]
2.7 Find the value of current flowing through the 5 Q resistor.
0V
|
|1
8V —— 1Q 4Q
2Q 3Q
AVAYAY
|
|1
5Q 12V
Fig. 2.466

[24]
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2.10 NORTON’S THEOREM

[Dec 2013]

It states that ‘Any two terminals of a network can be replaced by an equivalent current
source and an equivalent parallel resistance.” The constant current is equal to the current
which would flow in a short circuit placed across the terminals. The parallel resistance
is the resistance of the network when viewed from these open-circuited terminals after all
voltage and current sources have been removed and replaced by internal resistances.

——————————— | A .

Network

By
<z

Fig. 2.467 Norton’s theorem

Explanation The method of determining the load current through a given load resistance can be
explained with the help of the following circuit.

R, R, R, R,
l A A
Vv R, RS v Ry In
—‘7 B T B
(@) (b)
OA A
R, I,
R R, Ry Iy Ry R,
OB B

Fig.2.468 Stepsin Norton’s theorem

2.10.1 Steps to be followed in Norton’s Theorem

1. Remove the load resistance R; and put a short circuit across the terminals.

2. Find the short-circuit current /, or /.

3. Find the resistance R, as seen from points 4 and B by replacing the voltage sources
and current sources by internal resistances.
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4. Replace the network by a current source /,; in parallel with resistance R,

5. Find current through R by current—division rule,

_ IyRy

Lo Ry+R,

Example 1

For the given circuit in Fig. 2.539, find the Norton equivalent between points A and B.

1Q 1Q
A A A
10V—=T ; 1Q R =2Q
B
Fig. 2.469 [May 2015]
Solution
Step I: Calculation of I
Replacing 2 Q resistor by short circuit,
1Q 1Q
AMAA AW A
10V — D ;1 Q @ In
B
Fig. 2.470
Applying KVL to Mesh 1,
10-1/,-1(,-1,)=0
21,=1=10 (D)
Applying KVL to Mesh 2,
-1,-1)-1,=0
-1,+2,=0 ..(2)
Solving Eqs (1) and (2),
1, =6.67TA

L=1,=333A
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Step II: Calculation of Ry
Replacing voltage source by short circuit,

1Q 1Q
MW AN oA
g 1Q <~ Ry
o B
Fig. 2.471
Step IlI: Norton’s equivalent network
A
333A(D) §1.5 Q 20
B
Fig. 2.172
Example 2
Find the value of current through the 10 (2 resistor:
5Q
NV
1Q
10 Q Cf apn S15Q
2V

Fig. 2.473
Solution

Step I: Calculation of I
Replacing the 10 € resistor by a short circuit,

A 5Q

P Iy ,:)CD;“D 150

B
Fig. 2.474

1Q

2V

T




Applying KVL to Mesh 1,
2-11,=0
Meshes 2 and 3 will form a supermesh.

Writing current equation for the supermesh,

Applying KVL to the supermesh,
51,151, =0
Solving Eqgs (1), (2) and (3),
I, =2A
L, =-3A
Iy=1A

Iy=1,-5,=2-(3)=5A
Step II: Calculation of Ry

Norton’s Theorem  2.191

(1

2

3)

Replacing the voltage source by a short circuit and current source by an open circuit,

5Q

Fig. 2.475

Ry=1](5+15)=095Q

Step IlI: Calculation of I,

A
I
5A 0.95Q 10 Q
B
Fig. 2.476
0.95
I, =5x ——— =043 A

10+0.95
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Example 3

Calculate the value of current flowing through the 15 € load resistor in the given circuit.

4Q 6 Q
AVAVAY AVAVAY
+ 8Q
0V T ; T
4A
Fig. 2.477 [May 2013]
Solution
Step I: Calculation of 1
4Q 6 Q
NV NV
8Q A
T D1 OF
h an ' 5
Fig. 2.478
Writing the current equation for the supermesh,
L,-1,=4 (1)
Writing the voltage equation for the supermesh,
30-41,-61,=0
41, +61, =30 (2)
Solving Eqs (1) and (2),
I, =54A
L, =14A

Iy=L=14A



Norton’s Theorem

Step II: Calculation of Ry

2.193

4Q 6 Q
AYA%AY AAVAY,
8Q oA
«~— Ry
?B
Ry=10Q
Fig. 2.479
Step III: Calculation of I;
oA
I
1.4A<T> §1OQ §1SQ
o B
Fig. 2.480
I, =1.4x =056 A
t 10+15
Example 4
Find the value of current flowing through the 10 2 resistor.
55 %
|
20 VJ_
§2 Q 10 Q
5Q

Fig. 2.481
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Solution
Step I: Calculation of 1
Replacing the 10 € resistor by a short circuit,

8Q |12 \
NV | I A
20V
0% )
I I
B
Fig. 2.482

Applying KVL to Mesh 1,
=51, +20-2(/,-1,) =0
71, —21, =20
Applying KVL to Mesh 2,
—2(,-1,)-8,—-12=0
21, + 101, =-12
Solving Egs. (1) and (2),
I, =-0.67A
Iy=1,=-0.67A
Step II: Calculation of Ry
Replacing voltage sources by short circuits,

8 Q

lA
TB

Fig. 2.483

Ry=(5]12)+8=9.43Q
Step III: Calculation of I,

0.67 A (D 943 Q 10Q

Iy

Fig. 2.484

9.43

I, =0.67x ———=033A(T)

9.43+10

(1

2
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Example 5

Find the value of current flowing in the 10 Q resistor.

50 Q
20Q
50V —— 40 Q 10 Q
—|— 10V
Fig. 2.485
Solution
Step I: Calculation of I
Replacing the 10 Q resistor by a short circuit,
50 Q
A
20 Q
50V —— 400 In
—|— 10V
B
Fig. 2.486

The resistance of 40 Q2 becomes redundant as it is connected across the 50 V source.

50 Q

A
20Q
40 Q 50 V—— ) % 12> Iy
Iy 10V
1 .
Fig. 2.487
Applying KVL to Mesh 1,
50-507,-20(,-1,)-10=0
70 1, — 20 1, =40 (1)
Applying KVL to Mesh 2,
10-20(,—1) =0
-201,+2017, =10 (2)
Solving Egs. (1) and (2),
I, =1A
L=15A

Iy=L=15A
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Step II: Calculation of Ry
Replacing voltage sources by short circuits, resistor of 40 Q gets shorted.

50 Q
OA
- RN
40 Q 20Q
OB
Fig. 2.488

Ry =50[20=1428 Q

Step IlI: Calculation of I, A
IL
14.28
I,=15x——=0.88A
f 428410 150(4)  Zazso 100
B
Fig. 2.489
Example 6
Find the value of current flowing through the 10 Q resistor in Fig. 2.490.
60 20
10 VL 10 30 10 Q
[ {
20V
Fig. 2.490
Solution
Step I: Calculation of Iy
Replacing the 10 Q resistor by a short circuit
6 Q
0 VJ‘ /) 10 30
L )J
) 20V
Fig. 2.491
Applying KVL to Mesh 1,
10-6,-1(,-15) =0

71, -1, =10 (1)

Applying KVL to Mesh 2,

1 (I,—1)-2L,-3(,— 1) =0
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-1, +6l,-31;=0 2)
Applying KVL to Mesh 3,
3(;-1,)-20=0
3, -3, =20 3)
Solving Egs. (1), (2) and (3), 6Q 20 o
L, =-13.17A
Iy=1;=-1317A 10 30 <Ry

Step II: Calculation of Ry
Replacing voltage sources by short circuits, Fig. 2.492
Ry=[6|1)+2]]|3=1.46Q

oB

Step III: Calculation of I,

2Q
A
IL
1317 A 1.46 Q 10 Q
B
Fig. 2.493
I, =13.17x 146 ) 6s A
1.46+10

Example 7

Find the value of current flowing through the 10 L resistor.
10 Q 20Q 30 Q

IVVV AVAVAY; ﬁ
20 Q 20 Q 100 V
—‘V T v —‘V

Fig. 2.494

50 V

Solution
Step I: Calculation of 1
Replacing the 10 Q resistor by a short circuit,
A Iy B 20 Q 30 Q

Fig. 2.495
Applying KVL to Mesh 1,
50-20(/,-1,)—40=0
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207, - 201, =10
Applying KVL to Mesh 2,
40-20(,—1))—-20,-20 (I, - ;) =0
—2017, + 601, — 20/, =40
Applying KVL to Mesh 3,
20 (I3 —1,)—30;,—-100 =0
—2017, + 501; =—-100
Solving Egs. (1), (2) and (3),
I, =081 A
Iy=1,=081A
Step II: Calculation of Ry

Replacing voltage sources by short circuits,

Ry 200 300
AV B
200 200

Fig. 2.496
Ry =[(20]/30)+20]]/20=12.3 Q

Step I1I: Calculation of I;

A
I
0.81A 12.3Q 10Q
B
Fig. 2.497
I, =0.81 x 123 o454
12.3+10

Example 8

(M

2

3)

Obtain Norton s equivalent network as seen by R;.

40V 100

30Q R,
120V£T %609 %309 _‘Lov

Fig. 2.498




Solution
Step I: Calculation of 1
Replacing the resistor R; by a short circuit,

300 40V g0

A Iy B
120V j 60 Q D 30&:) 10V
K  § ]

Fig. 2.499

Applying KVL to Mesh 1,
120-30/,-60 (I, - 1,) =0
907, — 601, =120
Applying KVL to Mesh 2,
-60 (I, —-1,)+40-10/,-30(,-13)=0
—607, + 1007, — 30/; =40
Applying KVL to Mesh 3,
-30(;-1,)+10=0
30, -30; =-10
Solving Eqs (1), (2) and (3),
I; =4.67TA
Iy=1L=4.67TA
Step II: Calculation of Ry
Replacing voltage sources by short circuits,

30 Q 10 Q ABN B
AN o ¢
60 Q 300
Fig. 2.500

Ry =1[(3060)+10]]30=15Q
Step I11: Norton's equivalent network

A

4.67 A 15Q R,

Fig. 2.501

Norton’s Theorem

2.199

(M

2

3)
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Example 9
Find the value of current flowing through the 8 Q resistor.
5V
'y
I I
SA 120 40 2o 8Q
Fig. 2.502

Solution
Step I: Calculation of 1
Replacing the 8 Q resistor by a short circuit,

5V
I A
5A 12Q 40 2A Iy
B

Fig. 2.503

The resistor of the 4 Q gets shorted as it is in parallel with the short circuit. Simplifying
the network by source transformation,

12Q 5

Vv
—AN—]i A
60V — 2A ) I
/1 l2
B

Fig. 2.504

Meshes 1 and 2 will form a supermesh.
Writing current equation for the supermesh,

L,—1, =2 (1)
Applying KVL to the supermesh,
60—-12/,-5=0
121, =55 (2)
Solving Eqs (1) and (2),
1, =458 A
I, =6.58 A

Iy=15=658A
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Step II: Calculation of Ry
Replacing the voltage source by a short circuit and the current source by an open circuit,

0 A
120 4Q =~ Ry
OB
Fig. 2.505
Ry=12114=3Q
Step III: Calculation of I )
IL
658A(}) 30 80
B
Fig. 2.506
15
[, =658x — =179A
2+3
Example 10
Find value of current flowing through the 1 £ resistor.
2Q
AYAAY
§ 10
1A (D § sQ Oy § 20
AVAVAY
2Q
Fig. 2.507
Solution
Step I: Calculation of I,
Replacing the 1 Q resistor by a short circuit,
QA
2Q
IN
1A (D 3@ 73, 220
oB

2Q
Fig. 2.508
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By source transformation,

A
20 D
Iy
J .
se g 1V <20
vd )

A% ©B
2Q

Fig. 2.509

Applying KVL to Mesh 1,
-3-30,-2(l;,-15;)+1=0

51 -2, ==-2
Applying KVL to Mesh 2,
-1-2(,-5L)-215,=0
41, - 2I; =—1
Applying KVL to Mesh 3,

23-1)-2(3-1)=0
21,-21,+4; =0
Solving Egs. (1), (2) and (3),

1, =—0.64 A
I,=-055A
I, =—0.59 A

Step II: Calculation of Ry

(1

2

3)

Replacing the voltage source by a short circuit and the current source by an open circuit,

2Q 2Q
oA NV A%
20
—V\W\— o—
A
~—Ry
— NN/
30 ; 2Q 3o 20
(b)
AN oB A 1.2Q 1Q
2Q o AAY% AA%AY
(a) (c)
Fig. 2.510

Ry=22Q

o
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Step IlI: Calculation of I,

A
0.59A 22Q 10
IL
B
Fig. 2.511
2.2

I, =059 x —=5_ =041 A
22+1

3

Exercise 2.8

2.1 Find the value of current flowing through the 10 Q resistor.

6Q 2V 10q 50
I A AN
5V~ 4Q 15Q —_— 20V
Fig. 2.512

2.2 Find the value of current flowing through the 20 Q resistor.

10 Q 20Q 5Q

10V=—_/ 4Q 8Q <+ 2A

Fig. 2.513

[0.68 A]

[0.61 A]
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2.3 Find the value of current flowing through the 2 Q resistor.

10 10V
|

5A CD

Ss0

Fig. 2.514

[54]
2.4 Find the value of current flowing through the 5 Q resistor.
3Q 6 Q 6 Q
5A<D §5§2 1OQ§ 2A 30
|—w
10V 2Q 4Q
Fig. 2.515
[4.13 4]
2.5 Find the value of current flowing through the 15 € resistor.
2Q 1Q
100 —12v 15Q 40 (1)2A
Fig. 2.516
[0.382 4]
2.6 Find Norton’s equivalent network.
2Q 1Q 1Q
NVN—OA
5V—/— 20 220 1Q G 2A
OB
Fig. 2.517

[1.84, 1.67 Q]
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2.7 Find Norton’s equivalent circuit for the portion of network shown in Fig. 2.518 to
the left of ab. Hence obtain the current in the 10 Q resistor.

4Q

E“i% 6Q 4%99 100

TV = 20 + A i — 12V
P
[0.053 A]
2.1 MAXIMUM POWER TRANSFER THEOREM

[Dec 2012, 2015, May 2013, 2014]

It states that ‘the maximum power is delivered from a source to a load when the load
resistance is equal to the source resistance.’

_ V
Ry +R;

R

S

% D .

Fig. 2.519 Maximum power transfer theorem

: VR
Power delivered to the load R, =P=PF R, = —L2
(Rs +Ry)
To determine the value of R; for maximum power to be transferred to the load,
d_P = 0
dR;

P d _1?
dR, dR, (Rs+R,)’

R,
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_ V’[(Rs +R,)* —(2R)(Rs + R,)]
(Rg +R; )4

(Rs+R)* =2 R, (Rs+R;) =0
RZ +R>+2R¢R, — 2R, Ry—2R,> =0
R, =Rg
Hence, the maximum power will be transferred to the load when load resistance is
equal to the source resistance.

2.11.1  Steps to be followed in Maximum Power Transfer Theorem

1. Remove the variable load resistor R; .

2. Find the open circuit voltage V7, across points 4 and B.

3. Find the resistance Ry, as seen from points 4 and B with voltage sources and current
sources replaced by internal resistances.

4. Find the resistance R; for maximum power transfer.

R}, = Ry,
5. Find the maximum power.
R
I = Vin _ Vin iy A
L Ry, +R, 2R L
Th T I Th
Vh 13 Ry = Ry
V2 V2 L
P =I2R, = 5 X Ry =—10 . . 5
4RTh 4RTh Fig. 2.520 Equivalent circuit

Example 1

Find the value of resistance R; for maximum power transfer calculate maximum power.

2Q R,

2Q

T I, ]

20
Fig. 2.521

3V 10V

Solution
Step I: Calculation of Vy,
Removing the variable resistor R; from the network,
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2Q
Fig. 2.522
Applying KVL to the mesh,
3-2/-2/-6=0
I1=-075A
Writing Vo, equation,
6+2[-Vy—-10=0
Vip =6+21—10
=6+2(-0.75-10
=-55V

= 5.5V (terminal B is positive w.r.t 4)
Step II: Calculation of Ry,
Replacing voltage sources by short circuits,

2Q
RTh
A
2Q
2Q
Fig. 2.523
Rpy=Q212)+2=3Q
Step III: Value of R,
For maximum power transfer
R, =Ry, =3Q
Step IV: Calculation of P,,,,
3Q
A
55V—_— 3Q
B

Fig. 2.524

2.207
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Example 2

Find the value of resistance R; for maximum power transfer and calculate maximum power.

5Q
R, 4A
8V T T 10V

Fig. 2.525

Solution
Step I: Calculation of Vy,
Removing the variable resistor R; from the network,

50
— + -
+|A +
10 50
. Vi 4A )
TB 1 I _|_1ov

8V_|_

Fig. 2.526

Meshes 1 and 2 will form a supermesh.
Writing current equation for the supermesh,
IL,—1, =4 ()
Applying KVL to the supermesh,
8—11,-51,-5,-10=0
-6, -5, =2 2
Solving Egs. (1) and (2),

I, =2A
IL,=2A
Writing Vo, equation,
8—11,— Vi, =0
Vin =81,
=8—-(-2)

=10V
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Step II: Calculation of Ry,

Replacing the voltage sources by short circuits and current source by an open circuit,

1Q J’A

RTh 5Q
T B
Fig. 2.527
Ry, =10]1=091Q

5Q

Step I1I: Value of R,
For maximum power transfer

R; =Ry, =091 Q 0.91Q
A% A
Step 1V: Calculation of P,,,,
) ) 10V — 0.91Q
V. 10
o = 2 = 0" _ »ru7w
4R, 4x0091 B
Fig. 2.528

Example 3

Find the value of the resistance R; for maximum power transfer and calculate the maximum

power.
10 Q 2Q

Fig. 2.529
Solution
Step I: Calculation of Vy,
Removing the variable resistor R; from the network,
10Q 2Q

A= AN o+A
+i- +
50 A D 593 3 Vg
I1 —+ lz —
o-B

Fig. 2.530




2.210 Basic Electrical Engineering

For Mesh 1,
1, =50
Applying KVL to Mesh 2,
S5 ,-1)-2,-3,=0
51,-101, =0
1, =21,
I, =25A

Vin =3L,=3(25)=75V
Step 1I: Calculation of Ry,
Replacing the current source by an open circuit,

10 Q 2Q
AVAAY OA
5Q 3Q Ry,
oB
Fig. 2.531
Ry =7113=21Q
Step I1I: Value of R,
For maximum power transfer
Step IV: Calculation of P,,,,
21Q
A
75V 21Q
B
Fig. 2.532
2 2
P = Vin = 75y _ 669.64 W
4R, 4x2.1
Example 4
Find the value of resistance R; for maximum power transfer and calculate maximum power.
3Q
> e 6A 20 R,
10V 'l'
40

Fig. 2.533
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Solution
Step I: Calculation of Vy,
Removing the variable resistor R; from the network,

30

AN\N—o0 A

— + +

594%) GD 20 Vi

10V T, L -
40

Fig. 2.534
Meshes 1 and 2 will form a supermesh.
Writing the current equation for the supermesh,
IL—1, =6 (1)
Applying KVL to the supermesh,
10-51,-21, =0

51,+26, =10 (2)
Solving Eqs (1) and (2),
I, =—029A
L, =571A

Writing Vi, equation,
Vin =2L,=11.42V
Step II: Calculation of R,
Replacing the voltage source by a short circuit and the current source by an open circuit,

3Q
A
5Q 2Q <—Rqg,
B

4Q

Fig. 2.535
Ry, =(51]12)+3+4=843Q
Step III: Value of R,
For maximum power transfer
R, =Rp;,=843 Q
Step 1V: Calculation of P,

max

8.43 Q

1142V — 843 Q

Fig. 2.536
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_ Vi _ (11427
4Ry, 4x8.43

=387TW

max

Example 5

Find the value of resistance R; for maximum power transfer and calculate the maximum power.

10 Q

120vJT %RL 50 6A

Fig. 2.537

Solution

Step I: Calculation of Vy,

Removing the variable resistor R; from the network,
10 Q

rAVAYAVen

L Ai+ + 5

120V Vi 59/) 6A

[ 2
2

Fig. 2.538
Applying KVL to Mesh 1,
120-10/, - 5(, - 1,) =0
151, - 51, =120 (1)

Writing current equation for Mesh 2,

I, =-6 (2)
Solving Eqs (1) and (2),

I, =6A

Writing V', equation,
12010/, = V4, =0
Vi, =120-10 (6)
=60V
Step II: Calculation of Ry,
Replacing the voltage source by a short circuit and the current source by an open circuit,

10Q

A
Ry S0

1

Fig. 2.539
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Ry, =101]]5=333Q
Step I1I: Value of R,
For maximum power transfer
R, =R, =333 Q
Step 1V: Calculation of P

max

3.33Q
AYA%AY A
- 3330
B
Fig. 2.540
4 60)
P, = 0= ©O° 7027w
4R, 4%3.33
Example 6
Find the value of resistance R; for maximum power transfer and calculate the maximum power.
10 Q
R 3A 25Q 6Q
20V '|'
Fig. 2.541
Solution
Step I: Calculation of Vy,
Removing the variable resistor R; from the network,
10 Q
A tL+ + -
VTh 3A " _25 Q * 6Q
ik S
20V — I ly
Fig. 2.542
For Mesh 1,
I, =3 (D)
Applying KVL to Mesh 2,

251, +411, =0 )
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Solving Eqs (1) and (2),

I, =183 A
Writing V', equation,

20+ Vy, — 10, - 61, =0
Vi =-20+10 (1.83) + 6 (1.83)
=928V

Step II: Calculation of R,
Replacing the voltage source by a short circuit and the current source by an open circuit,

10 Q
A
Ry, — 25Q 6Q
[
Fig. 2.543

R, =251]16=9.76 Q
Step III: Value of R,
For maximum power transfer
R, =R, =9.76 Q
Step 1V: Calculation of P

max

9.76 Q
A
928V 9.76 Q
B
Fig. 2.544
Viw  (9.28)°
P, =—2= 028" _)o1w
4R, 4%9.76
Example 7
Find the value of resistance R; for maximum power transfer and calculate maximum power.
1Q 2Q 5Q
AVaAvAy

5V == <+ 1A ;109 3Q gRL

Fig. 2.545
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Solution
Step I : Calculation of Vo,
Removing the variable resistor R; from the network,

1Q 2Q 5Q
d - 7 - o +A
+|- +
5V :> <+ 1A:> 100 :> 3q Vrh
Il I -1+ -
o -B
Fig. 2.546

Meshes 1 and 2 will form a supermesh.
Writing the current equation for the supermesh,
L,—1=1 (D
Writing the voltage equation for the supermesh,
5-1,-10(,-1;)=0

I, +10,-10L=5 )
Applying KVL to Mesh 3,
-10(5-5L)-2L-315=0
—-10L,+15,=0 3)
Solving Eqs (1), (2) and (3),
1,=038A
5, =138A
;=092 A

Writing Vo, equation,
Vin=31;=2.76 V
Step II: Calculation of Ry,
Replacing voltage source by a short circuit and current source by an open circuit,

1Q 2Q 5Q
AAYAY: 0 A
10Q 3Q ~— Ry,
o B
(a)
2Q 5Q 5Q
o A o A
0.91 Q§ 3Q -~ Ry, 1.48 Q§ -~ R,
o B o B

(b) (c)
Fig. 2.547
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Ry, =6.48 Q
Step III: Value of R,
For maximum power transfer
R, =Ry, =6.48 Q
Step 1V: Calculation of P,,,,

6.48 Q
A
276 V—_— 6.48 Q
B
Fig. 2.548
2 2
2.
T O3 B

Example 8

For the circuit shown, find the value of the resistance R; for maximum power transfer and

calculate the maximum power.

20 1Q R
A% M

8V 2A 3A
[ Tov
Fig. 2.549
Solution
Step I: Calculation of Vy,
Removing the variable resistor R; from the network,
2Q 1Q A B
L + - + - f Vi ©
2Q
8V D 2A D 3A 4%
L @ ,2 qD Tov
Fig. 2.550
From Fig. 2.550,
L,—1, =2
L, =-3A
Solving Eqs (1) and (2),

I, =-5A

(1)
2
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Writing Vo, equation,
8-20,—1L,—Vy—6=0
Vin =8-2(-5)~(-3)-6
=15V

Step II: Calculation of Ry,
Replacing the voltage sources by short circuits and the current source by an open circuit,

2Q 1Q Rop
NV 0
A l B
2Q
Fig. 2.551
Ry, =5Q

Step I11: Value of R;
For maximum power transfer

R, =Rp,=5Q
Step 1V: Calculation of P,,,,

5Q
AVAVAV A
15V — 5Q
B
Fig. 2.552
2 2
po=tin o5y

Example 9

Find the value of resistance the R; for maximum power transfer and calculate the maximum

power.
15Q R, 18 Q

vy ARF AN
5Q 15Q 27 Q %99
A A AN
10 Q 20Q 27 Q
1
Il
100 V

Fig. 2.553
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Solution
Step I: Calculation of Vy,

Removing the variable resistor R; from the network,

150 A B 180
Vv 2VThC Y%
5Q 15Q 27 Q 9Q
A% A%
10Q 20Q 27 Q

Fig. 2.555

/= 100
5+5+20+9+9
Writing V', equation,
100 =5/ = V5, =91 =0

=2.08 A

Vi, =100 — 147
= 100 — 14(2.08)
=70.88 V

Step II: Calculation of R,

Replacing the voltage source by a short circuit,

A B
© Ry

5Q
5Q

(@)
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50 4 g 9@
VoV RTh VoV
50 90

5Q 20Q 9Q
L AAM—AAA—AAN—
(b)
5Q A B 9Q
— A0 Ry 0 AN ——

14 Q

34 Q

()

5Q A B 9Q
VN0 Ry 0—AAN—

9.92Q
(d)
Fig. 2.556
Ry, =23.92Q
Step III: Value of R,
For maximum power transfer
R, =R, =23.92Q
Step IV: Calculation of P,,,,
23.92 Q
70.88V —
Fig. 2.557

p_ Vin _ (70.88)°
4Ry, 4x23.92

=5251W

23.92Q
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Example 10
Find the value of resistance R; for maximum power transfer and calculate the maximum
power.
2A
5Q
AN @
10 Q 20 Q
8OV T T 20V
Ry
Fig. 2.558
Solution

Step I: Calculation of Vy,
Removing the variable resistor R; from the network,

5Q

80V T T 2V

Fig. 2.559

Applying KVL to Mesh 1,
80 —51,-10(/; —1,) —20(/;, - 1,) -20 =0
351, -301, =60
Writing the current equation for Mesh 2,
I, =2
Solving Eqs (1) and (2),
I, =343A
Writing V', equation,
Vin—20(,—5)—-20=0
Vi, =20(3.43-2)+20
=486V
Step 11: Calculation of Ry,

(1
2

Replacing the voltage sources by short circuits and the current source by an open circuit,
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5Q
NV o o

10 Q 20Q

A
R

TB

Fig. 2.560

R, =151]20=8.57 Q
Step III: Value of R,
For maximum power transfer
R, =Ry, =857 Q
Step 1V: Calculation of P

max
8.57 Q
A
486V — 8.57 Q
B
Fig. 2.561

_ Vi _ (48.6)

= =639 W
mX AR 4x8.57

Example 11

Find the value of resistance R; for maximum power transfer and calculate the maximum
power.

. 200
100V T %
RL
Fig. 2.562

Solution
Step I: Calculation of Vy,
Removing the variable resistor R; from the network,
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100V T

Fig. 2.563
_ 100
10+30
_ 100
20+40
Writing Vo, equation,
Vi +104, -20, =0
Vi =207, — 107,
=20(1.66) — 10(2.5)
=82V
Step II: Calculation of Ry,

Replacing the voltage source by short circuit,
X
2P g
30Q 40 Q

Fig. 2.564

I

g = 1.66 A

Redrawing the network,

100 20Q

302 40 Q

Fig. 2.565

Ry, = (10]]30) + (20 || 40) = 20.83 Q



Step III: Value of R,
For maximum power transfer

R, =R, =20.83 Q
Step 1V: Calculation of P,

Maximum Power Transfer Theorem

2.223

[Dec 2014]

max
20.83 Q
A
82V —/— 20.83 Q
B
Fig. 2.566
4 8.2)°
P = Th - (8.2) =0.81' W
4Rp, 4x%20.83
Example 12
For the given circuit find the value of R, for maximum power transfer and calculate the maximum
power absorbed by R;.
4Q 5Q
ER
2Q 1Q 8 Q
Bl
I I
10V
Fig. 2.567
Solution

Step 1. Calculation of V,
Removing the variable resistor R, from the network,

Fig. 2.568
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Applying KVL to Mesh 1,

117, -95,=10
Applying KVL to Mesh 2
-4, -5,-8 (U, -1,))-1,-1,)=0
91, +181,=0
Solving Eqgs (1) and (2),
I,=154A
I,=07TA

Writing Vi, equation,
-1U,-1)-4L, -V, =0
Vin=-1,—-1,) - 41,

=-1(0.77 — 1.54) — 4(0.77)
=-231V

=2.31V (the terminal B is positive w.r.t. A)

Step II: Calculation of Ry,
Replacing the voltage source by a short circuit,

Redrawing the network,

Fig. 2.570

ey

2
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Converting the upper delta into equivalent star network, A
4x2

=22 0730
4+2+5

) = _4x5 =1.820
4+2+5

s = _9%X2 =091Q
4+2+5

Fig. 2.571

Fig. 2.572

Simplifying the network,

1.82Q

1.73Q 8.91Q

B
Fig. 2.573

Ry =1.82+(1.73118.91) =327 Q

Step I11: Value of R,
For maximum power transfer
R, =Ry, =327 Q
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Step 1V: Calculation of P

max

3.72Q
WW. A
231V — 3.27 Q
B
Fig. 2.574
y2 2.31)?
_ i _ @3D 4w

"X 4Ry, 4x3.27

Example 13

Determine the value of R for maximum power transfer. Also find the magnitude of maximum
power transferred.

I Sxa
100V T 40 Q
|_
R
60 % 500
Fig. 2.575 [Dec 2012]

Solution
Step 1. Calculation of Vy,

+ Iy + ly
400 50
100V T - %5 Vi o=
+ A B av+
60 Q 50 Q
Fig. 2.576
100
40 + 60
100
L= 1A

50+50
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Writing Vo, equation,
—40L, + Vo, —2+500, =0
—40(1) + Ve, —2+50(1) =0
Vip, =—8V
=8 V (terminal B is positive w.r.t. 4)

Step 11: Calculation of Ry,

%40 o 500
'e} RTh o
A B
60 Q 50 Q
(a)
40 Q 50 Q
AVAVAY NNV
Ao— ——o0 B
AVAVAY NNV
60 Q 50 Q
(b)
24 Q 25Q
AC AAvaY; ANV oB
(c)
29Q
A© NV ° B
(d)
Fig. 2.577
Ry, =49 Q
Step Il1: Value of R
For maximum power transfer
R=Rpy,=49Q
Step IV: Calculation of P,,,,,
8V T 49 Q

Fig. 2.578
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Vi (8)?

P —

= =033 W
nax 4RTh 4% 49

Example 14

Find the value of resistance R; for maximum power transfer and calculate the maximum
power.

R
6Q &
72V bPA
3Q 40
Fig. 2.579

Solution
Step 1. Calculation of V,
Removing the variable resistor R; from the network,

22V—F

Fig. 2.580
Applying KVL to Mesh 1,
72—-61,-3(,-1)=0
91, -3, =72 (1)
Applying KVL to Mesh 2,
3{,-1)-2,-4,=0
-31,+91, =0 (2)
Solving Eqs (1) and (2),
I, =9A
I, =3A

Writing V', equation,
Vin—061 =21, =0
Vin =60, +25,=6(9)+2(3)=60V
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Step II: Calculation of Ry,
Replacing voltage source by a short circuit,

A 2Q
60 Riy NV
v 3Q
L 60 :
AVAVAY 4Q
2Q
RTh
3Q 4Q
B
(@) (b)
Fig. 2.581

Re, =[(6(13)+2][[4=2Q
Step III: Value of R,

For maximum power transfer

Step IV: Calculation of P,,,,
2Q
AAYAY; A
60V — 2Q
B
Fig. 2.582
Vi 60)°
po = OO sy

max 4RTh 4X2
Example 15

For the circuit shown, find the value of the resistance R; for maximum power transfer and
calculate maximum power.

10 Q 2Q

25 A D 5Q Q 10 A é’RL 100 — 30V

Fig. 2.583
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Solution
Step I: Calculation of Vy,
Removing the variable resistor R; from the network,

10Q 20
AVAVAY,
+ ) A
25A E} 50 <}10A Vin 10Q ——30v
_OB
Fig. 2.584

By source transformation, the current source of 25 A and the 5 Q resistor is converted
into an equivalent voltage source of 125 V and a series resistor of 5 €. Also the voltage
source of 30 V is connected across the 10 Q resistor. Hence, the 10 Q resistor becomes
redundant.

10 Q 2Q
AVAVAY;
5Q LA
10A {) Vrh =30V §1OQ
_OB
125V —|—
Fig. 2.585
Applying KCL at node,
Vi —125 10 + Vi —30 ~0
15 2
Vip =58.81V

Step II: Calculation of R,
Replacing the voltage source by a short circuit and the current sources by open circuits,

100Q 20
LA

50 R 10 Q
0B

Fig. 2.586
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Simplifying the network,

4 A
15 Q R 2Q
OB
Fig. 2.587
Ry, =1512=1.76 Q
Step I11: Value of R;
For maximum power transfer
R, =Rp,=1.76 Q
Step 1V: Calculation of P,,,,
1.76 Q
A
58.81V —— 1.76 Q
B
Fig. 2.588
2 2
= T GBI g 08w

T 4Ry, 4x1.76

Example 16
Find the value of R; for maximum power transfer and calculate maximum power.
5A
M\
1Q 20
10V2Q — CT 5A §2§2 gRL
.|, 5A

Fig. 2.589 [Dec 2015]
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Solution
Step I: Calculation of Vy,

Removing the variable resistor R; from the network,

10V/2Q —

5A
M o A
1Q 20 +
<}5A §29 Vrh
5A
T —oB

Fig. 2.590

By source transformation, the current source of 5 A and parallel resistor of 2  is converted
into an equivalent voltage source of 10 V and series resistor of 2 €. Similarly, the other
current source of 5 A and parallel resistor of 1 Q is converted into an equivalent voltage
source of 5 V and series resistor of 1 €.

5V 10

10VJ_

2Q
+

/|
J_ | +W\'— 3_
10V + 20

D DN
t3 Vi

2Q 5A

= T .

Applying KVL to Mesh 1,

Fig. 2.591

20 +10-10-2(1, - 1,) =0

41, -2, =0 (1)
Applying KVL to Mesh 2,
2,-L)+10+5-1,-2,-5=0
=21, +51,=10 )
Solving Eqs (1) and (2),
I,=125A
L, =25A
Writing Vo, equation,
5+2L-Vy =0
Vin =5 +21,
=5+2(2.5)

=10V
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Step II: Calculation of Ry,

Replacing the voltage sources by short circuits and current sources by open circuits,

1Q
N 0o A
202 é 20 220 Ry,
—oB
Fig. 2.592
By series-parallel reduction technique,
1Q
M o A ° A
20% ﬁzg Rr, 20% 20 R
o B —0 B
(a) (b)
———— 0 A
1Q § Rth
L—  ——oOR
(c)
Fig. 2.593
Step III: Value of R,
For maximum power transfer
R, =Ry, =1Q
Step IV: Calculation of P,,,,,
1Q
A\/V\I ~ A
0V — 12Q

Fig. 2.594

2.233
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Vi, (10)
, _ Vin _197 _sw
4Ry 4x1
Example 17
For the given circuit, find the value of ‘R;’so that maximum power is dissipated in it. Also, find
P,
20 10V
T AN 1
8V
10 R,
NAVAVAY VvV
2Q 3Q
I WA
12V 8Q
Fig. 2.595
Solution
Step I: Calculation of V,
Removing the resistor R; from the network,
20 10 IV
R L
vt ) 2
I Vrh
! - Bo_
VT AN
2Q 3Q
»
| - +
! 80
12V
Fig. 2.596

Applying KVL to Mesh 1,
8-21,-11,-2(1,-1,) =0
51,21, =8

Applying KVL to Mesh 2,
2, -1)-3L,-8L+12=0

(M
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21, +13, =12
Solving Egs. (1) and (2),
I, =21A
L, =125A
Writing V', equation,
1/, +10—Vy, +3,=0
Vi =1, + 10+ 31,
=1(2.1)+ 10+ 3(1.25)
=1585V
Step II: Calculation of Ry,
Replacing the voltage sources by short circuits,

2Q
— R i
w 1Q ! R
R, B
2Q 3Q

2.235

2

80
Fig. 2.597
Converting the delta network formed by resistors of 2 €, 1 Q and 2 Q into equivalent star
network,
2x1
= =04Q
r=52
2x1
R, = =04Q
2 2+1+2
2x2
R, = =0.8Q
2+1+2

8Q
Fig. 2.598
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Simplifying the network,

04 Q
oA
3.4Q
Rth
OB
8.8Q
(a)
2.45 04 Q
YAVAYAY VAYA%AY oA
Rth
OB
(b)
Fig. 2.599
Ry, =2.85Q
Step III: Value of R,
For maximum power transfer
R, =Ry, =2.85Q
Step IV: Calculation of P,,,,
2.85Q
VAYA%AY A
1585V 2850
B
Fig. 2.600
Vi _ (15.85)°
P o 589 o) ouw

ma T YR 4%2.85
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For the circuit shown, find the value of the resistance R; for maximum power transfer and

calculate maximum power.

20 12V 20 6V
I I
40 5Q
10V 10Q é/;L
4A 8V T
Fig. 2.601
Solution
Step I: Calculation of Vy,
Removing the variable resistor R; from the network,
20 12V 20 6V
AMN—| o +aA
40Q +
50
10Q 10V = D - Vi,
4v : T 8V
0 -B
Fig. 2.602
Applying KVL to the outer path,
10-2/-12-5[-8=0
I=— 0__ 1.43 A
Writing Vo, equation, 7
8+5/+6—Vy, =0
Vip =8+6+51

—8+6+5(—1.43)

=685V
Step II: Calculation of Ry,

Replacing voltage sources by short circuits and current source by an open circuit,

2Q 2Q
NV~ NV~ OA
4Q
10Q 5Q R
I o

Fig. 2.603
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Ry =(2|5)+2
=343 Q
Step III: Value of R,
For maximum power transfer
R, =Ry, =343 Q
Step 1V: Calculation of P,,,,

343Q
A
6.85V—— 343Q
B
Fig. 2.604
_ I 689 5w

3

Exercise 2.9

2.1 Find the value of the resistance R; for maximum power transfer and calculate

maximum power.
3Q 10

6V 20 10 (4)2A R,

Fig. 2.605

[1.75 2, 1.29 W]
2.2 Find the value of the resistance R; for maximum power transfer and calculate the
maximum power.

2Q
4 Q 5Q
Ry
50V—_—
2Q 8Q
Fig. 2.606

[4.51 Q, 4.95 W]



CHAPTER

Handy Circurt
" Analysis Techniques

KEY CONCEPTS

Superposition: Determining

INTRODUCTION the Individual Contributions
The techniques of nodal and mesh analysis described in Chap. 4 of Different Sources to Any
are reliable and extremely powerful methods. However, both Current or Voltage
require that we develop a complete set of equations to describe ®

a particular circuit as a general rule, even if only one current, Source Transformation as a

voltage, or power quantity is of interest. In this chapter, we Means of Simplifying Circuits

investigate several different techniques for isolating specific parts L4

of a circuit in order to simplify the analysis. After examining each Thevenin's Theorem

of these techniques, we focus on how one might go about selecting L4

one method over another. Norton's Theorem

Thévenin and Norton
5.1  LINEARITY AND SUPERPOSITION Equivalent Networks
All of the circuits which we plan to analyze can be classified as lin- ¢
ear circuits, so this is a good time to be more specific in defining
exactly what we mean by that. Having done this, we can then con-
sider the most important consequence of linearity, the principle of
superposition. This principle is very basic and will appear repeat-
edly in our study of linear circuit analysis. As a matter of fact, the

nonapplicability of superposition to nonlinear circuits is the very @

Maximum Power Transfer

A <Y Transformations for
Resistive Networks

reason they are so difficult to analyze! Selecting a Particular
The principle of superposition states that the response (a desired Combination of Analysis
current or voltage) in a linear circuit having more than one indepen- Techniques

dent source can be obtained by adding the responses caused by the ¢
separate independent sources acting alone.

Performing dc Sweep
Simulations Using PSpice
Linear Elements and Linear Circuits

We define a linear element as a passive element that has a linear

voltage-current relationship. By a “linear voltage-current relationship™

123




124 @

The dependent voltage source vs; = 0.6/, — 14v; is
linear, but v; = 0.6i7 and v; = 0.6/, are not.

V] 50 ]
NN

. 20 10 i

M FIGURE 5.1 A circuit with two independent current
sources.

CHAPTER 5 HANDY CIRCUIT ANALYSIS TECHNIQUES

we simply mean that multiplication of the current through the element by a
constant K results in the multiplication of the voltage across the element by
the same constant K. At this time, only one passive element has been defined
(the resistor), and its voltage-current relationship

v(t) = Ri(¢)

is clearly linear. As a matter of fact, if v(¢) is plotted as a function of i(¢),
the result is a straight line.

We define a linear dependent source as a dependent current or voltage
source whose output current or voltage is proportional only to the first
power of a specified current or voltage variable in the circuit (or to the sum
of such quantities).

We now define a linear circuit as a circuit composed entirely of inde-
pendent sources, linear dependent sources, and linear elements. From this
definition, it is possible to show! that “the response is proportional to the
source,”” or that multiplication of all independent source voltages and cur-
rents by a constant K increases all the current and voltage responses by the
same factor K (including the dependent source voltage or current outputs).

The Superposition Principle

The most important consequence of linearity is superposition.

Let us explore the superposition principle by considering first the circuit
of Fig. 5.1, which contains two independent sources, the current generators
that force the currents i, and i, into the circuit. Sources are often called forc-
ing functions for this reason, and the nodal voltages that they produce can be
termed response functions, or simply responses. Both the forcing functions
and the responses may be functions of time. The two nodal equations for this
circuit are

0.7vy — 0.2v, =i, [1]
—0.21)1 + 1.21}2 = ib [2]

Now let us perform experiment x. We change the two forcing functions
to i,y and ip,; the two unknown voltages will now be different, so we will
call them vy, and v,,. Thus,

0.7U1X — 0.2U2X = iax [3]
—0.2v1 + 1.2vp, = ip, [4]

We next perform experiment y by changing the source currents to i,
and i;, and measure the responses vy, and v,,:

0.7v1y — 0.202y = igy 5]
—0.2U1y + l.2v2y = iby [6]

(1) The proof involves first showing that the use of nodal analysis on the linear circuit can produce only
linear equations of the form

avy +avy +---+ayvy =b

where the a; are constants (combinations of resistance or conductance values, constants appearing in
dependent source expressions, 0, or £1), the v; are the unknown node voltages (responses), and b is an
independent source value or a sum of independent source values. Given a set of such equations, if we
multiply all the b’s by K, then it is evident that the solution of this new set of equations will be the node
voltages Kvi, Kuvy, ..., Kuy.
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These three sets of equations describe the same circuit with three differ-
ent sets of source currents. Let us add or “superpose” the last two sets of
equations. Adding Eqs. [3] and [5],

(0.7v1 + 0.7v1y) — (0202, +0.202,) = i + iy [7]
0.7v; - 0.2v, = i, [1]

and adding Eqgs. [4] and [6],

—(0.2v, + 0.2U1y) + (1.2vy + 1.2U2y) = ipy + iby [8]
—0.21)1 + 1.2U2 = ib [2]

where Eq. [1] has been written immediately below Eq. [7] and Eq. [2] below
Eq. [8] for easy comparison.

The linearity of all these equations allows us to compare Eq. [7] with
Eq. [1] and Eq. [8] with Eq. [2] and draw an interesting conclusion. If we
select iy, and i,y such that their sum is i, and select iy, and iy, such that their
sum is ij, then the desired responses v; and v, may be found by adding v,
to vy, and va, to vy, respectively. In other words, we can perform experi-
ment x and note the responses, perform experiment y and note the
responses, and finally add the two sets of responses. This leads to the fun-
damental concept involved in the superposition principle: to look at each
independent source (and the response it generates) one at a time with the
other independent sources “turned off” or “zeroed out.”

If we reduce a voltage source to zero volts, we have effectively created
a short circuit (Fig. 5.2a). If we reduce a current source to zero amps, we
have effectively created an open circuit (Fig. 5.2b). Thus, the superposition
theorem can be stated as:

In any linear resistive network, the voltage across or the current through any re-
sistor or source may be calculated by adding algebraically all the individual
voltages or currents caused by the separate independent sources acting alone,
with all other independent voltage sources replaced by short circuits and all
other independent current sources replaced by open circuits.

Thus, if there are N independent sources, we must perform N experi-
ments, each having only one of the independent sources active and the
others inactive/turned off/zeroed out. Note that dependent sources are in
general active in every experiment.

There is also no reason that an independent source must assume only its
given value or a zero value in the several experiments; it is necessary only
for the sum of the several values to be equal to the original value. An inac-
tive source almost always leads to the simplest circuit, however.

The circuit we have just used as an example should indicate that a much
stronger theorem might be written; a group of independent sources may be
made active and inactive collectively, if we wish. For example, suppose
there are three independent sources. The theorem states that we may find a
given response by considering each of the three sources acting alone and
adding the three results. Alternatively, we may find the response due to the
first and second sources operating with the third inactive, and then add to
this the response caused by the third source acting alone. This amounts to
treating several sources collectively as a sort of “supersource.”

! T No voltage drop

T\ across terminals, [T
0V _) but current can

flow

o
(a)
le)
No current I
+ flows, buta +

voltage can
oA (D ! appear across
— the terminals — I

)
B FIGURE 5.2 (a) A voltage source set to zero acts
like a short circuit. (b) A current source set to zero acts
like an open circuit.
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EXAMPLE 5.1

For the circuit of Fig. 5.3a, use superposition to determine the
unknown branch current i,.

60 60

7

) ()
B FIGURE 5.3 () An example circuit with two independent sources for which the branch current
Iy is desired; (b) same circuit with current source open-circuited; () original circuit with voltage
source short-circuited.

First set the current source equal to zero and redraw the circuit

as shown in Fig. 5.3b. The portion of i, due to the voltage source
has been designated i, to avoid confusion and is easily found to be
0.2 A.

Next set the voltage source in Fig. 5.3a to zero and again redraw the
circuit, as shown in Fig. 5.3¢. Current division lets us determine that i/
(the portion of i, due to the 2 A current source) is 0.8 A.

Now compute the total current i, by adding the two individual

COmpOnentS:
Ix = lxlyy T ixp = i)/c + i)/c/
or
3 6
e = 2 =02+08=10A
A (6 ¥ 9) *

Another way of looking at Example 5.1 is that the 3 V source and the
2 A source are each performing work on the circuit, resulting in a total cur-
rent i, flowing through the 9 2 resistor. However, the contribution of the 3 V
source to i, does not depend on the contribution of the 2 A source, and vice
versa. For example, if we double the output of the 2 A source to 4 A, it will
now contribute 1.6 A to the total current i, flowing through the 9 €2 resistor.
However, the 3 V source will still contribute only 0.2 A to i, for a new total
current of 0.2 4 1.6 = 1.8 A.
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PRACTICE .

5.1 For the circuit of Fig. 5.4, use superposition to compute the current i,.

NN
15Q
7Q
2A<D 59§ C 35V
30
M FIGURE 5.4
Ans: 660 mA.

As we will see, superposition does not generally reduce our workload
when considering a particular circuit, since it leads to the analysis of several
new circuits to obtain the desired response. However, it is particularly use-
ful in identifying the significance of various parts of a more complex circuit.
It also forms the basis of phasor analysis, which is introduced in Chap. 10.

127

EXAMPLE 5.2

Referring to the circuit of Fig. 5.5a, determine the maximum positive
current to which the source I, can be set before any resistor exceeds
its power rating and overheats.

1100 0
E—

100 Q

e 6V 640 l"'ﬁm

(b)

()

M FIGURE 5.5 (a) A circuit with two resistors each rated at  W. (b) Circuit
with only the 6 V source active. (c) Circuit with the source /, active.

Identify the goal of the problem.

Each resistor is rated to a maximum of 250 mW. If the circuit allows
this value to be exceeded (by forcing too much current through
either resistor), excessive heating will occur—possibly leading to

(Continued on next page)
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an accident. The 6 V source cannot be changed, so we are looking for an
equation involving I, and the maximum current through each resistor.

Collect the known information.
Based on its 250 mW power rating, the maximum current the 100 €2
resistor can tolerate is

/@ — /@=50mA
R 100

and, similarly, the current through the 64 €2 resistor must be less than
62.5 mA.

Devise a plan.

Either nodal or mesh analysis may be applied to the solution of this
problem, but superposition may give us a slight edge, since we are
primarily interested in the effect of the current source.

Construct an appropriate set of equations.
Using superposition, we redraw the circuit as in Fig. 5.5b and find that
the 6 V source contributes a current
y 6
1002 = 700 1+ 64
to the 100 €2 resistor and, since the 64  resistor is in series, i¢, o =
36.59 mA as well.
Recognizing the current divider in Fig. 5.5¢, we note that i, o, will
add to ig, o. butijy, o 18 opposite in direction to i{, . Therefore,
Ix can safely contribute 62.5 — 36.59 = 25.91 mA to the 64 2 resistor
current, and 50 — (—36.59) = 86.59 mA to the 100 2 resistor current.
The 100 €2 resistor therefore places the following constraint on /,:
100 + 64
64 )

= 36.59 mA

I, < (86.59 x 107%) (

and the 64 2 resistor requires that

100 + 64
I, < (2591 x 1073) 10+ o
100

Attempt a solution.

Considering the 100 2 resistor first, we see that /, is limited to [, <
221.9 mA. The 64 2 resistor limits /, such that 7/, < 42.49 mA. In
order to satisfy both constraints, /, must be less than 42.49 mA. If the
value is increased, the 64 <2 resistor will overheat long before the
100 2 resistor does.

Verify the solution. Is it reasonable or expected?

One particularly useful way to evaluate our solution is to perform a dc
sweep analysis in PSpice as described after the next example. An in-
teresting question, however, is whether we would have expected the
64 Q2 resistor to overheat first.

Originally we found that the 100 2 resistor has a smaller
maximum current, so it might be reasonable to expect it to limit /,.
However, because I, opposes the current sent by the 6 V source
through the 100 €2 resistor but adds to the 6 V source’s contribution
to the current through the 64 € resistor, it turns out to work the other
way—it’s the 64 2 resistor that sets the limit on /,.
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EXAMPLE 5.3

In the circuit of Fig. 5.6a, use the superposition principle to deter-
mine the value of i,.

(®) (c)

M FIGURE 5.6 (a) An example circuit with two independent sources and one
dependent source for which the branch current iy is desired. (b) Circuit with the 3 A
source open-circuited. (c) Original circuit with the 10 V source short-circuited.

First open-circuit the 3 A source (Fig. 5.6b). The single mesh equation
is
—10+2i, +i, +2i, =0
so that
iL=2A
Next, short-circuit the 10 V source (Fig. 5.6c) and write the single-
node equation

" " o7
v v" —2i7

— + =3
2 1
and relate the dependent-source-controlling quantity to v”:
v =2(—i!
Solving, we find
il =-0.6A
and, thus,
iy=i.4+i/ =24 (-0.6)=14A
Note that in redrawing each subcircuit, we are always careful to
use some type of notation to indicate that we are not working with the A
original variables. This prevents the possibility of rather disastrous
errors when we add the individual results. s 159,
NN—
PRACTICE i
® 70
5.2 For the circuit of Fig. 5.7, use superposition to obtain the voltage 2A (D § 50 T 4i
across each current source. 3V
Ans: DITNES 9.180 vV, V2ppp = —1.148 vV, Vijzy = 1.967 vV, V2)3y = —0.246 V; _L

v = 11.147 V, v, = —1.394 V.
M FIGURE 5.7
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Summary of Basic Superposition Procedure

1.

Select one of the independent sources. Set all other indepen-
dent sources to zero. This means voltage sources are replaced
with short circuits and current sources are replaced with open
circuits. Leave dependent sources in the circuit.

Relabel voltages and currents using suitable notation (e.g.,
v', i). Be sure to relabel controlling variables of dependent
sources to avoid confusion.

Analyze the simplified circuit to find the desired currents
and/or voltages.

Repeat steps 1 through 3 until each independent source has
been considered.

Add the partial currents and/or voltages obtained from the
separate analyses. Pay careful attention to voltage signs and
current directions when summing.

Do not add power quantities. If power quantities are required,
calculate only after partial voltages and/or currents have been
summed.

Note that step 1 may be altered in several ways. First, independent
sources can be considered in groups as opposed to individually if it simpli-
fies the analysis, as long as no independent source is included in more than
one subcircuit. Second, it is technically not necessary to set sources to zero,
although this is almost always the best route. For example, a 3 V source may
appear in two subcircuits as a 1.5 V source, since 1.5 4+ 1.5 =3 V just as
0+ 3 = 3 V. Because it is unlikely to simplify our analysis, however, there

is little point to such an exercise.

COMPUTER-AIDED ANALYSIS

Although PSpice is extremely useful in verifying that we have analyzed

a complete circuit correctly, it can also assist us in determining the
contribution of each source to a particular response. To do this, we
employ what is known as a dc parameter sweep.

Consider the circuit presented in Example 5.2, when we were asked
to determine the maximum positive current that could be obtained from
the current source without exceeding the power rating of either resistor

in the circuit. The circuit is shown redrawn using the Orcad Capture
CIS schematic tool in Fig. 5.8. Note that no value has been assigned
to the current source.

After the schematic has been entered and saved, the next step is

to specify the dc sweep parameters. This option allows us to specify
a range of values for a voltage or current source (in the present case,
the current source I, ), rather than a specific value. Selecting New
Simulation Profile under PSpice, we provide a name for our profile
and are then provided with the dialog box shown in Fig. 5.9.
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M FIGURE 5.8 The circuit from Example 5.2.
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M FIGURE 5.9 DC Sweep dialog box shown with I, selected as the sweep variable.

Under Analysis Type, we pull down the DC Sweep option, specify
the “sweep variable” as Current Source, and then type in I in the
Name box. There are several options under Sweep Type: Linear,
Logarithmic, and Value List. The last option allows us to specify each
value to assign to L. In order to generate a smooth plot, however, we
choose to perform a Linear sweep, with a Start Value of 0 mA, an
End Value of 50 mA, and a value of 0.01 mA for the Increment.

After we perform the simulation, the graphical output package Probe
is automatically launched. When the window appears, the horizontal
axis (corresponding to our variable, Iy) is displayed, but the vertical
axis variable must be chosen. Selecting Add Trace from the Trace
menu, we click on I(R1), then type an asterisk in the Trace Expression
box, click on I(R1) once again, insert yet another asterisk, and finally
type in 100. This asks Probe to plot the power absorbed by the 100 €2
resistor. In a similar fashion, we repeat the process to add the power

(Continued on next page)
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M FIGURE 5.10 (a) Probe output with text labels identifying the power absorbed by the two
resistors individually. A horizontal line indicating 250 mW has also been included, as well as text
labels to improve dlarity. (b) Cursor dialog box.

absorbed by the 64 2 resistor, resulting in a plot similar to that shown
in Fig. 5.10a. A horizontal reference line at 250 mW was also added to
the plot by typing 0.250 in the Trace Expression box after selecting
Add Trace from the Trace menu a third time.

We see from the plot that the 64 2 resistor does exceed its 250 mW
power rating in the vicinity of Iy = 43 mA. In contrast, however, we
also see that regardless of the value of the current source I, (provided
that it is between 0 and 50 mA), the 100 €2 resistor will never dissipate
250 mW; in fact, the absorbed power decreases with increasing current
from the current source. If we desire a more precise answer, we can make
use of the cursor tool, which is invoked by selecting Trace, Cursor,
Display from the menu bar. Figure 5.10b shows the result of dragging
cursor 1 to 42.52 A, where the 64 2 resistor is dissipating just over its
maximum rated power of 250 mW. Increased precision can be obtained
by decreasing the increment value used in the dc sweep.

This technique is very useful in analyzing electronic circuits, where
we might need, for example, to determine what input voltage is required
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to a complicated amplifier circuit in order to obtain a zero output
voltage. We also notice that there are several other types of parameter
sweeps that we can perform, including a dc voltage sweep. The ability to
vary temperature is useful only when dealing with component models
that have a temperature parameter built in, such as diodes and transistors.

Unfortunately, it usually turns out that little if any time is saved in ana-
lyzing a circuit containing one or more dependent sources by use of the
superposition principle, for there must always be at least two sources in
operation: one independent source and all the dependent sources.

We must constantly be aware of the limitations of superposition. It is
applicable only to linear responses, and thus the most common nonlinear
response—power—is not subject to superposition. For example, consider
two 1V batteries in series with a 1 €2 resistor. The power delivered to the re-
sistor is 4 W, but if we mistakenly try to apply superposition, we might say
that each battery alone furnished 1 W and thus the calculated power is only
2 W. This is incorrect, but a surprisingly easy mistake to make.

5.2 . SOURCE TRANSFORMATIONS

Practical Voltage Sources

So far, we’ve only worked with ideal sources—elements whose terminal
voltage is independent of the current flowing through them. To see the
relevance of this fact, consider a simple independent (“ideal””) 9 V source
connected to a 1 €2 resistor. The 9 volt source will force a current of 9 amperes
through the 1 €2 resistor (perhaps this seems reasonable enough), but the same
source would apparently force 9,000,000 amperes through a 1 mS2 resistor
(which hopefully does not seem reasonable). On paper, there's nothing to stop
us from reducing the resistor value all the way to 0 €2 ... but that would lead
to a contradiction, as the source would be “trying” to maintain 9 V across a
dead short, which Ohm’s law tells us can’t happen (V = 9 = RI = 0?).

What happens in the real world when we do this type of experiment? For
example, if we try to start a car with the headlights already on, we most likely
notice the headlights dim as the battery is asked to supply a large (~100 A or
more) starter current in parallel with the current running to the headlights. If
we model the 12 V battery with an ideal 12 V source as in Fig. 5.11a, our
observation cannot be explained. Another way of saying this is that our model
breaks down when the load draws a large current from the source.

To better approximate the behavior of a real device, the ideal voltage
source must be modified to account for the lowering of its terminal voltage
when large currents are drawn from it. Let us suppose that we observe ex-
perimentally that our car battery has a terminal voltage of 12 V when no
current is flowing through it, and a reduced voltage of 11 V when 100 A is
flowing. How could we model this behavior? Well, a more accurate model
might be an ideal voltage source of 12 V in series with a resistor across
which 1 V appears when 100 A flows through it. A quick calculation shows
that the resistor must be 1 V/100 A = 0.01 €2, and the ideal voltage source
and this series resistor constitute a practical voltage source (Fig. 5.11b).
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12V

(a)

0.01 Q

12V

)

M FIGURE 5.11 (a) An ideal 12 V dc voltage source
used to model a car battery. (b) A more accurate
model that accounts for the observed reduction in
terminal voltage at large currents.
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B FIGURE 5.12 () A practical source, which
approximates the behavior of a certain 12 V
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is linear.
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M FIGURE 5.13 (a) A general practical voltage
source connected to a load resistor R;. (b) The terminal
voltage of a practical voltage source decreases as /;
increases and R, = v, /i; decreases. The terminal
voltage of an ideal voltage source (also plotted)
remains the same for any current delivered to a load.
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Thus, we are using the series combination of two ideal circuit elements, an
independent voltage source and a resistor, to model a real device.

We do not expect to find such an arrangement of ideal elements inside
our car battery, of course. Any real device is characterized by a certain
current-voltage relationship at its terminals, and our problem is to develop
some combination of ideal elements that can furnish a similar current-voltage
characteristic, at least over some useful range of current, voltage, or power.

In Fig. 5.12a, we show our two-piece practical model of the car battery
now connected to some load resistor R;. The terminal voltage of the practical
source is the same as the voltage across R; and is marked?® V;. Figure 5.12b
shows a plot of load voltage V as a function of the load current /; for this
practical source. The KVL equation for the circuit of Fig. 5.12a may be
written in terms of /; and V.

12=0.011, +V,
and thus
V, =-0.011; + 12

This is alinear equation in I and V;, and the plotin Fig. 5.12b is a straight
line. Each point on the line corresponds to a different value of R;. For exam-
ple, the midpoint of the straight line is obtained when the load resistance is
equal to the internal resistance of the practical source, or Ry, = 0.01 €2. Here,
the load voltage is exactly one-half the ideal source voltage.

When R; = oo and no current whatsoever is being drawn by the
load, the practical source is open-circuited and the terminal voltage, or
open-circuit voltage, is Vi, = 12 V. If, on the other hand, R; = 0, thereby
short-circuiting the load terminals, then a load current or short-circuit cur-
rent, I;sc = 1200 A, would flow. (In practice, such an experiment would
probably result in the destruction of the short circuit, the battery, and any
measuring instruments incorporated in the circuit!)

Since the plot of V; versus I, is a straight line for this practical voltage
source, we should note that the values of V. and I uniquely determine
the entire V;—I; curve.

The horizontal broken line of Fig. 5.12b represents the V;—I; plot for an
ideal voltage source; the terminal voltage remains constant for any value of
load current. For the practical voltage source, the terminal voltage has a value
near that of the ideal source only when the load current is relatively small.

Let us now consider a general practical voltage source, as shown in
Fig. 5.13a. The voltage of the ideal source is vy, and a resistance R;, called
an internal resistance or output resistance, is placed in series with it. Again,
we must note that the resistor is not really present as a separate component
but merely serves to account for a terminal voltage that decreases as the
load current increases. Its presence enables us to model the behavior of a
physical voltage source more closely.

The linear relationship between vy, and iy is

Vp = Vg — RsiL [9]

(2) From this point on we will endeavor to adhere to the standard convention of referring to strictly dc
quantities using capital letters, whereas lowercase letters denote a quantity that we know to possess some
time-varying component. However, in describing general theorems which apply to either dc or ac, we will
continue to use lowercase to emphasize the general nature of the concept.
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and this is plotted in Fig. 5.13b. The open-circuit voltage (R, = 0o, so
ipr =0)is

ULoc = Vs [10]
and the short-circuit current (R; = 0, so v, = 0)is

. Vs

lpse = E [11]

Once again, these values are the intercepts for the straight line in Fig. 5.13b,
and they serve to define it completely.

Practical Current Sources

An ideal current source is also nonexistent in the real world; there is no
physical device that will deliver a constant current regardless of the load re-
sistance to which it is connected or the voltage across its terminals. Certain
transistor circuits will deliver a constant current to a wide range of load re-
sistances, but the load resistance can always be made sufficiently large that
the current through it becomes very small. Infinite power is simply never
available (unfortunately).

A practical current source is defined as an ideal current source in paral-
lel with an internal resistance R,,. Such a source is shown in Fig. 5.14a, and
the current iy, and voltage v, associated with a load resistance R, are indi-
cated. Application of KCL yields

iL =iy~ o [12]
R,
which is again a linear relationship. The open-circuit voltage and the short-
circuit current are

ULoc = Rpix [13]
and
iLsc = is [14]

The variation of load current with changing load voltage may be inves-
tigated by changing the value of R, as shown in Fig. 5.14b. The straight line
is traversed from the short-circuit, or “northwest,” end to the open-circuit
termination at the “southeast” end by increasing R; from zero to infinite
ohms. The midpoint occurs for R; = R,,. The load current iz and the ideal
source current are approximately equal only for small values of load volt-
age, which are obtained with values of R; that are small compared to R),.

Equivalent Practical Sources

It may be no surprise that we can improve upon models to increase their
accuracy; at this point we now have a practical voltage source model and
also a practical current source model. Before we proceed, however, let’s
take a moment to compare Fig. 5.13b and Fig. 5.14b. One is for a circuit
with a voltage source and the other, with a current source, but the graphs are
indistinguishable!

It turns out that this is no coincidence. In fact, we are about to show that
a practical voltage source can be electrically equivalent to a practical cur-
rent source—meaning that a load resistor R;, connected to either will have

(a)

Ideal source

Practical
source

(b)

B FIGURE 5.14 (a) A general practical current

7L

source connected to aload resistor . (b) The load

current provided by the practical current source is

shown as afunction of the load voltage.
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M FIGURE 5.15 (a) A given practical
voltage source connected to aload R;.
(b) The equivalent practical current source
connected to the same load.

4
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B FIGURE 5.16 (a) A given practical

current source. (b) The equivalent practical
voltage source.
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the same v, and i;. This means we can replace one practical source with the
other and the rest of the circuit will not know the difference.

Consider the practical voltage source and resistor R, shown in Fig. 5.15a,
and the circuit composed of a practical current source and resistor R; shown
in Fig. 5.15b. A simple calculation shows that the voltage across the load R,
of Fig. 5.15a is

Ry

=V, —— 15
VL U‘Rs-i-RL [15]

A similar calculation shows that the voltage across the load R, in

Fig. 5.15b is
(mv)
vp=|i;——— |- R,
R, + Ry

The two practical sources are electrically equivalent, then, if
Ry =R, [16]
and
Vg = Rpis = Ryl [17]

where we now let R, represent the internal resistance of either practical
source, which is the conventional notation.

Let’s try this with the practical current source shown in Fig. 5.16a. Since
its internal resistance is 2 €2, the internal resistance of the equivalent practi-
cal voltage source is also 2 €2; the voltage of the ideal voltage source con-
tained within the practical voltage source is (2)(3) = 6 V. The equivalent
practical voltage source is shown in Fig. 5.16b.

To check the equivalence, let us visualize a 4 Q2 resistor connected to
each source. In both cases a current of 1 A, a voltage of 4 V, and a power of
4 W are associated with the 4 2 load. However, we should note very care-
fully that the ideal current source is delivering a total power of 12 W, while
the ideal voltage source is delivering only 6 W. Furthermore, the internal
resistance of the practical current source is absorbing 8 W, whereas the in-
ternal resistance of the practical voltage source is absorbing only 2 W. Thus
we see that the two practical sources are equivalent only with respect to
what transpires at the load terminals; they are not equivalent internally!

EXAMPLE 5.4

Compute the current through the 4.7 kQ resistor in Fig. 5.17a after
transforming the 9 mA source into an equivalent voltage source.

It’s not just the 9 mA source at issue, but also the resistance in parallel
with it (5 k€2). We remove these components, leaving two terminals “dan-
gling.” We then replace them with a voltage source in series with a 5 k2
resistor. The value of the voltage source must be (0.09)(5000) = 45 V.

Redrawing the circuit as in Fig. 5.17b, we can write a simple KVL
equation

—45 + 50007 + 47001 + 3000/ + 3 =0

which is easily solved to yield / = 3.307 mA.
We can check our answer of course by analyzing the circuit of
Fig. 5.17a using either nodal or mesh techniques.
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9mA 5kQ 3V e 45V 3V c
I
(a) (b)

M FIGURE 5.17 (a) A circuit with both a voltage source and a current source. (b) The circuit
after the 9 mA source is transformed into an equivalent voltage source.

PRACTICE .

5.3 For the circuit of Fig. 5.18, compute the current Iy through the 47 k2
resistor after performing a source transformation on the voltage source.
5k

5V Ixi 47kQ 1 mA

B FIGURE 5.18

Ans: 192 ©A.
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EXAMPLE 5.5

Calculate the current through the 2 Q resistor in Fig. 5.19a by
making use of source transformations to first simplify the circuit.

We begin by transforming each current source into a voltage source
(Fig. 5.19b), the strategy being to convert the circuit into a simple loop.
‘We must be careful to retain the 2 Q2 resistor for two reasons: first, the
dependent source controlling variable appears across it, and second, we
desire the current flowing through it. However, we can combine the 17 2
and 9 Q resistors, since they appear in series. We also see that the 3 €2 and
4 Q resistors may be combined into a single 7 €2 resistor, which can then
be used to transform the 15 V source into a 15/7 A source as in Fig. 5.19¢.
Finally, we note that the two 7 2 resistors can be combined into a
single 3.5 €2 resistor, which may be used to transform the 15/7 A
current source into a 7.5 V voltage source. The result is a simple
loop circuit, shown in Fig. 5.194.
The current / can now be found using KVL:

—7.543.51—-51V, +281+9=0
where
V., =21
Thus,
I =21.28 mA

(Continued on next page)
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17 Q)
40 + vV, -
AM———<>—— AN,
I 2Q
3V,
5A 30 70 90 1A
(a)

(d)
M FIGURE 5.19 (g) A circuit with two independent current sources and one
dependent source. (b) The circuit after each source is transformed into a voltage
source. (¢) The circuit after further combinations. () The final circuit.

PRACTICE o

5.4 For the circuit of Fig. 5.20, compute the voltage V across the 1 M2
resistor using repeated source transformations.

N FIGURE 5.20

Ans: 272 V.
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Several Key Points

‘We conclude our discussion of practical sources and source transformations
with a few observations. First, when we transform a voltage source, we
must be sure that the source is in fact in series with the resistor under con-
sideration. For example, in the circuit of Fig. 5.21, it is perfectly valid to
perform a source transformation on the voltage source using the 10 €2 resis-
tor, as they are in series. However, it would be incorrect to attempt a source
transformation using the 60 V source and the 30 €2 resistor—a very common
type of error.

In a similar fashion, when we transform a current source and resistor
combination, we must be sure that they are in fact in parallel. Consider the
current source shown in Fig. 5.22a. We may perform a source transforma-
tion including the 3 €2 resistor, as they are in parallel, but after the transfor-
mation there may be some ambiguity as to where to place the resistor. In
such circumstances, it is helpful to first redraw the components to be trans-
formed as in Fig. 5.22b. Then the transformation to a voltage source in
series with a resistor may be drawn correctly as shown in Fig. 5.22¢; the
resistor may in fact be drawn above or below the voltage source.

It is also worthwhile to consider the unusual case of a current source in
series with a resistor, and its dual, the case of a voltage source in parallel

100 60 V
¢
MWA— )

4A (D %2'0 Q 30 0 § 1> 0.4i)

M FIGURE 5.21 Anexample circuit to illustrate how to determine if a source
transformation can be performed.

7Q 7Q

7Q

3Q

5V 2Q§ C>3v

3V

(c)
M FIGURE 5.22 () A circuit with a current source to be transformed to a voltage source. (b) Circuit
redrawn so as to avoid errors. (¢) Transformed source/resistor combination.

3V

139



140

CHAPTER 5 HANDY CIRCUIT ANALYSIS TECHNIQUES

with a resistor. Let’s start with the simple circuit of Fig. 5.23a, where we are
interested only in the voltage across the resistor marked R,. We note that re-
gardless of the value of resistor R;, Vg, = I R,. Although we might be
tempted to perform an inappropriate source transformation on such a cir-
cuit, in fact we may simply omit resistor R| (provided that it is of no interest
to us itself). A similar situation arises with a voltage source in parallel with
aresistor, as depicted in Fig. 5.23b. Again, if we are only interested in some
quantity regarding resistor R, we may find ourselves tempted to perform
some strange (and incorrect) source transformation on the voltage source
and resistor R. In reality, we may omit resistor R| from our circuit as far as
resistor R, is concerned—its presence does not alter the voltage across, the
current through, or the power dissipated by resistor R».

R 1
(@) (b)

M FIGURE 5.23 (q) Circuit with a resistor R in series with a current
source. (b) A voltage source in parallel with two resistors.

Summary of Source Transformation

1. A common goal in source transformation is to end up with
either all current sources or all voltage sources in the circuit.
This is especially true if it makes nodal or mesh analysis easier.

2. Repeated source transformations can be used to simplify a
circuit by allowing resistors and sources to eventually be
combined.

3. The resistor value does not change during a source transfor-
mation, but it is not the same resistor. This means that currents
or voltages associated with the original resistor are irretrievably
lost when we perform a source transformation.

4. If the voltage or current associated with a particular resistor is
used as a controlling variable for a dependent source, it should
not be included in any source transformation. The original
resistor must be retained in the final circuit, untouched.

5. If the voltage or current associated with a particular element is
of interest, that element should not be included in any source
transformation. The original element must be retained in the final
circuit, untouched.

6. In a source transformation, the head of the current source
arrow corresponds to the “+” terminal of the voltage source.

7. A source transformation on a current source and resistor
requires that the two elements be in parallel.

8. A source transformation on a voltage source and resistor
requires that the two elements be in series.
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53, THEVENIN AND NORTON EQUIVALENT CIRCUITS

Now that we have been introduced to source transformations and the super-
position principle, it is possible to develop two more techniques that will
greatly simplify the analysis of many linear circuits. The first of these theo-
rems is named after L. C. Thévenin, a French engineer working in telegra-
phy who published the theorem in 1883; the second may be considered a
corollary of the first and is credited to E. L. Norton, a scientist with the Bell
Telephone Laboratories.

Let us suppose that we need to make only a partial analysis of a circuit.
For example, perhaps we need to determine the current, voltage, and power
delivered to a single “load” resistor by the remainder of the circuit, which
may consist of a sizable number of sources and resistors (Fig. 5.24a). Or,
perhaps we wish to find the response for different values of the load resis-
tance. Thévenin’s theorem tells us that it is possible to replace everything
except the load resistor with an independent voltage source in series with a
resistor (Fig. 5.24b); the response measured at the load resistor will be un-
changed. Using Norton’s theorem, we obtain an equivalent composed of an
independent current source in parallel with a resistor (Fig. 5.24c¢).

Ry

|

|

|

|
Complex I e

R

network R } L

|

|

(@) () (©)
M FIGURE 5.24 (a) A complex network including a load resistor R;. (b) A Thévenin equivalent
network connected to the load resistor R;. (c) A Norton equivalent network connected to the load
resistor k.

Thus, one of the main uses of Thévenin’s and Norton’s theorems is the
replacement of a large part of a circuit, often a complicated and uninter-
esting part, with a very simple equivalent. The new, simpler circuit
enables us to make rapid calculations of the voltage, current, and power
which the original circuit is able to deliver to a load. It also helps us to
choose the best value of this load resistance. In a transistor power
amplifier, for example, the Thévenin or Norton equivalent enables us to
determine the maximum power that can be taken from the amplifier and
delivered to the speakers.
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EXAMPLE 5.6

Consider the circuit shown in Fig. 5.25a. Determine the Thévenin
equivalent of network A, and compute the power delivered to the
load resistor R;.

The dashed regions separate the circuit into networks A and B; our main
interest is in network B, which consists only of the load resistor R . Net-
work A may be simplified by making repeated source transformations.

(Continued on next page)
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M FIGURE 5.26
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Network A
(e)
M FIGURE 5.25 (a) A circuit separated into two networks. (b)-(d) Intermediate steps to simplifying
network A. (€) The Thévenin equivalent circuit.

We first treat the 12 V source and the 3 Q2 resistor as a practical volt-
age source and replace it with a practical current source consisting of a
4 A source in parallel with 3 2 (Fig. 5.25b). The parallel resistances are
then combined into 2 2 (Fig. 5.25¢), and the practical current source that
results is transformed back into a practical voltage source (Fig. 5.25d).
The final result is shown in Fig. 5.25e.

From the viewpoint of the load resistor Ry, this network A (the
Thévenin equivalent) is equivalent to the original network A; from our
viewpoint, the circuit is much simpler, and we can now easily compute
the power delivered to the load:

8 2
P = R
t (9+RL) t

Furthermore, we can see from the equivalent circuit that the maxi-
mum voltage that can be obtained across Ry is 8 V and corresponds to
R, = oo. A quick transformation of network A to a practical current
source (the Norton equivalent) indicates that the maximum current that
may be delivered to the load is 8/9 A, which occurs when R, = 0.
Neither of these facts is readily apparent from the original circuit.

PRACTICE o

5.5 Using repeated source transformations, determine the Norton
equivalent of the highlighted network in the circuit of Fig. 5.26.

Ans: 1A,5 Q.
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Thévenin’'s Theorem

Using the technique of source transformation to find a Thévenin or Norton
equivalent network worked well enough in Example 5.6, but it can rapidly
become impractical in situations where dependent sources are present or
the circuit is composed of a large number of elements. An alternative is to
employ Thévenin’s theorem (or Norton’s theorem) instead. We will state
the theorem?® as a somewhat formal procedure and then consider various
ways to make the approach more practical depending on the situation
we face.

A Statement of Thévenin’s Theorem

1. Given any linear circuit, rearrange it in the form of two
networks, A and B, connected by two wires. Network A is
the network to be simplified; B will be left untouched.

2. Disconnect network B. Define a voltage v, as the voltage now
appearing across the terminals of network A.

3. Turn off or “zero out” every independent source in network A
to form an inactive network. Leave dependent sources
unchanged.

4. Connect an independent voltage source with value v, in series
with the inactive network. Do not complete the circuit; leave the
two terminals disconnected.

5. Connect network B to the terminals of the new network A.
All currents and voltages in B will remain unchanged.

Note that if either network contains a dependent source, its control
variable must be in the same network.

Let us see if we can apply Thévenin’s theorem successfully to the circuit
we considered in Fig. 5.25. We have already found the Thévenin equivalent
of the circuit to the left of R, in Example 5.6, but we want to see if there is
an easier way to obtain the same result.

A\
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EXAMPLE 5.7

Use Thévenin’s theorem to determine the Thévenin equivalent for
that part of the circuit in Fig. 5.25a to the left of R;.

We begin by disconnecting R;, and note that no current flows through
the 7 2 resistor in the resulting partial circuit shown in Fig. 5.27a.
Thus, Vi appears across the 6 €2 resistor (with no current through the
7 Q resistor there is no voltage drop across it), and voltage division
enables us to determine that

6
Voe=12{ —— | =8V
oc <3+6)

(3) A proof of Thévenin’s theorem in the form in which we have stated it is rather lengthy, and therefore it
has been placed in Appendix 3, where the curious may peruse it.
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30 70 70
: 'T
12V 60 v, 230 60 Ry
O O 4—‘
(@) ()

I FIGURE 5.27 (a) The circuit of Fig. 5.25a with network B (the resistor
R;) disconnected and the voltage across the connecting terminals labeled
as Voc. (b) The independent source in Fig. 5.25a has been killed, and we
look into the terminals where network B was connected to determine the
effective resistance of network A.

Turning off network A (i.e., replacing the 12 V source with a short
circuit) and looking back into the dead network, we see a 7 2 resistor
connected in series with the parallel combination of 6 €2 and 3 2
(Fig. 5.27b).

Thus, the inactive network can be represented here by a 9 €2 resistor,
referred to as the Thévenin equivalent resistance of network A. The
Thévenin equivalent then is V. in series with a 9 €2 resistor, which
agrees with our previous result.

PRACTICE _

5.6 Use Thévenin’s theorem to find the current through the 2 €2 resistor
in the circuit of Fig. 5.28. (Hint: Designate the 2 Q resistor as network B.)

Ans: VTH =2.571 V, RTH = 17.857 Q, Lq= 260.8 mA.

A Few Key Points

The equivalent circuit we have learned how to obtain is completely inde-
pendent of network B: we have been instructed to first remove network B and
then measure the open-circuit voltage produced by network A, an operation
that certainly does not depend on network B in any way. The B network is
mentioned only to indicate that an equivalent for A may be obtained no mat-
ter what arrangement of elements is connected to the A network; the B net-
work represents this general network.
There are several points about the theorem which deserve emphasis.

e The only restriction that we must impose on A or B is that all
dependent sources in A have their control variables in A, and similarly
for B.

* No restrictions are imposed on the complexity of A or B; either one
may contain any combination of independent voltage or current
sources, linear dependent voltage or current sources, resistors, or any
other circuit elements which are linear.

e The dead network A can be represented by a single equivalent resis-
tance Ry, which we will call the Thévenin equivalent resistance.
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This holds true whether or not dependent sources exist in the inactive
A network, an idea we will explore shortly.

e A Thévenin equivalent consists of two components: a voltage source
in series with a resistance. Either may be zero, although this is not
usually the case.

Norton’s Theorem

Norton’s theorem bears a close resemblance to Thévenin’s theorem and
may be stated as follows:

A Statement of Norton’s Theorem

1. Given any linear circuit, rearrange it in the form of two
networks, A and B, connected by two wires. Network A is the
network to be simplified; B will be left untouched. As before, if
either network contains a dependent source, ifs controlling
variable must be in the same network.

2. Disconnect network B, and short the terminals of A. Define
a current i as the current now flowing through the shorted
terminals of network A.

3. Turn off or “zero out” every independent source in network
A to form an inactive network. Leave dependent sources
unchanged.

4. Connect an independent current source with value iy, in
parallel with the inactive network. Do not complete the circuit;
leave the two terminals disconnected.

5. Connect network B to the terminals of the new network A.
All currents and voltages in B will remain unchanged.

The Norton equivalent of a linear network is the Norton current source
isc in parallel with the Thévenin resistance R7y. Thus, we see that in fact it
is possible to obtain the Norton equivalent of a network by performing a
source transformation on the Thévenin equivalent. This results in a direct
relationship between vg, iy, and Rry:

Voc = Rrpise [18]

In circuits containing dependent sources, we will often find it more con-
venient to determine either the Thévenin or Norton equivalent by finding
both the open-circuit voltage and the short-circuit current and then deter-
mining the value of Ryy as their quotient. It is therefore advisable to be-
come adept at finding both open-circuit voltages and short-circuit currents,
even in the simple problems that follow. If the Thévenin and Norton equiv-
alents are determined independently, Eq. [18] can serve as a useful check.

Let’s consider three different examples of the determination of a
Thévenin or Norton equivalent circuit.
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EXAMPLE 5.8

Find the Thévenin and Norton equivalent circuits for the network
faced by the 1 k€ resistor in Fig. 5.29a.

2k0 3kQ 3kQ
4—‘
4v 2 mA (D 1kQ 2k Ry
-

(a) (b)

8V (#1.6111/& %51@ 1kQ
(c) (d)
2kQ 3k
4V({; CDzmA il

(e)
M FIGURE 5.29 (a) A given circuit in which the 1 kS2 resistor is identified as network B.

(b) Network A with all independent sources killed. (c) The Thévenin equivalent is shown for
network A. (d) The Norton equivalent is shown for network A. (e) Circuit for determining/s..

From the wording of the problem statement, network B is the 1 k2
resistor, so network A is everything else.

Choosing to find the Thévenin equivalent of network A first, we
apply superposition, noting that no current flows through the 3 k2
resistor once network B is disconnected. With the current source set
to zero, V,, = 4 V. With the voltage source set to zero,

Voens = (0.002)(2000) = 4 V. Thus, Vo = 4 + 4 = 8 V.

To find Ry, set both sources to zero as in Fig. 5.29b. By inspection,
Ry = 2k + 3kQ = 5 kQ. The complete Thévenin equivalent, with
network B reconnected, is shown in Fig. 5.29¢.

The Norton equivalent is found by a simple source transformation of
the Thévenin equivalent, resulting in a current source of 8/5000 = 1.6 mA
in parallel with a 5 k2 resistor (Fig. 5.29d).

Check: Find the Norton equivalent directly from Fig. 5.29a. Re-
moving the 1 k2 resistor and shorting the terminals of network A, we
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find Iy as shown in Fig. 5.29¢ by superposition and current division:
2

4
Ise = Isclyy + Isclys = m + (2)m

=08+40.8=1.6mA

which completes the check.

PRACTICE .

5.7 Determine the Thévenin and Norton equivalents of the circuit of
Fig. 5.30.

2 kO 1kQ
3V 7 mA 5k
O
M FIGURE 5.30

Ans: —7.857V, —3.235 mA, 2.429 kQ.

When Dependent Sources Are Present

Technically speaking, there does not always have to be a “network B” for us
to invoke either Thévenin’s theorem or Norton’s theorem; we could instead
be asked to find the equivalent of a network with two terminals not yet con-
nected to another network. If there is a network B that we do not want to in-
volve in the simplification procedure, however, we must use a little caution
if it contains dependent sources. In such situations, the controlling variable
and the associated element(s) must be included in network B and excluded
from network A. Otherwise, there will be no way to analyze the final circuit
because the controlling quantity will be lost.

If network A contains a dependent source, then again we must ensure
that the controlling variable and its associated element(s) cannot be in net-
work B. Up to now, we have only considered circuits with resistors and in-
dependent sources. Although technically speaking it is correct to leave a
dependent source in the “inactive” network when creating a Thévenin or
Norton equivalent, in practice this does not result in any kind of simplifica-
tion. What we really want is an independent voltage source in series with a
single resistor, or an independent current source in parallel with a single
resistor—in other words, a two-component equivalent. In the following
examples, we consider various means of reducing networks with dependent
sources and resistors into a single resistance.
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EXAMPLE 5.9
100 V
0.01V, 20kQ v,
B FIGURE 5.32

Determine the Thévenin equivalent of the circuit in Fig. 5.31a.

2 k) 3kQ

2kQ 3 kO

(@) (b)

10 kQ
8V

(©)
M FIGURE 5.31 (a) A given network whose Thévenin equivalent is desired. (b) A possible,
but rather useless, form of the Thévenin equivalent. () The best form of the Thévenin
equivalent for this linear resistive network.

To find V,,. we note that v, = V. and that the dependent source current
must pass through the 2 kS2 resistor, since no current can flow through
the 3 k€2 resistor. Using KVL around the outer loop:

—4+2x10° (—4;60) +3%x103%0) + v, =0

and
vy =8V =V,

By Thévenin’s theorem, then, the equivalent circuit could be formed
with the inactive A network in series with an 8 V source, as shown in
Fig. 5.31b. This is correct, but not very simple and not very helpful;
in the case of linear resistive networks, we really want a simpler
equivalent for the inactive A network, namely, Ry .

The dependent source prevents us from determining Ryy directly for
the inactive network through resistance combination; we therefore seek
I.. Upon short-circuiting the output terminals in Fig. 5.31a, it is
apparent that V,, = 0 and the dependent current source is not active.
Hence, I =4/(5 x 10%) = 0.8 mA. Thus,
Voe 8
I 08x1073

and the acceptable Thévenin equivalent of Fig. 5.31c¢ is obtained.

Ry = = 10k

PRACTICE o

5.8 Find the Thévenin equivalent for the network of Fig. 5.32. (Hint:
a quick source transformation on the dependent source might help.)

Ans: —502.5 mV, —100.5 Q2.

Note: a negative resistance might seem strange—and it is! Such a thing is physically
possible only if, for example, we do a bit of clever electronic circuit design to create
something that behaves like the dependent current source we represented in Fig. 5.32.
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As another example, let us consider a network having a dependent
source but no independent source.
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EXAMPLE 5.10

Find the Thévenin equivalent of the circuit shown in Fig. 5.33a.

30 i 30 i
A% NN

+

1.5 20 1.5i 2Q ey 1A

(a) (b)

0.6 Q

(c)

M FIGURE 5.33 (a) A network with no independent sources. (b) A hypothetical measurement to
obtain Rry. () The Thévenin equivalent to the original circuit.

The rightmost terminals are already open-circuited, hence i = 0.
Consequently, the dependent source is inactive, SO Vo = 0.

We next seek the value of Ryy represented by this two-terminal
network. However, we cannot find v,. and iy, and take their quotient,
for there is no independent source in the network and both v, and i
are zero. Let us, therefore, be a little tricky.

We apply a | A source externally, measure the voltage vie that
results, and then set Ry = vy /1. Referring to Fig. 5.33b, we see
thati = —1 A. Applying nodal analysis,

Vtest — 1 5(_ 1) Utest

3 2 !
so that

Viest = 0.6 V
and thus

Ry = 0.6 Q

The Thévenin equivalent is shown in Fig. 5.33c.

A Quick Recap of Procedures

We have now looked at three examples in which we determined a Thévenin
or Norton equivalent circuit. The first example (Fig. 5.29) contained only
independent sources and resistors, and several different methods could have
been applied to it. One would involve calculating Ryy for the inactive
network and then V. for the live network. We could also have found Ry
and Iy, or V. and I.



( PRACTICAL APPLICATION )

The Digital Multimeter

One of the most common pieces of electrical test equip- 1 kQ
ment is the DMM, or digital multimeter (Fig. 5.34),

which is designed to measure voltage, current, and resis-

tance values. oV

DMM
1 kO % v/ COM
© 7

M FIGURE 5.35 A DMM connected to measure voltage.

Thévenin equivalent resistance. This Thévenin equivalent
resistance will appear in parallel with our circuit, and its
value can affect the measurement (Fig. 5.36). The DMM
does not supply power to the circuit to measure voltage,
so its Thévenin equivalent consists of only a resistance,
which we will name Rpyum-

1kQ
+

9V %lkﬂ \%

R,
M FIGURE 5.34 A handheld digital multimeter. b

In a voltage measurement, two leads from the DMM
are connected across the appropriate circuit element, as
depicted in Fig. 5.35. The positive reference terminal of
the meter is typically marked “V/Q2,” and the negative
reference terminal—often referred to as the common
terminal—is typically designated by “COM.” The
convention is to use a red lead for the positive reference

M FIGURE 5.36 DMM in Fig. 5.35 shown as its Thévenin equivalent
resistance, Rowiu-

The input resistance of a good DMM is typically
10 M2 or more. The measured voltage V thus appears
across 1 k2|10 M2 = 999.9 . Using voltage division,
we find that V = 4.4998 volts, slightly less than the ex-

terminal and a black lead for the common terminal.
From our discussion of Thévenin and Norton equiva-
lents, it may now be apparent that the DMM has its own

pected value of 4.5 volts. Thus, the finite input resistance
of the voltmeter introduces a small error in the measured
value.

In the second example (Fig. 5.31), both independent and dependent
sources were present, and the method we used required us to find V,,. and
I.. We could not easily find Ryy for the inactive network because the
dependent source could not be made inactive.

The last example did not contain any independent sources, and therefore
the Thévenin and Norton equivalents do not contain an independent source.
We found Ryy by applying 1 A and finding vy = 1 X Ryy. We could also
apply 1 V and determine i = 1/Ryy. These two related techniques can be
applied to any circuit with dependent sources, as long as all independent
sources are set to zero first.

Two other methods have a certain appeal because they can be used for
any of the three types of networks considered. In the first, simply replace
network B with a voltage source vy, define the current leaving its positive
terminal as 7, analyze network A to obtain 7, and put the equation in the form
vy =ai +b. Then,a = Ryy and b = v,.



To measure current, the DMM must be placed in se-
ries with a circuit element, generally requiring that we
cut a wire (Fig. 5.37). One DMM lead is connected to the
common terminal of the meter, and the other lead is
placed in a connector usually marked “A” to signify cur-
rent measurement. Again, the DMM does not supply
power to the circuit in this type of measurement.

1kQ
4.500 mA
I
9V DMM
1k T l A COM
o ?

B FIGURE 5.37 ADMM connected to measure current.

We see that the Thévenin equivalent resistance
(Rpmm) of the DMM is in series with our circuit, so its
value can affect the measurement. Writing a simple KVL
equation around the loop,

—9+ 1000/ + Rpmm!I + 10007 =0

Note that since we have reconfigured the meter to
perform a current measurement, the Thévenin equivalent
resistance is not the same as when the meter is config-
ured to measure voltages. In fact, we would ideally like
Rpmum to be 0  for current measurements, and oo for
voltage measurements. If Rpyy is now 0.1 2, we see
that the measured current / is 4.4998 mA, which is only
slightly different from the expected value of 4.5 mA. De-
pending on the number of digits that can be displayed by

the meter, we may not even notice the effect of nonzero
DMM resistance on our measurement.

The same meter can be used to determine resistance,
provided no independent sources are active during the
measurement. Internally, a known current is passed
through the resistor being measured, and the voltmeter
circuitry is used to measure the resulting voltage. Re-
placing the DMM with its Norton equivalent (which now
includes an active independent current source to gener-
ate the predetermined current), we see that Rpym ap-
pears in parallel with our unknown resistor R (Fig. 5.38).

R V' < Rpym Iy

M FIGURE 5.38 DMM in resistance measurement configuration replaced by
its Norton equivalent, showing Rpy in parallel with the unknown resistor R
to be measured.

As aresult, the DMM actually measures R || Rpvm. If
Rpvv = 10 MQ and R = 10 2, Rineasured = 9.99999 Q,
which is more than accurate enough for most purposes.
However, if R = 10 M2, Rpneasured = S M. The input
resistance of a DMM therefore places a practical upper
limit on the values of resistance that can be measured,
and special techniques must be used to measure larger
resistances. We should note that if a digital multimeter
is programmed with knowledge of Rpwyv, it is pos-
sible to compensate and allow measurement of larger
resistances.

We could also apply a current source i, let its voltage be v, and then de-
termine iy = cv — d, where ¢ = 1 /Ry and d = i (the minus sign arises
from assuming both current source arrows are directed into the same node).
Both of these last two procedures are universally applicable, but some other

method can usually be found that is easier and more rapid.

Although we are devoting our attention almost entirely to the analysis of
linear circuits, it is good to know that Thévenin’s and Norton’s theorems are

both valid if network B is nonlinear; only network A must be linear.

10 Q 50

PRACTICE .

g

5.9 Find the Thévenin equivalent for the network of Fig. 5.39. (Hint: 204, 300

Try a 1V test source.)

Ans: I = 50 mA so Ry = 20 Q.

M FIGURE 5.39 See Practice
Problem 5.9.




152

B FIGURE 5.40 A practical voltage source connected

to a load resistor R;.

CHAPTER 5 HANDY CIRCUIT ANALYSIS TECHNIQUES

5.4 , MAXIMUM POWER TRANSFER

A very useful power theorem may be developed with reference to a practi-
cal voltage or current source. For the practical voltage source (Fig. 5.40),
the power delivered to the load R is
2
.2 ViR
=i’R, = ——— 19
PR = R R o]
To find the value of R; that absorbs maximum power from the given
practical source, we differentiate with respect to Ry :

dpr  (Ry+ R)*v? —v2RL(2)(Ry + Ry)
dR, (R + Rp)*

and equate the derivative to zero, obtaining

2RL(Rs + Ry) = (R + R.)?
or
R, = Ry

Since the values R, = 0 and R, = oo both give a minimum (p, = 0),
and since we have already developed the equivalence between practical
voltage and current sources, we have therefore proved the following
maximum power transfer theorem:

An independent voltage source in series with a resistance R;, or an independent
current source in parallel with a resistance R;, delivers maximum power to a
load resistance R; such that R; = R;.

An alternative way to view the maximum power theorem is possible in
terms of the Thévenin equivalent resistance of a network:

A network delivers maximum power to a load resistance R; when R, is equal
to a the Thévenin equivalent resistance of the network.

Thus, the maximum power transfer theorem tells us that a 2 €2 resistor
draws the greatest power (4.5 W) from either practical source of Fig. 5.16,
whereas a resistance of 0.01 2 receives the maximum power (3.6 kW) in
Fig. 5.11.

There is a distinct difference between drawing maximum power from a
source and delivering maximum power to a load. If the load is sized such
that its Thévenin resistance is equal to the Thévenin resistance of the net-
work to which it is connected, it will receive maximum power from that
network. Any change to the load resistance will reduce the power delivered
to the load. However, consider just the Thévenin equivalent of the network
itself. We draw the maximum possible power from the voltage source by
drawing the maximum possible current—which is achieved by shorting the
network terminals! However, in this extreme example we deliver zero
power to the “load”—a short circuit in this case—as p = iR, and we just
set R = 0 by shorting the network terminals.

A minor amount of algebra applied to Eq. [19] coupled with the maxi-
mum power transfer requirement that R, = R; = Ry will provide

2

2
Prmax | delivered to 1 d_i_ Ui

max |aelivere 0 load — -
4R, 4Ry
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where vry and Ry recognize that the practical voltage source of Fig. 5.40
can also be viewed as a Thévenin equivalent of some specific source.
It is also not uncommon for the maximum power theorem to be misin-
terpreted. It is designed to help us select an optimum load in order to maxi- A
mize power absorption. If the load resistance is already specified, however,
the maximum power theorem is of no assistance. If for some reason we can
affect the size of the Thévenin equivalent resistance of the network con-
nected to our load, setting it equal to the load does not guarantee maximum
power transfer to our predetermined load. A quick consideration of the
power lost in the Thévenin resistance will clarify this point.

EXAMPLE 5.11

The circuit shown in Fig. 5.41 is a model for the common-emitter
bipolar junction transistor amplifier. Choose a load resistance so

that maximum power is transferred to it from the amplifier, and

calculate the actual power absorbed.

300 Q

oY +
2.5 sin 440t mV 17 kO 5kQ2 4 %P 0.03s, Z1kQ Ry

M FIGURE 5.41 Asmall-signal model of the common-emitter amplifier, with the load resistance
unspecified.

Since it is the load resistance we are asked to determine, the maximum
power theorem applies. The first step is to find the Thévenin equivalent
of the rest of the circuit.

We first determine the Thévenin equivalent resistance, which
requires that we remove R; and short-circuit the independent source
as in Fig. 5.42a.

300 O
o
17 kQ 5kQZS 4 0.032, >1kQ R
(a)
300 Q

+ +
2.5 sin 440t mV 17kQ 5k o) 0032, 21kQ 4
®)

M FIGURE 5.42 (q) Circuit with R, removed and independent source short-circuited. (b) Circuit
for determining vr,.
(Continued on next page)
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Since v, = 0, the dependent current source is an open circuit, and
Rry = 1 k. This can be verified by connecting an independent 1 A
current source across the 1 k2 resistor; v, will still be zero, so the
dependent source remains inactive and hence contributes nothing
to Ryy.

In order to obtain maximum power delivered into the load, R;,
should be set to Ry = 1 k2.

To find vy we consider the circuit shown in Fig. 5.42b, which is
Fig. 5.41 with R, removed. We may write

Voc = —0.03v,(1000) = —30v,,

where the voltage v, may be found from simple voltage division:

3864
= (2.5 x 107 sin4401) | =———
Ur = (25> 107 sin 440r) <300 i 3864)
so that our Thévenin equivalent is a voltage —69.6 sin 440t mV in
series with 1 k€.
The maximum power is given by

2
P = —TH_ — 1,211 sin? 4407 kW

" 4Ry
PRACTICE |
5.10 Consider the circuit of Fig. 5.43.
20V 40V
c 30V
2kQ Rout

2kQ

M FIGURE 5.43
(a) If Ry = 3 k€2, find the power delivered to it.

(b) What is the maximum power that can be delivered to any Ry?

(c¢) What two different values of R, will have exactly 20 mW
delivered to them?

Ans: 230 mW; 306 mW; 59.2 k2 and 16.88 2.

5.5 , DELTA-WYE CONVERSION

We saw previously that identifying parallel and series combinations of re-
sistors can often lead to a significant reduction in the complexity of a circuit.
In situations where such combinations do not exist, we can often make use
of source transformations to enable such simplifications. There is another
useful technique, called A-Y (delta-wye) conversion, that arises out of net-
work theory.

Consider the circuits in Fig. 5.44. There are no series or parallel combi-
nations that can be made to further simplify any of the circuits (note that
5.44a and 5.44b are identical, as are 5.44c¢ and 5.44d), and without any
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Example 4.2

Assume I, = 1 A and use linearity to find the actual value of /, in the
circuit of Fig. 4.4.

I, 6Q 2 vy I 2Q 1 v, 3Q
I3 I 1
I,=15A CD 70 40 50
Figure 4.4
For Example 4.2.

Solution:
IfI,=1A,then V, = 3 + 5), =8 Vand I, = V,/4 = 2 A. Applying
KCL at node 1 gives

12211 +10: 3A
V2:V1+212:8+6:14V, 13:7:2A
Applying KCL at node 2 gives

14:I3+12:5A

Therefore, I, = 5 A. This shows that assuming I, = 1 gives I, = 5 A,
the actual source current of 15 A will give I, = 3 A as the actual value.

Practice Problem 4.2

12Q

40V 50 8QV,

Figure 4.5
For Practice Prob. 4.2.

Superposition is not limited to circuit
analysis but is applicable in many
fields where cause and effect bear a
linear relationship to one another.

Assume that V, = 1V and use linearity to calculate the actual value
of V, in the circuit of Fig. 4.5.

Answer: 16 V.

4.3 Superposition

If a circuit has two or more independent sources, one way to determine
the value of a specific variable (voltage or current) is to use nodal or
mesh analysis as in Chapter 3. Another way is to determine the con-
tribution of each independent source to the variable and then add them
up. The latter approach is known as the superposition.

The idea of superposition rests on the linearity property.

The superposition principle states that the voltage across (or current
through) an element in a linear circuit is the algebraic sum of the volt-
ages across (or currents through) that element due to each independ-
ent source acting alone.
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The principle of superposition helps us to analyze a linear circuit with
more than one independent source by calculating the contribution of
each independent source separately. However, to apply the superposi-
tion principle, we must keep two things in mind:

1. We consider one independent source at a time while all other inde- Other terms such as kiled, madle inac-
pendent sources are turned off. This implies that we replace every tive, deadened, or set equal to zero
voltage source by 0 V (or a short circuit), and every current source are often used to convey the same
by 0 A (or an open circuit). This way we obtain a simpler and more idea.

manageable circuit.
2. Dependent sources are left intact because they are controlled by
circuit variables.

With these in mind, we apply the superposition principle in three
steps:

Steps to Apply Superposition Principle:

1. Turn off all independent sources except one source. Find the
output (voltage or current) due to that active source using
the techniques covered in Chapters 2 and 3.

2. Repeat step 1 for each of the other independent sources.

3. Find the total contribution by adding algebraically all the
contributions due to the independent sources.

Analyzing a circuit using superposition has one major disadvan-
tage: It may very likely involve more work. If the circuit has three
independent sources, we may have to analyze three simpler circuits
each providing the contribution due to the respective individual source.
However, superposition does help reduce a complex circuit to simpler
circuits through replacement of voltage sources by short circuits and
of current sources by open circuits.

Keep in mind that superposition is based on linearity. For this
reason, it is not applicable to the effect on power due to each source,
because the power absorbed by a resistor depends on the square of
the voltage or current. If the power value is needed, the current
through (or voltage across) the element must be calculated first using

superposition.
Use the superposition theorem to find v in the circuit of Fig. 4.6. Example 4.3
Solution: 8
Since there are two sources, let .

v=0v; +0U, ov 40 ’ 3A
where v; and v, are the contributions due to the 6-V voltage source X
and the 3-A current source, respectively. To obtain v, we set the current Figure 4.6

For Example 4.3.

source to zero, as shown in Fig. 4.7(a). Applying KVL to the loop in
Fig. 4.7(a) gives

12i,—6=0 = ii=05A
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8Q
MV e}
6V ii ) 402y
O
(a)
(b)
Figure 4.7

For Example 4.3: (a) calculating v,
(b) calculating v,.

Chapter4  Circuit Theorems

Thus,
[ 411 =2V
We may also use voltage division to get v, by writing

4
4+8

o 6) =2V

To get v,, we set the voltage source to zero, as in Fig. 4.7(b). Using
current division,

8
3 = 3)=2A
b=
Hence,
v, = 4iz =8V
And we find

v=v,tuv,=2+8=10V

Practice Problem 4.3

30 50
+
7,220 5A 12v
Figure 4.8

For Practice Prob. 4.3.

Using the superposition theorem, find v,, in the circuit of Fig. 4.8.

Answer: 7.4 V.

Example 4.4

3Q

4 A

Figure 4.9
For Example 4.4.

Find i, in the circuit of Fig. 4.9 using superposition.

Solution:
The circuit in Fig. 4.9 involves a dependent source, which must be left
intact. We let

i, =i+ i 4.4.1)

where i/, and i, are due to the 4-A current source and 20-V voltage
source respectively. To obtain i,,, we turn off the 20-V source so that
we have the circuit in Fig. 4.10(a). We apply mesh analysis in order to
obtain i/,. For loop 1,

ip =4A 4.4.2)
For loop 2,
_311 + 612 - 113 - 51;, =0 (4.4.3)



(a)
Figure 4.10

43

4Q

Superposition

2Q

o NNV

B )
56"

1Q
AW o=
# l'o!/

sa3 (i)

o D

N

20V

For Example 4.4: Applying superposition to (a) obtain i,,, (b) obtain i/).

For loop 3,

—5i, — liy + 10i3 + 5i, = 0

But at node O,

Substituting Eqgs. (4.4.2) and (4.4.5) into Eqgs. (4.4.3) and (4.4.4) gives

two simultaneous equations

3i, — 2i’ = 8
iy + 5i, = 20

which can be solved to get

./

52
i,=—A
17

(4.4.4)

(4.4.5)

(4.4.6)
(4.4.7)

(4.4.8)

To obtain i/, we turn off the 4-A current source so that the circuit
becomes that shown in Fig. 4.10(b). For loop 4, KVL gives

614_15_51220

and for loop 5,

_l4+ 10[5 — 20 +5[Z: 0

(4.4.9)

(4.4.10)

But is = —i}. Substituting this in Egs. (4.4.9) and (4.4.10) gives

6i4 - 412 =
i4 + SIZ = -20
which we solve to get
-1 60
i, =—""—"A
17

(4.4.11)
(4.4.12)

(4.4.13)

Now substituting Egs. (4.4.8) and (4.4.13) into Eq. (4.4.1) gives

—0.4706 A

(b)

4Q

133
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Practice Problem 4.4

20Q 4,

e

0.1v

Figure 4.11
For Practice Prob. 4.4.

4Q
L

Use superposition to find v, in the circuit of Fig. 4.11.

Answer: v, = 31.25 V.

Example 4.5
24V 30
o
N\
4Q 4Q
l — W\
12V Cf) 3Q

Figure 4.12
For Example 4.5.

For the circuit in Fig. 4.12, use the superposition theorem to find i.

Solution:
In this case, we have three sources. Let

l:ll+12+l3

where iy, i, and i3 are due to the 12-V, 24-V, and 3-A sources respec-
tively. To get i;, consider the circuit in Fig. 4.13(a). Combining 4 ()
(on the right-hand side) in series with 8 () gives 12 Q. The 12 Q in
parallel with 4 Q) gives 12 X 4/16 = 3 (). Thus,

12

11—6 2A

To get i,, consider the circuit in Fig. 4.13(b). Applying mesh analysis
gives

16i, — 4i, +24 =0 = 4i, — i, = —6 4.5.1)
7ib - 4ia =0 = ia = 7ib (4.5.2)
Substituting Eq. (4.5.2) into Eq. (4.5.1) gives
i2 = ib = -1
To get i3, consider the circuit in Fig. 4.13(c). Using nodal analysis gives

U2 Uy — Uy

3="24 = 24 = 3v, — 2v, (4.5.3)
8 4
Uy —U; U Uy 10
= -t -1 = — D
; f 3 = 1, 3 U 4.5.4)

Substituting Eq. (4.5.4) into Eq. (4.5.3) leads to v; = 3 and

. U
z3=?=1A

Thus,
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8Q
A
40 40 30
L A — .
i y
2V t) §3Q — 12V 30
(a)
nv 8Q 8Q
5 A A

40 4 40 4Q \

vy 4Q A
MW MWW v
#iz o ¢i3 2
@ 30 30 O
T +

(b) (c)
Figure 4.13
For Example 4.5.

135

Find [ in the circuit of Fig. 4.14 using the superposition principle.

Figure 4.14
For Practice Prob. 4.5.

Answer: 375 mA.

4.4 Source Transformation

We have noticed that series-parallel combination and wye-delta trans-
formation help simplify circuits. Source transformation is another tool
for simplifying circuits. Basic to these tools is the concept of equiva-
lence. We recall that an equivalent circuit is one whose v-i character-
istics are identical with the original circuit.

In Section 3.6, we saw that node-voltage (or mesh-current) equa-
tions can be obtained by mere inspection of a circuit when the sources
are all independent current (or all independent voltage) sources. It is
therefore expedient in circuit analysis to be able to substitute a voltage
source in series with a resistor for a current source in parallel with a

Practice Problem 4.5
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resistor, or vice versa, as shown in Fig. 4.15. Either substitution is
known as a source transformation.

R
a a

b b
Figure 4.15

Transformation of independent sources.

A source transformation is the process of replacing a voltage source
v, in series with a resistor £ by a current source /. in parallel with a resis-
tor R, or vice versa.

The two circuits in Fig. 4.15 are equivalent—provided they have the
same voltage-current relation at terminals g-b. It is easy to show that
they are indeed equivalent. If the sources are turned off, the equivalent
resistance at terminals a-b in both circuits is R. Also, when terminals
a-b are short-circuited, the short-circuit current flowing from a to b is
isc = Uy/R in the circuit on the left-hand side and iy, = i, for the circuit
on the right-hand side. Thus, v,/R = i, in order for the two circuits to
be equivalent. Hence, source transformation requires that
= iR A 4.5
v, = i or i =5 4.5)
Source transformation also applies to dependent sources, provided
we carefully handle the dependent variable. As shown in Fig. 4.16, a
dependent voltage source in series with a resistor can be transformed
to a dependent current source in parallel with the resistor or vice versa
where we make sure that Eq. (4.5) is satisfied.

R
a a

Vg - is R

b b
Figure 4.16

Transformation of dependent sources.

Like the wye-delta transformation we studied in Chapter 2, a
source transformation does not affect the remaining part of the circuit.
When applicable, source transformation is a powerful tool that allows
circuit manipulations to ease circuit analysis. However, we should keep
the following points in mind when dealing with source transformation.

1. Note from Fig. 4.15 (or Fig. 4.16) that the arrow of the current source
is directed toward the positive terminal of the voltage source.

2. Note from Eq. (4.5) that source transformation is not possible when
R = 0, which is the case with an ideal voltage source. However, for
a practical, nonideal voltage source, R # 0. Similarly, an ideal cur-
rent source with R = < cannot be replaced by a finite voltage source.
More will be said on ideal and nonideal sources in Section 4.10.1.
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Use source transformation to find v, in the circuit of Fig. 4.17. Example 4.6
Solution: «i& 30
We first transform the current and voltage sources to obtain the circuit .
in Fig. 4.18(a). Combining the 4-) and 2-Q) resistors in series and 4 3A 8Q 2 4, 12V
transforming the 12-V voltage source gives us Fig. 4.18(b). We now -
combine the 3-Q) and 6-() resistors in parallel to get 2-Q). We also
combine the 2-A and 4-A current sources to get a 2-A source. Thus, Figure 4.17
by repeatedly applying source transformations, we obtain the circuit in ~ For Example 4.6.
Fig. 4.18(c).

4Q 2Q

+
12V 8Q =1, 3Q 4A
(@)
. A
2A 6 Q 8Q < 7 3Q 4A 8Q = 7, 2Q 2A

(b)
Figure 4.18
For Example 4.6.

We use current division in Fig. 4.18(c) to get

2
= ———(2) = 04A
i=51s®

and
v, =8 =804) =32V

Alternatively, since the 8-0) and 2-() resistors in Fig. 4.18(c) are
in parallel, they have the same voltage v, across them. Hence,

8§ X2
v, =@8]2)2A) = T(Z) =32V

()

Find i, in the circuit of Fig. 4.19 using source transformation.

5V 1Q

Figure 4.19
For Practice Prob. 4.6.

Answer: 1.78 A.

Practice Problem 4.6
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138
Example 4.7
4Q
o 0.25v,
AAM -
"
6V 20 2 % 18V
Figure 4.20
For Example 4.7.
4Q

3AG> 20 202 0,

Find v, in Fig. 4.20 using source transformation.

Solution:

The circuit in Fig. 4.20 involves a voltage-controlled dependent current
source. We transform this dependent current source as well as the 6-V
independent voltage source as shown in Fig. 4.21(a). The 18-V voltage
source is not transformed because it is not connected in series with any
resistor. The two 2-() resistors in parallel combine to give a 1-()
resistor, which is in parallel with the 3-A current source. The current
source is transformed to a voltage source as shown in Fig. 4.21(b).
Notice that the terminals for v, are intact. Applying KVL around the
loop in Fig. 4.21(b) gives

—3+5+v,+18=0 4.7.1)

Figure 4.21

(b)

For Example 4.7: Applying source transformation to the circuit in Fig. 4.20.

Applying KVL to the loop containing only the 3-V voltage source, the
1-Q) resistor, and v, yields

-3+1li+tuv,=0 = v,=3—1i 4.7.2)
Substituting this into Eq. (4.7.1), we obtain
I5+5+3—-i=0 = i=—45A

Alternatively, we may apply KVL to the loop containing v,, the 4-()
resistor, the voltage-controlled dependent voltage source, and the 18-V
voltage source in Fig. 4.21(b). We obtain

—v, +di+uv, +18=0 = i=—45A

Thus,v, =3 —-i=75V.

Practice Problem 4.7

5Q

F

24 mA 10Q 20,

Figure 4.22
For Practice Prob. 4.7.

Use source transformation to find i, in the circuit shown in Fig. 4.22.

Answer: 7.059 mA.
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4.5 Thevenin’s Theorem

It often occurs in practice that a particular element in a circuit is vari-
able (usually called the /oad) while other elements are fixed. As a typ-
ical example, a household outlet terminal may be connected to different
appliances constituting a variable load. Each time the variable element
is changed, the entire circuit has to be analyzed all over again. To avoid
this problem, Thevenin’s theorem provides a technique by which the
fixed part of the circuit is replaced by an equivalent circuit.

According to Thevenin’s theorem, the linear circuit in Fig. 4.23(a)
can be replaced by that in Fig. 4.23(b). (The load in Fig. 4.23 may be
a single resistor or another circuit.) The circuit to the left of the ter-
minals a-b in Fig. 4.23(b) is known as the Thevenin equivalent circuit;
it was developed in 1883 by M. Leon Thevenin (1857-1926), a French
telegraph engineer.

Thevenin’s theorem states that a linear two-terminal circuit can be
replaced by an equivalent circuit consisting of a voltage source V4, in
series with a resistor Ry, Where V4, is the open-circuit voltage at the
terminals and Ry, is the input or equivalent resistance at the terminals
when the independent sources are turned off.

The proof of the theorem will be given later, in Section 4.7. Our
major concern right now is how to find the Thevenin equivalent volt-
age Vp, and resistance Ryy,. To do so, suppose the two circuits in
Fig. 4.23 are equivalent. Two circuits are said to be equivalent if they
have the same voltage-current relation at their terminals. Let us find
out what will make the two circuits in Fig. 4.23 equivalent. If the ter-
minals a-b are made open-circuited (by removing the load), no current
flows, so that the open-circuit voltage across the terminals a-b in
Fig. 4.23(a) must be equal to the voltage source Vrpy, in Fig. 4.23(b),
since the two circuits are equivalent. Thus Vry, is the open-circuit volt-
age across the terminals as shown in Fig. 4.24(a); that is,

VTh = Uose (4'6)
Linear N a Linear circuit with a
two-terminal all independent R,
- Vpe
.o oc sources set equal A —
circuit -
N to zero —C
Vih = Y Ryn = Rin

(a) (b)
Figure 4.24
Finding Vi, and Ry,

Again, with the load disconnected and terminals a-b open-
circuited, we turn off all independent sources. The input resistance
(or equivalent resistance) of the dead circuit at the terminals a-b in
Fig. 4.23(a) must be equal to Ry, in Fig. 4.23(b) because the two circuits
are equivalent. Thus, Ry, is the input resistance at the terminals when the
independent sources are turned off, as shown in Fig. 4.24(b); that is,

Rrn = Ry 4.7

139

L — 5 |
Linear +
two-terminal 1% Load
circuit -
N
b

Ry 1 a
+
Vin 1% Load
S|
b
(b)

Figure 4.23

Replacing a linear two-terminal circuit
by its Thevenin equivalent: (a) original
circuit, (b) the Thevenin equivalent
circuit.
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Circuit with

all independent
sources set equal
to zero

Ry, = —
o0

i

(a)

Circuit with

all independent
sources set equal
to zero

]}0
Ry = —

o

i

(b)
Figure 4.25

Finding Ry, when circuit has dependent

sources.

| Later we will see that an alternative way

of finding Rry, is Rip = Ve /e

Linear
circuit

a
Vi
RL

b

(a)

Figure 4.26

A circuit with a load: (a) original circuit,

Ry a
yh
n® "
b
(b)

(b) Thevenin equivalent.
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To apply this idea in finding the Thevenin resistance Ryy,, we need
to consider two cases.

M CASE 1 If the network has no dependent sources, we turn off all
independent sources. Ry, is the input resistance of the network look-
ing between terminals a and b, as shown in Fig. 4.24(b).

M CASE 2 If the network has dependent sources, we turn off all
independent sources. As with superposition, dependent sources are not
to be turned off because they are controlled by circuit variables. We
apply a voltage source v,, at terminals a and b and determine the result-
ing current i,. Then Ry, = v,/i, as shown in Fig. 4.25(a). Alterna-
tively, we may insert a current source i, at terminals a-b as shown in
Fig. 4.25(b) and find the terminal voltage v,. Again Ry, = v,/i,. Either
of the two approaches will give the same result. In either approach we
may assume any value of v, and i,.. For example, we may use v, = 1 V
or i, = 1 A, or even use unspecified values of v, or i,.

It often occurs that Ry, takes a negative value. In this case, the
negative resistance (v = —iR) implies that the circuit is supplying
power. This is possible in a circuit with dependent sources; Example 4.10
will illustrate this.

Thevenin’s theorem is very important in circuit analysis. It helps
simplify a circuit. A large circuit may be replaced by a single indepen-
dent voltage source and a single resistor. This replacement technique
is a powerful tool in circuit design.

As mentioned earlier, a linear circuit with a variable load can be
replaced by the Thevenin equivalent, exclusive of the load. The equiv-
alent network behaves the same way externally as the original circuit.
Consider a linear circuit terminated by a load R;, as shown in Fig. 4.26(a).
The current I; through the load and the voltage V; across the load are
easily determined once the Thevenin equivalent of the circuit at the
load’s terminals is obtained, as shown in Fig. 4.26(b). From Fig. 4.26(b),
we obtain

V.
[ =—™m (4.8a)
Ry, + R
V, =R, = Ry (4.8b)
L — L — R’]‘h + R[l Th o

Note from Fig. 4.26(b) that the Thevenin equivalent is a simple volt-
age divider, yielding V; by mere inspection.

Example 4.8

4Q o,
3zv(# 129% ﬁ)zA %RL
b

Figure 4.27
For Example 4.8.

Find the Thevenin equivalent circuit of the circuit shown in Fig. 4.27, to
the left of the terminals a-b. Then find the current through R; = 6, 16,
and 36 Q.

Solution:
We find Ry, by turning off the 32-V voltage source (replacing it
with a short circuit) and the 2-A current source (replacing it with an
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open circuit). The circuit becomes what is shown in Fig. 4.28(a).
Thus,
4 X 12

Ry =412+ 1= T +1=40Q

Vin 1Q

4Q 1Q 4Q
a A AMA—0 a
+
R
12Q - 32\/%) @ 12Q @ 2A Vin
o b <_>b
(@)

(b)

Figure 4.28
For Example 4.8: (a) finding Ry, (b) finding V..

To find Vpy, consider the circuit in Fig. 4.28(b). Applying mesh
analysis to the two loops, we obtain

Solving for iy, we get iy = 0.5 A. Thus,
Vin = 1231, — i) = 12(0.5 + 2.0) =30V

Alternatively, it is even easier to use nodal analysis. We ignore the
1-Q resistor since no current flows through it. At the top node, KCL
gives

32 -V
2=V, Vm
4 12
or

96 — 3VTh + 24 = VTh = VTh =30V

4Q
as obtained before. We could also use source transformation to find Vo, a
The Thevenin equivalent circuit is shown in Fig. 4.29. The current WL
through R; is 30V R,
Vi 30
I = =
Ry, + R, 4+ R, b
When R, = 6, Figure 4.29
The Thevenin equivalent circuit for
30 Example 4.8.
I, =—=3A
L0
When R; = 16,
30
I, =—=15A
F20
When R; = 36,
30
I, =—=075A
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Practice Problem 4.8

Using Thevenin’s theorem, find the equivalent circuit to the left of the
terminals in the circuit of Fig. 4.30. Then find 1.

6Q 6Q “
VI Answer: Vo, =6V, Ry, =3Q,1=15A.
12V 2A % 4Q 1Q
b
Figure 4.30
For Practice Prob. 4.8.
Example 4.9 Find the Thevenin equivalent of the circuit in Fig. 4.31 at terminals a-b.
2vy Solution:
This circuit contains a dependent source, unlike the circuit in the
previous example. To find Ry, we set the independent source equal to
2Q 2Q zero but leave the dependent source alone. Because of the presence of
MW WW—0a  he dependent source, however, we excite the network with a voltage
SA ‘0 J; 60 source v,, connected to the terminals as indicated in Fig. 4.32(a). We
- may set v, = 1V to ease calculation, since the circuit is linear. Our
o b goal is to find the current i, through the terminals, and then obtain
Figure 4.31 Ry, = 1/i,. (Alternatively, we may insert a 1-A current source, find the
For Exampie 4.9, corresponding voltage v, and obtain Ry, = v,/1)
2v, 20,
2D %
0 )
2Q 2Q a 2Q 2Q
MW . AW AMMN—0 a
+ T ‘o + *
49%_& @ %69 @ 5=1V 5A @ 49%_& @ %69 -
o b
b

(a)
Figure 4.32
Finding Ry, and Vy, for Example 4.9.

Applying mesh analysis to loop 1 in the circuit of Fig. 4.32(a)
results in

—2v, + 2(iy — i) =0 or U, =11 — I
But —4i, = v, = i; — i»; hence,
ii = —3i, (4.9.1)
For loops 2 and 3, applying KVL produces
4iy + 2(iy — iy) + 6(i, —i3) = 0 4.9.2)
6(iz —ip) +2i3+1=0 4.9.3)
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Solving these equations gives
. 1
iz =——A

But i, = —iy; = 1/6 A. Hence,
1V
Ry =——"=60Q

lo

To get Vry,, we find v, in the circuit of Fig. 4.32(b). Applying
mesh analysis, we get

ii=35 4.9.4)
—2v, + 203 — i) =0 = Uy =13 — Iy (4.9.5)
4(ipy — i) + 2(iy — i3) + 6i, = 0
or
12i, —4i; — 2i5=0 (4.9.6)

But 4(i; — i») = v,. Solving these equations leads to i, = 10/3.
Hence,

VTh = Vye — 612 =20V

The Thevenin equivalent is as shown in Fig. 4.33.
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6 Q

20V

Figure 4.33
The Thevenin equivalent of the circuit in
Fig. 4.31.

Find the Thevenin equivalent circuit of the circuit in Fig. 4.34 to the
left of the terminals.

Answer: Vi, = 5333V, Ry, = 444.4 mQ.

Practice Problem 4.9

s Lo3a
AA%%% o]
6V#>—MM <$1.51x 40
O

Figure 4.34
For Practice Prob. 4.9.

a

b

Determine the Thevenin equivalent of the circuit in Fig. 4.35(a) at
terminals a-b.

Solution:

1. Define. The problem is clearly defined; we are to determine the
Thevenin equivalent of the circuit shown in Fig. 4.35(a).

2. Present. The circuit contains a 2-{) resistor in parallel with a
4-Q) resistor. These are, in turn, in parallel with a dependent
current source. It is important to note that there are no
independent sources.

3. Alternative. The first thing to consider is that, since we have no
independent sources in this circuit, we must excite the circuit
externally. In addition, when you have no independent
sources you will not have a value for Vpy,; you will only have
to find Rpy,.

Example 4.10
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Oa
b
2i, ¥ 4Q 2Q§
O b
(@)
v, a
b
2i {§) 4Q ZQ§ i,
= b
(b)
4Q a 9Q

40 a 9Q

Figure 4.35
For Example 4.10.
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The simplest approach is to excite the circuit with either a
1-V voltage source or a 1-A current source. Since we will end
up with an equivalent resistance (either positive or negative), [
prefer to use the current source and nodal analysis which will
yield a voltage at the output terminals equal to the resistance
(with 1 A flowing in, v, is equal to 1 times the equivalent
resistance).

As an alternative, the circuit could also be excited by a 1-V
voltage source and mesh analysis could be used to find the
equivalent resistance.

. Attempt. We start by writing the nodal equation at a in Fig. 4.35(b)

assuming i, = 1 A.
2+ 0, = 0)/4+ v, —0)/2+ (=D =0 (410.1)

Since we have two unknowns and only one equation, we will
need a constraint equation.

=0 —v,)/2=~v,/2 (4.10.2)
Substituting Eq. (4.10.2) into Eq. (4.10.1) yields

2(=0,/2) + (v, = 0)/4 + (v, = 0)/2 + (=1) =0
=(-1+3+yv, —1 or v,=-4V

Since v, =1 X Ry, then R, = v,/1 = —4 Q.

The negative value of the resistance tells us that, according
to the passive sign convention, the circuit in Fig. 4.35(a) is
supplying power. Of course, the resistors in Fig. 4.35(a) cannot
supply power (they absorb power); it is the dependent source
that supplies the power. This is an example of how a
dependent source and resistors could be used to simulate
negative resistance.

. Evaluate. First of all, we note that the answer has a negative

value. We know this is not possible in a passive circuit, but in
this circuit we do have an active device (the dependent current
source). Thus, the equivalent circuit is essentially an active
circuit that can supply power.

Now we must evaluate the solution. The best way to do this
is to perform a check, using a different approach, and see if we
obtain the same solution. Let us try connecting a 9-() resistor in
series with a 10-V voltage source across the output terminals of
the original circuit and then the Thevenin equivalent. To make
the circuit easier to solve, we can take and change the parallel
current source and 4-() resistor to a series voltage source and
4-() resistor by using source transformation. This, with the new
load, gives us the circuit shown in Fig. 4.35(c).

We can now write two mesh equations.

Note, we only have two equations but have 3 unknowns, so we
need a constraint equation. We can use

e =1y — 1y
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This leads to a new equation for loop 1. Simplifying leads to

(4 +2—8)i, + (=2 + 8)i» = 0
or
_211 + 612 =0 or il = 312
i, + 1liy = —10

Substituting the first equation into the second gives

Using the Thevenin equivalent is quite easy since we have only
one loop, as shown in Fig. 4.35(d).

—~4i+9i+10=0 or i=-10/5=-2A

6. Satisfactory? Clearly we have found the value of the equivalent
circuit as required by the problem statement. Checking does
validate that solution (we compared the answer we obtained by
using the equivalent circuit with one obtained by using the load
with the original circuit). We can present all this as a solution to
the problem.
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Obtain the Thevenin equivalent of the circuit in Fig. 4.36.

Answer: Vo, = 0V, Ry, = —7.5QO.

4.6 Norton’s Theorem

In 1926, about 43 years after Thevenin published his theorem, E. L.
Norton, an American engineer at Bell Telephone Laboratories, pro-
posed a similar theorem.

Norton’s theorem states that a linear two-terminal circuit can be
replaced by an equivalent circuit consisting of a current source /5 in
parallel with a resistor Ky, where /, is the short-circuit current through
the terminals and Ry is the input or equivalent resistance at the termi-
nals when the independent sources are tuned off.

Thus, the circuit in Fig. 4.37(a) can be replaced by the one in Fig. 4.37(b).

The proof of Norton’s theorem will be given in the next section.
For now, we are mainly concerned with how to get Ry and Iy. We find
Ry in the same way we find Rpy,. In fact, from what we know about
source transformation, the Thevenin and Norton resistances are equal;
that is,

RN = RTh (4.9)

To find the Norton current 7y, we determine the short-circuit current
flowing from terminal @ to b in both circuits in Fig. 4.37. It is evident

Practice Problem 4.10

4o,
100 %

F = o a

O b

Figure 4.36
For Practice Prob. 4.10.

Linear
two-terminal
circuit

(a)

0 a
Iy Ry

0 b

(b)
Figure 4.37
(a) Original circuit, (b) Norton equivalent
circuit.
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Linear
two-terminal
circuit

Figure 4.38

Finding Norton current /y.

The Thevenin and Norton equivalent
circuits are related by a source
transformation.
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that the short-circuit current in Fig. 4.37(b) is Iy. This must be the same
short-circuit current from terminal a to b in Fig. 4.37(a), since the two
circuits are equivalent. Thus,

IN = Ilg¢

4.10)

shown in Fig. 4.38. Dependent and independent sources are treated the
same way as in Thevenin’s theorem.

Observe the close relationship between Norton’s and Thevenin’s
theorems: Ry = Ry, as in Eq. (4.9), and

Iy=—2 @.11)

This is essentially source transformation. For this reason, source trans-
formation is often called Thevenin-Norton transformation.

Since Vy, Iy, and Ry, are related according to Eq. (4.11), to deter-
mine the Thevenin or Norton equivalent circuit requires that we find:

* The open-circuit voltage v, across terminals a and b.

e The short-circuit current iy at terminals a and b.

* The equivalent or input resistance R;, at terminals a and b when
all independent sources are turned off.

We can calculate any two of the three using the method that takes the
least effort and use them to get the third using Ohm’s law. Example 4.11
will illustrate this. Also, since

VTh Uoc (4'123)
IN = I (4.12b)
Uoe
RTh = = RN (4.12C)

the open-circuit and short-circuit tests are sufficient to find any Thevenin
or Norton equivalent, of a circuit which contains at least one inde-
pendent source.

Example 4.11

8Q
ANV O q
4Q
2A 5Q
12V
O b
8Q

Figure 4.39
For Example 4.11.

Find the Norton equivalent circuit of the circuit in Fig. 4.39 at
terminals a-b.

Solution:

We find Ry in the same way we find Ry, in the Thevenin equivalent
circuit. Set the independent sources equal to zero. This leads to the
circuit in Fig. 4.40(a), from which we find Ry. Thus,

20 X' 5
25

—40

Ry=5](8 +4+8 =5]20=

To find Iy, we short-circuit terminals @ and b, as shown in Fig. 4.40(b).
We ignore the 5-() resistor because it has been short-circuited.
Applying mesh analysis, we obtain

ip =2A, 20i, —4ip, —12=0
From these equations, we obtain

i2:1A:isc:IN
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8Q 30 u
o A O a MW
l isc = IN
@ 40Q
RN
4Q § 50 § - 2A
12V 30
8Q 8Q
o A o b NV
b
(a)
(b)
8Q
AWV o)
+
@ 40 @
2ZA 5Q § VTh = Ypc
12V
8Q _
0'4%%% 0 b
(©
Figure 4.40
For Example 4.11; finding: (a) Ry, (b) Iy = iz (¢) Vi = Vg
Alternatively, we may determine Iy from Vy,/Rp,. We obtain Vi,
as the open-circuit voltage across terminals a and b in Fig. 4.40(c).
Using mesh analysis, we obtain
iz =2A
25iy —4iz — 12 =0 = iy = 0.8A
and
Vope = VTh = 514 =4V
Hence,
V- 4 a
Iyv=—""="=1A
Ry, 4 1A 4Q

as obtained previously. This also serves to confirm Eq. (4.12c) that
R = Uye/ige = 4/1 = 4 Q). Thus, the Norton equivalent circuit is as
shown in Fig. 4.41.

Figure 4.41
Norton equivalent of the circuit in Fig. 4.39.

Find the Norton equivalent circuit for the circuit in Fig. 4.42, at
terminals a-b.

Practice Problem 4.11

3Q 3Q
MWV O a
15V #D—W:VA é} 6Q
O b
Figure 4.42
For Practice Prob. 4.11.
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Example 4.12

2i,

—-

5Q
MWV

ixl

4Q @va

Figure 4.43

For Example 4.12.

20,

Using Norton’s theorem, find Ry and Iy of the circuit in Fig. 4.43 at
terminals a-b.

Solution:

To find Ry, we set the independent voltage source equal to zero and
connect a voltage source of v, = 1 V (or any unspecified voltage v,)
to the terminals. We obtain the circuit in Fig. 4.44(a). We ignore the
4-() resistor because it is short-circuited. Also due to the short circuit,
the 5-() resistor, the voltage source, and the dependent current source

are all in parallel. Hence, i, = 0. At node a, i, = 5% = 0.2 A, and
v 1

=2=—"—"=50
i, 0.2

To find I, we short-circuit terminals a and b and find the current
is» as indicated in Fig. 4.44(b). Note from this figure that the 4-Q
resistor, the 10-V voltage source, the 5-() resistor, and the dependent
current source are all in parallel. Hence,

j —&—ZSA
iy 1 .

At node a, KCL gives

10
=5 2 =24225=TA

Thus,

5Q

Figure 4.44

(a)

(b)

For Example 4.12: (a) finding Ry;, (b) finding /.

Practice Problem 4.12

20

X

CIa—

O

Figure 4.45

For Practice Prob. 4.12.

Find the Norton equivalent circuit of the circuit in Fig. 4.45 at
terminals a-b.

Answer: Ry = 1Q, 1y = 10 A.
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4.7 TDerivations of Thevenin’s and
Norton’s Theorems

In this section, we will prove Thevenin’s and Norton’s theorems using
the superposition principle.

Consider the linear circuit in Fig. 4.46(a). It is assumed that the
circuit contains resistors and dependent and independent sources. We
have access to the circuit via terminals a and b, through which current
from an external source is applied. Our objective is to ensure that the
voltage-current relation at terminals a and b is identical to that of the
Thevenin equivalent in Fig. 4.46(b). For the sake of simplicity, sup-
pose the linear circuit in Fig. 4.46(a) contains two independent voltage
sources Uy and vy, and two independent current sources ig; and ig,. We
may obtain any circuit variable, such as the terminal voltage v, by
applying superposition. That is, we consider the contribution due to
each independent source including the external source i. By superpo-
sition, the terminal voltage v is

UV =Agl + Ajvg + Arugn + Azig + Auign 4.13)

where Ag, A, Ay, Az, and A4 are constants. Each term on the right-hand
side of Eq. (4.13) is the contribution of the related independent source;
that is, Ayi is the contribution to v due to the external current source i,
Ajvy, is the contribution due to the voltage source v, and so on. We
may collect terms for the internal independent sources together as B,
so that Eq. (4.13) becomes

v = Ayl + By (4.14)

where By = Avg + Ayv + Azig + Ay, We now want to evalu-
ate the values of constants Ay and B,. When the terminals a and b are
open-circuited, i = 0 and v = B,. Thus, By is the open-circuit voltage
U, Which is the same as V-, so

By = Vp (4.15)

When all the internal sources are turned off, B, = 0. The circuit can
then be replaced by an equivalent resistance R.,, which is the same as
Rty,, and Eq. (4.14) becomes

eqr

[ Aol - RThi = AO - RTh (4.16)
Substituting the values of Ay and B, in Eq. (4.14) gives
v = RThi + VTh (4.17)

which expresses the voltage-current relation at terminals a and b of the
circuit in Fig. 4.46(b). Thus, the two circuits in Fig. 4.46(a) and 4.46(b)
are equivalent.

When the same linear circuit is driven by a voltage source v as
shown in Fig. 4.47(a), the current flowing into the circuit can be
obtained by superposition as

i = C()U + D() (4.18)

where Cyv is the contribution to i due to the external voltage source v
and D, contains the contributions to i due to all internal independent
sources. When the terminals a-b are short-circuited, v = 0 so that
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+ Linear
i v L
_ circuit
b
(@)
a R Th
+
i v V1n
b

(b)
Figure 4.46
Derivation of Thevenin equivalent: (a) a
current-driven circuit, (b) its Thevenin
equivalent.

— »a
) Linear
circuit
b
(a)
g
—
v Ry Iy
b

(b)
Figure 4.47
Derivation of Norton equivalent: (a) a
voltage-driven circuit, (b) its Norton
equivalent.
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a

Figure 4.48
The circuit used for maximum power
transfer.

RL
Figure 4.49

Power delivered to the load as a function
Of RL'

Chapter4  Circuit Theorems

i = Dy = —i. where i is the short-circuit current flowing out of ter-
minal a, which is the same as the Norton current 7y, i.e.,
Dy = —Iy 4.19)

When all the internal independent sources are turned off, Dy = 0 and
the circuit can be replaced by an equivalent resistance R (or an equiv-
alent conductance G4 = 1/Req), which is the same as Ry, or Ry. Thus
Eq. (4.19) becomes
v

= — — 1 4.20

l Ron N ( )
This expresses the voltage-current relation at terminals a-b of the cir-
cuit in Fig. 4.47(b), confirming that the two circuits in Fig. 4.47(a) and
4.47(b) are equivalent.

4.8 Maximum Power Transfer

In many practical situations, a circuit is designed to provide power to
a load. There are applications in areas such as communications where
it is desirable to maximize the power delivered to a load. We now
address the problem of delivering the maximum power to a load when
given a system with known internal losses. It should be noted that this
will result in significant internal losses greater than or equal to the
power delivered to the load.

The Thevenin equivalent is useful in finding the maximum power
a linear circuit can deliver to a load. We assume that we can adjust the
load resistance R;. If the entire circuit is replaced by its Thevenin
equivalent except for the load, as shown in Fig. 4.48, the power deliv-
ered to the load is

= 2R, = (VT‘“ )21? @.21)
p L Ren + R, L .
For a given circuit, Vp, and Ry, are fixed. By varying the load resist-
ance R;, the power delivered to the load varies as sketched in Fig. 4.49.
We notice from Fig. 4.49 that the power is small for small or large val-
ues of R; but maximum for some value of R; between 0 and . We
now want to show that this maximum power occurs when R; is equal
to Ryp. This is known as the maximum power theorem.

Maximum power is transferred to the load when the load resistance
equals the Thevenin resistance as seen from the load (R, = Ry,).

To prove the maximum power transfer theorem, we differentiate p
in Eq. (4.21) with respect to R; and set the result equal to zero. We
obtain

dp {(Rm + R.)” — 2R, (Ryy, + R,)}
dr, ™" (Rmy + R.)
, [ Ry + R, — 2Ry)
Th 3 =0
(Rt + RL)




4.8  Maximum Power Transfer

This implies that
0= R + R, — 2R;) = (R, — Ryp) (4.22)

which yields

RL = RTh (4.23)

showing that the maximum power transfer takes place when the load
resistance R; equals the Thevenin resistance Ry,. We can readily confirm
that Eq. (4.23) gives the maximum power by showing that d*p /dR7 < 0.

The maximum power transferred is obtained by substituting
Eq. (4.23) into Eq. (4.21), for

Vi
pmax 4RTh

4.24)

Equation (4.24) applies only when R; = Ry,. When R; # Ry, we
compute the power delivered to the load using Eq. (4.21).

I The source and load are said to be

matched when R, = Ry
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Find the value of R; for maximum power transfer in the circuit of
Fig. 4.50. Find the maximum power.

6 Q

3Q 2Q 4
MW
12V 12Q &RZA Ry
b

Figure 4.50
For Example 4.13.

Solution:
We need to find the Thevenin resistance Ry, and the Thevenin voltage
V1, across the terminals a-b. To get Ry, we use the circuit in Fig. 4.51(a)
and obtain

Example 4.13

2Q

6 X 12
Rm=2+3+6][12=5+ T =9Q
6Q 30 20 6Q
A AMA—O AW
Ry
12Q - 12V @
O

NWN—o0

(a)

Figure 4.51
For Example 4.13: (a) finding Ry, (b) finding V.

30
AW

120 @ #DZA
(b)



152

Chapter4  Circuit Theorems

To get Vqy,, we consider the circuit in Fig. 4.51(b). Applying mesh
analysis gives

—12 418, — 12i, =0, ir=—-2A

Solving for i;, we get i; = —2/3. Applying KVL around the outer loop
to get Vpy, across terminals a-b, we obtain

—12 + 6iy + 3i, + 2(0) + V1, = 0 = Vi =22V
For maximum power transfer,
R, =R, =9Q
and the maximum power is
Vi, 222
Pmac = 4R, T4 x9

= 1344 W

Practice Problem 4.13

20 4Q
AW
+ oy -
1Q
9V<t> R,
3v,

Figure 4.52
For Practice Prob. 4.13.

Determine the value of R; that will draw the maximum power from
the rest of the circuit in Fig. 4.52. Calculate the maximum power.

Answer: 4.222 (), 2.901 W.

4.9 Verifying Circuit Theorems with PSpice

In this section, we learn how to use PSpice to verify the theorems cov-
ered in this chapter. Specifically, we will consider using DC Sweep analy-
sis to find the Thevenin or Norton equivalent at any pair of nodes in a
circuit and the maximum power transfer to a load. The reader is advised
to read Section D.3 of Appendix D in preparation for this section.

To find the Thevenin equivalent of a circuit at a pair of open ter-
minals using PSpice, we use the schematic editor to draw the circuit
and insert an independent probing current source, say, Ip, at the termi-
nals. The probing current source must have a part name ISRC. We then
perform a DC Sweep on Ip, as discussed in Section D.3. Typically, we
may let the current through Ip vary from O to 1 A in 0.1-A increments.
After saving and simulating the circuit, we use Probe to display a plot
of the voltage across Ip versus the current through Ip. The zero inter-
cept of the plot gives us the Thevenin equivalent voltage, while the
slope of the plot is equal to the Thevenin resistance.

To find the Norton equivalent involves similar steps except that we
insert a probing independent voltage source (with a part name VSRC),
say, Vp, at the terminals. We perform a DC Sweep on Vp and let Vp
vary from 0 to 1 V in 0.1-V increments. A plot of the current through
Vp versus the voltage across Vp is obtained using the Probe menu after
simulation. The zero intercept is equal to the Norton current, while the
slope of the plot is equal to the Norton conductance.

To find the maximum power transfer to a load using PSpice
involves performing a DC parametric Sweep on the component value
of R; in Fig. 4.48 and plotting the power delivered to the load as a
function of R;. According to Fig. 4.49, the maximum power occurs
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Applying KCL at Node 2,
Vil VB,
0.5 2
_LVI_’_ L.}rl V2_1V3 =14
0.5 0.5 2 2
2V+25V,-050;=14 ...(i1)

Nodes 3 and 4 will form a supernode,
Writing voltage equation for the supernode,
Vs=V4=02V, =024 -V)
021 +V5-12V4=0 ...(ii1)

Applying KCL to the supernode,

M—O.SVX _,_&_,_MZO
2 1 2.5

Vg,—Vz V4_Vl
—= =050, -N)+Vy+——
> (=N)+Vy 55

0.5—L " - l+0.5 V2+1V3+ 1+L Vy=0
2.5 2 2 2.5

0.1V, —V2+0.5V3+14V;=0 (iv)

=0

Solving Eqs (i), (ii), (iii) and (iv),

N=-12V
Vy=—4V
V3=0
Vi=-2V

EXA| suPerPOSITION THEOREM

It states that ‘in a linear network containing more than one independent source and dependent source,
the resultant current in any element is the algebraic sum of the currents that would be produced by each
independent source acting alone, all the other independent sources being represented meanwhile by their
respective internal resistances.’

The independent voltage sources are represented by their internal resistances if given or simply with zero
resistances, i.e., short circuits if internal resistances are not mentioned. The independent current sources are
represented by infinite resistances, i.e., open circuits.

The dependent sources are not sources but dissipative components—hence they are active at all times. A
dependent source has zero value only when its control voltage or current is zero.

A linear network is one whose parameters are constant, i.e., they do not change with voltage and current.
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Explanation Consider the network shown in Fig. 2.61. Suppose we have to find current /, through
resistor R,.

R, R

vV R, R, /

Fig. 2.61 Network to illustrate superposition theorem

The current flowing through resistor R, due to constant voltage source V' is found to be say 7, (with proper
direction), representing constant current source with infinite resistance, i.e., open circuit.

The current flowing through resistor R, due to constant current source / is found to be say Z;” (with proper
direction), representing the constant voltage source with zero resistance or short circuit.

R Ry

la

vV — R, Ry

Fig. 2.62 When voltage source V is acting alone

R, R,

14"

R, R, I

Fig. 2.63 When current source l is acting alone

The resultant current 7, through resistor R, is found by superposition theorem.
I,=1,+17

Steps to be followed in Superposition Theorem

1. Find the current through the resistance when only one independent source is acting, replacing all
other independent sources by respective internal resistances.

2. Find the current through the resistance for each of the independent sources.

3. Find the resultant current through the resistance by the superposition theorem considering magnitude
and direction of each current.
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” SENWHEW  Find the current through the 4 82 resistor in Fig. 2.64.

2Q
5A 60
5Q
40
6 Q
20V T
Fig. 2.64
Solution
Step I When the 5 A source is acting alone (Fig. 2.65)
2Q
on () o
5Q
4Q
6 Q
Fig. 2.65
By series-parallel reduction technique (Fig. 2.66),
2Q
2Q I
6Q >
5A 4Q
<D 5A 8.73 Q
273Q
(@) (b)
Fig. 2.66
S0 343 AW)

8.73+4

4Q
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Step I When the 20 V source is acting alone (Fig. 2.67)

2Q
6 Q
! 5Q /
40
6 Q
20V T
Fig. 2.67
By series-parallel reduction technique (Fig. 2.68),
I 5Q I | 50Q
20V — 6 Q 10 Q 20V 3.75Q
(@) (b)
Fig. 2.68
1= 20 =229A
5+3.75
From Fig. 2.68(a), by current-division rule,
17 =229%x—~086 AW
6+10

Step III By superposition theorem,
I=I"+1"=343+086=429A (1)

” SETN W Find the current through the 3 2 resistor in Fig. 2.69.

2Q

on (D)

10 Q 40 20V

i

Fig. 2.69

2.45
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Solution

Step I When the 5 A source is acting alone (Fig. 2.70)

2Q
5Q 3Q
sa(})
100 40
. . . | Fig. 2.70 ;20
By series-parallel reduction technique (Fig. 2.71),
15
I'=5x———=375A(
15+2+3 ) 5A CD 15Q
Step I When the 20 V source is acting alone (Fig. 2.72)
2Q Fig. 2.71
5Q
10 Q
Fig. 2.72
By series-parallel reduction technique (Fig. 2.73),
" i
20Q 40 20V 333Q —L 5y
(a) (b)
Fig. 2.73
=2 6
3.33
From Fig. 2.73(a), by current-division rule,
4
1”7 =6Xx =1AM=-1Ad
20+4 ) )

Step III By superposition theorem,
I=0I"+1"=375-1=275A ()

3Q
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” SCTI WY  Find the current in the 1 82 resistors in Fig. 2.74.

2.47

@ 1A
2Q 3Q
4V — 1Q (f 3A
Fig. 2.74
2Q 3Q
Solution
r
Step I When the 4 V source is acting alone (Fig. 2.75)
4V —/ 1Q
, 4
I'=——=133A())
2+1
Step I When the 3 A source is acting alone (Fig. 2.76) Fig. 2.75
By current-division rule, s0 30
1"=3xi=2A(¢) r
1+2
1Q 3A
Step III ' When the 1 A source is acting alone (Fig. 2.77)
1A
&) Fig. 2.76
2Q 3Q
1Q
Fig. 2.77
Redrawing the network (Fig. 2.78), "
By current-division rule, 3Q
2Q 1Q
2
1”7 =1x——=0.66 A({
2+1 (+) 1A
Step IV By superposition theorem,
Fig. 2.78

I=DI"+1"+1"=133+2+0.66=4 A1)
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” SETNTIWP R Find the voltage V ,, in Fig. 2.79.

o A
il ’
6V 5Q
Vas
5A - 10V
o B
Fig. 2.79

Solution
Step I When the 6 V source is acting alone (Fig. 2.80)

Vig=6V L oA
6V 5Q
Vas

Fig. 2.80

Step I 'When the 10 V source is acting alone (Fig. 2.81)

Since the resistor of 5 € is shorted, the voltage across it is zero.

Vi =10V

Step II  'When the 5 A source is acting alone (Fig. 2.82)
Due to short circuit in both the parts,

Vig =0

Step IV By superposition theorem,

Vg =Vup +Vis +Vig =6+10+0=16V

EXAMPLES WITH DEPENDENT SOURCES

5A@

” SET I WHER  Find the current through the 6 Q2 resistor in Fig. 2.83.

| 6Q 8Q

>

15V 3/

— 10V

Fig. 2.83

o A
+
5Q
Vg
oV
La B
Fig. 2.81
o A
T
5Q
Vag
oB
Fig. 2.82
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Solution r
Step I When the 15 V source is acting alone (Fig. 2.84)

6 Q 8Q
From Fig. 2.84,
Iy I

Meshes 1 and 2 will form a supermesh.
Writing current equation for the supermesh,

I, -1, =31"=3] Fig. 2.84
4L -1,=0 ...(i1)
Applying KVL to the outer path of the supermesh,
15-61,-81, =0

61, +81, =15 ...(iii)
Solving Egs (ii) and (iii),
I, =0.39A
I, =157A
I'=1,=039A(—)

Step I When the 10 V source is acting alone (Fig. 2.85)

From Fig. 2.85, I 8Q 8

1”=1 ..(1)
Meshes 1 and 2 will form a supermesh. ) 3y ) L Jov
Writing current equation for the supermesh, B L

L -1, =31"=3]
4, -1, =0 ...(i)
Applying KVL to the outer path of the supermesh, Fig. 2.85
-6, -8, +10=0
61,+81, =10 ...(110)

Solving Egs (ii) and (iii),

I,=026A

I, =1.05A

I"=01=026A (—)
Step 111 By superposition theorem,
I=0I"+1"=0394+026=0.65A (—)

” SET RV Find the current I in Fig. 2.86.

I, 5Q 1Q

>

20V —/— <¢ 30 A 41,

Fig. 2.86
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Solution

Step I 'When the 30 A source is acting alone (Fig. 2.87)
From Fig. 2.87,

I 5Q 10
I =1 ...(1)
Meshes 1 and 2 will form a supermesh. I 30A L 41,

Writing current equation for the supermesh,

11—12 =30 (11)
Applying KVL to the outer path of the supermesh, Fig. 2.87
—5[1 —112 —41; = 0
—5I,—1, -4, =0
9L+1,=0 ...(iii)
Solving Egs (ii) and (iii), L=3A
[2 =-27A

I[=L=3A(>)

Step I  'When the 20 V source is acting alone (Fig. 2.88) I’ 50 10
Applying KVL to the mesh, >

20517 =117 —4I7 =0 5
I7 =2A(—>) 20V —=- 41,

Step III By superposition theorem,
I,=1;+1I7 =3+2=5A(>)

”m Find the current I,. in Fig. 2.89.

Fig. 2.88

10Q

5V

Fig. 2.89

Solution
Step I When the 5 V source is acting alone (Fig. 2.90)

From Fig. 2.90, 100

V.=5-101
* 5V

Applying KVL to the mesh,
5—10I, -4V -2I,=0 Fig. 2.90
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5-10/; -4 (5-101))-2I;=0
5-101 -20+401 -2I/=0
15
Ii=—=054 A"
= h

Step I When the 2 A source is acting alone (Fig. 2.91)
From Fig. 2.91,
V., =-101{ ...(@)
Meshes 1 and 2 will form a supermesh.
Writing current equation for the supermesh,

L-1=2 ...(ii)
Applying KVL to the outer path of the supermesh,

-101{ -4V, -2, =0
-107{ —4(-101{ )-2I, =0
30 =21, =0 ...(1i1)
Solving Egs (ii) and (iii),

I,=014A(T)
I, =214 A

Step 111 By superposition theorem,
L=I +I =0.54+0.14=0.68 A (T)

”m Determine the current through the 10 2 resistor in Fig. 2.92.

10Q 10V,

i Cr
100V 522V (Mioa

T f

Fig. 2.92
Solution
Step I 'When the 100 V source is acting alone (Fig. 2.93) 100Q 10V,
From Fig. 2.93, 7 t
V. =sr l +
Applying KVL to the mesh, 100 V 5Q 8
100 - 107" + 10V - 5I'=0 T -

100 — 107 + 10(57') — 5’ =0

Fig. 2.93
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I"'=-286A(—>)

Step I 'When the 10 A source is acting alone (Fig. 2.94) 100
From Fig. 2.94, -+ T
Ve=5(1-1,) ()

Applying KVL to Mesh 1, ) 505y ) Q)

X 10A
—105, +10V, =5([; - ;) =0 Iy b

—10]1+10{5(11—]2)}—5(11—]2)=0 -
351,451, =0 ...(11)

For Mesh 2,
I, =-10 ...(ii1)

Solving Egs (ii) and (iii),

L =-12.86 A

I,=-10A

1”=1=-12.86 A ()
Step lll By superposition theorem,

I=1"+1"=-2.86-12.86=-15.72 A (—)

”m Find the current I in the network of Fig. 2.95.

3Q
I
4Q
5V,
1A

17V

I

‘\
N
205>V,

Fig. 2.95
17V 3Q
Solution 4{ 7
Step I When the 17 V source is acting alone (Fig. 2.96) .
From Fig. 2.96, V- ar 20 \ix 5V,
Applying KVL to the mesh, '
—2I'=17-3I'-5V_=0
=27 = 17-3I'-5(=2I'")=0 Fig. 2.96
I'=34A(>)
3Q
Step I When the 1 A source is acting alone (Fig. 2.97) -
From Fig. 2.97, . 10
Vx =—211 ...(i) 20 VX ) ) 5Vx
Meshes 1 and 2 will form a supermesh. - h ‘A Iy
Writing current equation for the supermesh,

L-1 =1 ...(ii)
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Applying KVL to the outer path of the supermesh,
=20 -3, -5V, =0
=21 =31, -5(-21) =0
8 -3, =0
Solving Egs (ii) and (iii),
I;=0.6A
I,=16A
I"=0=16A(>)
Step III By superposition theorem,
I=I+1I"=34+16=5A(>)

” SETNIWRLE  Find the voltage V, in Fig. 2.98.

1Q | 4Q

+
41 7 Q)SA — 20V

Fig. 2.98

Solution
Step I When the 5 A source is acting alone (Fig. 2.99)
From Fig. 2.99,

4 4] 5A
Applying KCL at Node 1,

2.53

...(iii)

V]/_ 4] Vl,
Azt s
1 4 Fig. 2.99

V-4 L +ﬁ=5
4) 4

V=20V

Step I When the 20 V source is acting alone (Fig. 2.100) 1Q Vi o4Q
Applying KVL to the mesh,

4-1-41-20=0

I1=-20A 41 — 20V

V" =4I 1(I)=31=3(-20)=—60 V

Step III By superposition theorem,

V=V VT =20-60= 40V Fig. 2.100
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”m Find the current in the 6 £2 resistor in Fig. 2.101.
1Q 2

Vy

QsA 6Q
[

18V

Fig. 2.101
Solution 1Q 2V,
-+
Step I When the 18 V source is acting alone (Fig. 2.102) i -V, + r
From Fig. 2.102,
£ Vx =_r 18V 6Q
Applying KVL to the mesh, T
18-I'+2V —6I'=0
18—1I-2I'-6I'=0 Fig. 2.102
Ir'=2A{)
Step I When the 3 A source is acting alone (Fig. 2.103) 10 2V,
From Fig. 2.103, It ,
. - VX + !
Vx=_111=_11 (1) G)SA 60
Meshes 1 and 2 will form a supermesh. p ) P )
Writing current equation for the supermesh, 1 2
Applying KVL to the outerpath of the supermesh, 18 &
-1 +2V,—-61,=0
-1 +2(—[1)—6[2 =0
31+6[, =0 ...(ii1)
Solving Egs (ii) and (iii),
11 =-2A
12 =1A
I"=5L=1A{)
Step III By superposition theorem,
L=l +I"=2+1=3A()
” SCINICWRIN  Find the current I in Fig. 2.104.
ly a0 10/, 8Q
A ——<E > ANA—
120V — (f 12A — 40V

Fig. 2.104



Solution

Step | When the 120 V source is acting alone (Fig. 2.105)
Applying KVL to the mesh,

120-41’-101"-81"=0
y y y

120V —

2.7 Superposition Theorem 2.55

Iy 4q

10/,

8Q

17=545 A ()

Step I When the 12 A source is acting alone (Fig. 2.106)
From Fig. 2.106,

1,”=1, ...()
Meshes 1 and 2 will form a supermesh.
Writing current equation for the supermesh,

L-L=12 ...(ii)

Applying KVL to the outer path of the supermesh,
—41,-101,” 81, =0
—41,-105, =81, =0
141, +81, =0
Solving Egs (ii) and (iii),
I =—436A
I, =764 A
D"=1=-436A(—>)

Step III  When the 40 V source is acting alone (Fig. 2.107)
Applying KVL to the mesh, Y

8Q

..(iii)

41”101 8" ~40=0

4Q
1,” = —g: ~1.82 A ()

— 40V

Step IV By superposition theorem,

@=gwqf+§“=5%
-436-1.82=-0.73 A (=)

” SETNTIWRVE  Find the voltage V. in Fig. 2.108.

30 60 3V,

7D
+ Vi -
24 Q

18V
[ b

] 36V

Fig. 2.108

Fig. 2.107
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Solution
Step I When the 18 V source is acting alone (Fig. 2.109) 3Q 6 Q S 3V
From Fig. 2.109, RV
X

Vx' =3/

Applying KVL to the mesh, 18V — )
18— 37—61—-3V'=0 /
18—3/-6/-3 (3)=0
I=1A .

yr=3v Fig. 2.109
Step I When the 5 A source is acting alone (Fig. 2.110) 3Q
From Fig. 2.110, Y

v =-3I ..(0)
Meshes 1 and 2 will form a supermesh.
Writing current equation for the supermesh,

X

D

6Q
24 Q
) av,
5A bk

[2—[1 =5 (ll)

Applying KVL to the outer path of the supermesh, Fig. 2.110
—311 —6[2 —3V;/ =0
—3[1 —6[2 —3(311) =0
12[,+61, =0 ...(ii1)
Solving Egs (ii) and (iii),
I =-1.67A
I, =333A
VY =3I =3(-1.67)=-5V
Step III ' When the 36 V source is acting alone (Fig. 2.111) 3Q 6Q 3V,
From Fig. 2.111, T
+ v -
VXII/ — _3[ X
Applying KVL to the mesh, C T %V
!
36 +3V"—61-31=0
Fig. 2.111

3643V 6(_VX )—3(_V" ):0
3 3

3643V + 2V 4V =0
VI'=—-6V

Step IV By superposition theorem,

V.=V +V/+V/"=3-5-6=-8V
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” SEN RN Find the voltage V in the network of Fig. 2.112.

8Q 15Q 5Q
-V +
10V — (D -5A 12Q 8V
Fig. 2.112
Solution
Step I When the 10 V source is acting alone 8Q 15Q 5Q
(Fig. 2.113) N
From Fig. 2.113, v
Vi=s8h ) oy ) 2o )
Applying KVL to Mesh 1, Iy I
—10—811 -15 11 -12 ([1 —[2) =0
35121, =-10  ..(i1) Fig. 2.113
Applying KVL to Mesh 2,
—12(12 —]1)—512 —8V, =0
—127, +121; =51, -8(-87;) =0
7611 —1712 =0
Solving Egs (ii) and (iii),
I =054A
L,=24A

V' =81 = —8(0.54)= 432V

Step I When the —5 A source is acting alone (Fig. 2.114)

8Q

15Q

5

) D-es ) Frea

She

From Fig. 2.114,
V" =-81
Meshes 1 and 2 will form a supermesh.
Writing current equation for the supermesh,
L—-I,=-5

Fig. 2.114

2.57

8V’

...(iii)

...(ii)
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Applying KVL to the outer path of the supermesh,
—81 -151, -12(I, - 13)=0
-8 =271, +1215=0 ...(1i1)
Applying KVL to Mesh 3,
—12(l3-1;)-5,-8V"=0
—1275+121, =515 - 8(-811) =0
641, +121, -171; =0 ..(1v)
Solving Egs (i), (iii) and (iv),
I, =497 A
1,=997A
I;=2574 A
V”=-8l =-8(-4.97)=-39.76 V
Step 111 By superposition theorem,
V=V"'+V"=-432-39.76 =44.08 V

” SET IR For the network shown in Fig. 2.115, find the voltage V,

50 Q 200 Q
¥
40 Q
.
1A (D Vo Vi —— 25V
- 0.5V,
Fig. 2.115

Solution
Step I When the 1 A source is acting alone (Fig. 2.116)
From Fig. 2.116,

V1 =2001, ..(1) 50 Q 200 Q
For Mesh 1, +

L=1 ...(ii) 00
Applying KVL to Mesh 2, 1A Q) ‘J/ro, ) v, )

0.5V, —40(1, —1;)= 2001, = 0 -, 05V, b
0.5(2001,)—401, + 401, —2001, = 0 _
401, -1401, =0 ..(iii)

Solving Eqs (if) and (i), Fig. 2.116

I =1A

1,=029A

VO,—SO [1 —20012 =0
Vo’ =50(1)—200(0.29) = 0
Vo’ =108 V
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Step I 'When the 25 V source is acting alone (Fig. 2.117) 50 Q 200 Q
From Fig. 2.117, © ¥
71-2007-25=0 40 Q
K=2000+25 ) v, ) L ey

Applying KVL to Mesh 1, 0.5V, I

0.511-407-2007-25=0 o -

0.5(2007 +25)-407-200/-25=0 Fig. 2.117
I=-0.09 A

Vo' =¥ =2001+25=200(-0.09)+25=7V
Step 111 By superposition theorem,
Vo=Vo+Vy=108+7=115V

” SEI RN  For the network shown in Fig. 2.118, find the voltage V.

@1OA
2Q 4Q
+
Fig. 2.118
2Q 4Q

Solution

n
Step I When the 20 V source is acting alone
(Fig. 2.119) 20V — s S60
From Fig. 2.119, | x ,
1 2

V;=6(11—12) (l)

Applying KVL to Mesh 1,

Fig. 2.119

20—2[1—6(11—12)=0

8[1—6[2=20
For Mesh 2,
Vi _6(h—1)
L= =2 3 3
2 ) > 1 2
311—41220

Solving Eqs (ii) and (iii),
I} =571A
I, =429 A
Vi=6(I;—1;)=6(571-429)=8.52V

2.59
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Step I When the 10 A source is acting alone (Fig. 2.120) 10A
i o
From Fig. 2.120, =)
vy =6(I,-1,) ..(1) 20 /3) 40
Applying KVL to Mesh 1, +
2L - 13)-6(I, —12)=0 yr 28Q |
85 —61, —21;=0 ..(ii) P * I
For Mesh 2, -
Lol _h=h) 5 5 Fig. 2.120
2 2
3[1 —4[2 =0

For Mesh 3,

I3 =-10
Solving Eqs (ii), (iii) and (iv),

L =-571A

I,=—429A

I;=-10 A

V.”=6(I) —1)=6(-5.71+4.29)=-8.52V

Step III By superposition theorem,

Ve=V.'4V,"=852-852=0
” SEN I CWHNM  Calculate the current I in the network shown in Fig. 2.121.

4Q
21,
20 Q
>
70V — 20 _—~ 50V
i
10Q
Fig. 2.121

Solution
Step I 'When the 70 V source is acting alone (Fig. 2.122) Iy 40

From Fig. 2.122,
I'=1 ..
Applying KVL to Mesh 1,

—41, =21, -20(1, - I,)=0

261, -20I, =0 ...(i1)
Applying KVL to Mesh 2,
70-20(1, -1)-2(I-13)=0
-200, +221, =215 =70 ...(1i1)

=

N

(i)
..(1v)

) 21,
20Q

-+

70V ) 20 )
I2 I3

10Q

Fig. 2.122



Applying KVL to Mesh 3,
—2(I3-1,)+2,-10/5=0
201 +21,-121;=0
Solving Egs (i), (iii) and (iv),
I} =894A
I, =11.62A
I3 =343A

2.7 Superposition Theorem 2.61

I'=1; =3.43A(«)

Step I When the 50 V source is acting alone (Fig. 2.123)
From Fig. 2.123,

1"=05 ..»)
Applying KVL to Mesh 1,
—46L -2 -20(,-1;)=0
266, —201, =0 ...(i0)
Applying KVL to Mesh 2,
2000, -1)-2(I-55)=0
201, 4221, -213=0
Applying KVL to Mesh 3,
=2(I3 —1)+2;+50-1073 =0
20 +21, —1213; =50
Solving Egs (ii), (iii), and (iv),
;=106 A
I, =138A
I;=457A

..(iv)
I 40
D 2/,
20Q |,
i
) 2Q ) — 50V
I I3
10Q i
Fig. 2.123
.. (iii)
(i)

17=1; =457 A (<)

Step 111 By superposition theorem,

I=0I"+1"=343+457=8 A («)

” SET ) WHYE  Find the voltage V, in the network of Fig. 2.124.

5Q

4V 410

+

10V = ())1A ¥ =20 -

Fig. 2.124
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Solution
. . 5Q 1Q
Step I When the 10 V source is acting alone
(Fig. 2.125)
Applying KCL at the node, + v
10V Vy>20 2
’ VO’
vi-10 vy 0T )
+—+ =0
5 2 1 .
Fig. 2.12
1 + 1 + 1 Vo =2
5 2 2
Vo=167V
Step I  'When the 1A current source is acting 5Q _ 10
alone (Fig. 2.126)
Applying KCL at the node, + .
<¢ 1A V. Vo
o V' 20 5
” ” 0~ ~ —
E +1+ E + 72
5 2 1
Fig. 2.126
l+l+l Vo'=-1
5 2 2
Vo'=-0.83V
Step III When the 4 V source is acting alone
(Fig. 2.127)
Applying KCL at the node, Vo
0
V/// VO’” 2
” ” [1 e
Vio + E + 2 =0
5 2 1
T,
5 2 2
Vy”=333V

Step IV By superposition theorem,
Vo = V()’ + V()”+ VO’”

EXY| THEVENIN’S THEOREM

1.67-0.83+333=4.17V

It states that ‘any two terminals of a network can be replaced by an equivalent voltage source and an
equivalent series resistance. The voltage source is the voltage across the two terminals with load, if any,
removed. The series resistance is the resistance of the network measured between two terminals with load
removed and constant voltage source being replaced by its internal resistance (or if it is not given with
zero resistance, i.e., short circuit) and constant current source replaced by infinite resistance, i.e., open

circuit.’



Network

2.8 Thevenin’s Theorem 2.63

Fig. 2.128 Network illustrating Thevenin’s theorem

Explanation Consider a simple network as shown in Fig. 2.129.

R Ry

Fig. 2.129 Network

For finding load current through R, first remove the load
resistor R, from the network and calculate open circuit voltage
V. across points 4 and B as shown in Fig. 2.130.

Vi =

Rl +R

For finding series resistance R, replace the voltage source
by a short circuit and calculate resistance between points 4 and
B as shown in Fig. 2.131.

RiRy

Ry =R +
™ } R1+R2

Thevenin’s equivalent network is shown in Fig. 2.132.

Vin

I, =———
L RTh+RL

If the network contains both independent and dependent
sources, Thevenin’s resistance R, is calculated as,

Rpy =

Iy
where /,; is the short-circuit current which would flow in a short
circuit placed across the terminals 4 and B. Dependent sources
are active at all times. They have zero values only when the
control voltage or current is zero. R, may be negative in some

Ry, i
| l}
| L
|
| R
|
|
(b)
A
N
B
R, R,
’\/\/\/—g A
V— R, Vi
oB

Fig. 2.130 Calculation of V,,

R Ry
NNN—o0A

Ry ~— R

oB

Fig. 2.131 Calculation of R,

Rrh
A
Vi — ) R,
I
B

Fig. 2.132 Thevenin’s equivalent
network
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cases which indicates negative resistance region of the device, i.e., as voltage increases, current decreases in
the region and vice-versa.
If the network contains only dependent sources then

VTh=O
IN =0

For finding R, in such a network, a known voltage V' is applied across the terminals 4 and B and current
is calculated through the path 4B.

14
Ry, = 7
) Ry
or a known current source / is connected across the oA

terminals 4 and B and voltage is calculated across the
terminals 4 and B.

14
R =—
™= )
Thevenin’s equivalent network for such a network is B
shown in Fig. 2.133. Fig. 2.133 Thevenin’s equivalent network

Steps to be Followed in Thevenin’s Theorem

1. Remove the load resistance R, .
2. Find the open circuit voltage V., across points 4 and B.
3. Find the resistance R, as seen from points 4 and 5.
4. Replace the network by a voltage source V., in series with resistance R ...
5. Find the current through R, using Ohm’s law.
I, = Vih
RTh + RL
” SCTIIWHEN  Determine the current through the 24 2 resistor in Fig. 2.134.
300 200
220V —/—
24 Q
50 Q 5Q
Fig. 2.134
Solution
Step I Calculation of V., (Fig. 2.135)
220 220V —(—
1= =275A
30450
220 0 e
I, = =8.8A
20+5
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Writing the V., equation,

Vin +301, =201, =0
Vin = 201, =301, = 20(8.8)—30(2.75) = 93.5 V

Step II  Calculation of R, (Fig. 2.136)

Fig. 2.136
Redrawing the circuit (Fig. 2.137),
30 Q 200
Rry = (30150)+ (20| 5) = 22.75 ©Q A B
50 Q 5Q
Fig. 2.137
Step III  Calculation of /, (Fig. 2.138)
22.75Q
A
I, = 93.5 —2A 935V — ) 24Q
22.75+24 I
B
Fig. 2.138

” Example PN Find the current through the 20 (2 resistor in Fig. 2.139.

120V
I
45V 20Q 15 Q
10Q 50Q
I
5Q 20V
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Solution 120 V
Step I Calculation of V., (Fig. 2.140) } [
Applying KVL to Mesh 1, . i A +
45-120-151; =5(1; —1,)-10(1; =1,) =0 0 45V N 150
.. _ _
301, -151, = =75 TB
- + - +
Applying KVL to Mesh 2, *i0a” t5a
20—5[2—10([2—11)—5(12 —[1)=0 .. )
..(11) I
—157; +201, =20 I,
- + I
Solving Eqs (i) and (ii), 5Q 20V
L =-32A Fig. 2.140

L=-14A

Writing the V7, equation,

45—V, =10(1; =1,)=0
VTh 245_10([1 —[2)=45—10[—3.2—(_1~4)]=63 v

Step Il Calculation of R, (Fig. 2.141)

L
Rrh 15Q
TB
10Q 5Q
5Q
Fig. 2.141

Converting the delta formed by resistors of 10 , 5 Q and 5 Q into an equivalent star network (Fig. 2.142),
10 x5

R1= =25Q
20 J;
10x5 A
R, = =25Q B
20
5x5 Ry 150 150
Ry=—=125Q

Simplifying the network (Fig. 2.143 and
Fig. 2.144),

Fig. 2.142 Fig. 2.143
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Ry =(16.25]12.5)+2.5=4.67 Q iA
Ry
25Q B 16.25Q
25Q
Fig. 2.144
Step III  Calculation of /, (Fig. 2.145)
467 Q
=9 _3ss5nA A
4.67+20
63V — ) 20 Q
I
B
Fig. 2.145

” SET ) WHEW  Find the current through the 10 (2 resister in Fig. 2.146.

100
20 20
15V TQ 1Q
T 10V
1Q
Fig. 2.146

Solution
Step I Calculation of V, (Fig. 2.147)
Applying KVL to Mesh 1,

—15-20, -1(/; =1,)—-10-1/; =0 0
(!
4]1 —]2 = —25

Applying KVL to Mesh 2, 15V —

10—1(12—[1)—2[2—112 =0 ..

...(i1)

-1I1+41, =10
Solving Egs (i) and (ii),
11 =—6A

[2 =1A
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Writing the V., equation,
Vi +21, +21,=0
Vih =20+ 21, =2(—6)+2(1)=-10V
=10 V(the terminal Bis positive w.r.t. 4)

Step Il Calculation of R, (Fig. 2.148)

o R0
A B
2Q 2Q
1Q 1Q
1Q
Fig. 2.148

Converting the star network formed by resistors of 2Q,2Q and 1Q into an equivalent delta network
(Fig. 2.149),

oHTho
2%2 5 A B 5
Q Q
R1=2+2+%=8Q
R2=2+1+&=4Q
2 1Q 1Q
R3=2+1+&=4Q
2
1Q
Fig. 2.149
Simplifying the network (Fig. 2.150),
I .
————0 Rp o———m— A ¢ B
A L B
8 Q
8Q
4Q 4Q 0.8Q 0.8 Q
(b)
N .
A B
1Q 1Q 1.33Q

Fig. 2.150
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R =133Q
Step III  Calculation of /, (Fig. 2.151)
1.33Q
A
1L=L=0.88A(T) 10V = UIL 100
1.33+10
B
Fig. 2.151
” SET N WHIW  Find the current through the 1 2 resistor in Fig. 2.152.
1A
&
2Q 3Q
4V —|—
1Q @ 3A
Fig. 2.152
Solution
Step I Calculation of V, (Fig. 2.153)
1A
&
_20 ,ZD _3q
AR S
VAV
V-
l Th Q 3A
BT_ e} ¢}
2Q 3Q
Fig. 2.153 J;
A
Writing the current equations for Meshes 1 and 2, A
I =3 Th
I, =1 BT
Writing the V7, equation,
4_2(11_12)_VTh =0 Flg. 2.154
Vin =4-2(1) —1,) =4-2(-4) =12V 2Q

Step Il Calculation of R, (Fig. 2.154)
RTh =2Q

Step III  Calculation of /, (Fig. 2.155)
12

I, =—2 —4A
Lo

122V ——

»

Fig. 2.155
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EXAMPLES WITH DEPENDENT SOURCES

” SETNNWEYE  Obtain the Thevenin equivalent network for the given network of Fig. 2.156 at

terminals A and B.

OA
h
40 o,
8V
L 0B
Fig. 2.156
Solution
Step I Calculation of V., (Fig. 2.157) oA
From Fig. 2.157, l +
— _ 4Q
I =-21I, 21, Vrh
3, =0
L=0 8V )
OB
Writing the V., equation,
" Fig. 2.157
8-0-Vm, =0
Vih =8V
Step Il Calculation of 7, (Fig. 2.158),
Meshes 1 and 2 will form a supermesh. I A
Writing current equation for the supermesh, 10
[2—[1=211 ) 2I1 ) IN
Iy I
3,-1,=0 (1) 8V T
Applying KVL to the outer path of the supermesh, B
8—41,=0 Fig. 2.158
I =2 ..(i1)
Solving Egs (i) and (ii),
L=6A 1.33Q
Iv=5=6A oA
Step III  Calculation of R, 8V ——
Rm="m=8_1330
N oB

Step IV Thevenin’s Equivalent Network (Fig. 2.159)

Fig. 2.159



2.8 Thevenin’s Theorem 2.71

” SEV RN Find Thevenin’s equivalent network of Fig. 2.160.

2Q 3Q
0A
+
4V — T 0.1V, V,
oB
Fig. 2.160
Solution 2Q 3@ o
Step I Calculation of V., (Fig. 2.161) + - ¥
Ve =V 4v — ) T 01V, V=V
[1 =-0.1 Vx /1
iy . oB
Writing the V7, equation,
Fig. 2.161
4-2 -V, =0 . 30
4-2-0.1V,)-V, =0 74
4-08/ =0 4v — Potv, vy
V=5V
Ve=Vm=5V B
) ) Fig. 2.162
Step Il Calculation of /, (Fig. 2.162)
From Fig. 2.162, 2Q 3Q B
V=0
The dependent source 0.1 V_depends on the controlling 4V — In
variable V. When V = 0, the dependent source vanishes, i.e.,
0.1 ¥ =0 as shown in Fig. 2.163. B
4 .
Iy =——=08A Fig. 2.163
2+3
. 6.25 Q
Step III  Calculation of R, oA
Ryy=—=—=625Q 1
™Iy 08 5V =
Step IV Thevenin’s Equivalent Network (Fig. 2.164) oB

Fig. 2.164
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” SETN RN  Obtain the Thevenin equivalent network of Fig. 2.165 for the terminals A and B.

vV, 10Q 4v,
A
2Q
2A
2V
1 0B
Fig. 2.165

Solution

Step I Calculation of V., (Fig. 2.166)
From Fig. 2.166,

2-20-V,=0
Vx =2—2[1
For Mesh 1,
L =-2A

V,=2-2(-2)=6V
Writing the V7, equation,
2211 —0+4V, =V, =0
2-2(-2)—0+4(6)-Vr =0
Vin =30V
Step Il Calculation of /, (Fig. 2.167)
From Fig. 2.167,
Ve=2-2I
Meshes 1 and 2 will form a supermesh,
Writing current equation for the supermesh
L-I=2
Applying KVL to the outer path of the supermesh,

2-20 -1, +4V, =0
2-2I -1, +4(2-2)=0
104, +1, =10
Solving Egs (ii) and (iii),
L =073A
I, =273A
Iy=1,=273A
Step III  Calculation of R,
Vi~ 30

Ry == 22 210980
™y 273

Step IV Thevenin’s Equivalent Network (Fig. 2.168)

6

(i)

10.98 Q

30V—

OA

Fig. 2.168

OB

...(ii)



2.8 Thevenin’s Theorem 2.73

” SETIWHON  Find the Thevenin equivalent network of Fig. 2.169 for the terminals A and B.

8, 1Q

—<< B>—AM—4
I1
10Q
10 Q
5V
L 0B
Fig. 2.169
Solution 8, 1@
Step I Calculation of V,, (Fig. 2.170) —< P> W\ —o4
Applying KVL to the mesh, h
10 Q
5-10/,-10; =0 10Q Vi,
== =025A 5V T ~
20 oB
Writing the V7, equation, Fig. 2.170
5-10+8L -0V, =0
Vin =5-21 =5-2(0.25)=45V
Step I1  Calculation of 7, (Fig. 2.171) 8 1Q
Applying KVL to Mesh 1, L A
1
5-100 —10(1, = 1) =0 - 10Q N
(1) 100
201, 101, =5 | ,
! 2
Applying KVL to Mesh 2, 5V
B
—10([2—[1)+8[1—1[2=0 ()
.1 .
18]1—11]2 =0 Flg. 2.171
Solving Egs (i) and (ii),
L =1375A
I, =225A
2Q
Iy=0L=225A oA
Step III  Calculation of R,
45V —
Ry = @ £ =20
Iy 225
OB

Step IV Thevenin’s Equivalent Network (Fig. 2.172) Fig. 2.172
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” Example 2.71 aLYi Vy,, and R, between terminals A and B of the network shown in Fig. 2.173.

10 2Q |,

l ANNN—>—0A
12V

T 21, 1Q

oB

Fig. 2.173

. 10 20
Solution oA

+
Step I Calculation of V., (Fig. 2.174) l
1,=0 12V

10 Y
The dependent source 2/_depends on the controlling variable [
I.When! =0, the dependent source vanishes, i.e., 2/, =0 as °B

shown in Fig. 2.174. Fig. 2.174

Writing the V7, equation,

1
Vip =12X—— =6V
R 1+1

Step Il Calculation of 1, (Fig. 2.175) 1Q 1V 2Q
From Fig. 2.175,

I,=— 12V 21, 1Q

2
Applying KCL at Node 1, [

n-12 " W
! 1 JrTlJré:z[]C Fig. 2.175

V1+V1+V1—12=2(V1)
2 2

V=8V

Step III  Calculation of R,

mh=51=9=L59
Iy 4

” SEN WP Obtain the Thevenin equivalent network of Fig. 2.176 for the given network at

terminals a and b .



2.8 Thevenin’s Theorem 2.75

3Q V, 4Q 5V,
a
2A 2Q
ob
Fig. 2.176

Solution

Step I Calculation of V,, (Fig. 2.177)

Applying KCL at Node x,

A
2
Ve=4V

Writing the V7, equation,
VTh = Vx _SVx:_4 Vx

=-16V (the terminal a is negative w.r.t. b)

3Q V, 4Q 5V,

Step Il Calculation of I (Fig. 2.178)

Applying KCL at Node x, 2A 20
Ve Vi=5V;

=4
2 4

Ve
2

2

N
V== 2 Fig. 2.178
V.=—4V -4Q

—_ Oa
LSy

Step Il Calculation of R, -16V —
Vi _ 16 _

Ry =1 = -4Q
"y 4 ob

Iy

Step IV Thevenin’s Equivalent Network (Fig. 2.179) Fig. 2.179

” SETIVWHER  Obtain the Thevenin equivalent network of Fig. 2.180 for the given network.

300 150V 400
o |

+

5A (D V, S150

w|=

Fig. 2.180
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Solution
Step I Calculation of ¥, (Fig. 2.181) 30Q 15‘0 Vg
From Fig. 2.181, A° \
Ve =V + ]
Applying KCL at the node, Vrn 5A (D Ve 215Q 3 %
1 _
Ve—=150—-=V, Vv B
3 4 Tris=0 Bo
10 15
V. =75V Fig. 2.181
Vin =75V QY 150V 400
A |
Step Il Calculation of /, (Fig. 2.182)
Applying KCL at Node x, 1
! Iy 5A 15Q 3 V%
Ve—=150—=V,
Yy +5+ 43 3 -0 J
30 15 10 B
Ve Ve Ve W
—+ =+ —=—-—-=15-5 i
30 15 10 30 Fig. 2.182
V., =60V 375Q
OA
Iy = Ve 80 =2A
30 30 v
Step I Calculation of R, nYT
Vi 75
Rpy=—=—=375Q
Th Iy 5 oB
Step IV Thevenin’s Equivalent Network (Fig. 2.183) Fig. 2.183

” SEN LN Find the Thevenin’s equivalent network of the network to the left of A-B in the

Fig. 2.184.
101, 10V
+ = } } oA
Iy
1A <D 5Q 10Q
o B
Fig. 2.184 10 I, 10V
+ = }} o A
. I +
Solution .
Step I Calculation of V., (Fig. 2.185) 1A CD ) 5Q ) 10Q Vin
From Fig. 2.185, Iy b -
[x =11—[2 (l) —
o B

For Mesh 1,
L =1 ...(i)



2.8 Thevenin’s Theorem 2.77
Applying KVL to Mesh 2,
=5(1, - )—-101, =101, =0
=5(I, - 5L)-10(/; - L,)-101, =0

5I1+51, =0 ...(1i1)
Solving Egs (ii) and (iii),
L=1A
L =-1A
I,=L-L=1-(-)=2A

Writing the V7, equation,

107, =10 =V, =0
10(=1) =10 =V, =0

Vih =-20V

Step Il Calculation of /, (Fig. 2.186) 10 I, 10V

From Fig. 2.186, T2 } | A
I,=hL-1, ...() I

For Mesh 1,
.. 1A 5Q 10Q /
L=l ---(ii) CD /1> /2) /3> !

Applying KVL to Mesh 2,
—5(12 _[1)_101x —10([2 —[3)2 0
—5(I, = 1,)=10(I; = ,) = 10(I = ;) = 0 Fig. 2.186

=51, =51, +1013 =0 ...(1i1)
Applying KVL to Mesh 3,
-10(I5-1;)-10=0
107, -1075 =10 ...(1v)
Solving Egs (i), (iii) and (iv),
L=1A -10Q
I,=3A
L=2A
Iyn=5L=2A

OA

20V

Step III  Calculation of R,

o B
Ry =20 00 Fig. 2.187
Iy 2

Step IV Thevenin’s Equivalent Network (Fig. 2.187)

” SENIWER  Find Thevenin’s equivalent network at terminals A and B in the network of
Fig. 2.188.
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2Q 4Q
0A
+
4v, V, 250
OB
Fig. 2.188
Solution
Since the network does not contain any independent source,
Ve =0 20Q 40Q
Th A
]N = O
But the R, can be calculated by applying a known "
voltage source of 1 V at the terminals 4 and B as shown 4V ) i <5Q v
in Fig. 2.189. h - lp
Vv
R = — = — B
™=
From Fig. 2.189, Fig. 2.189
Ve=5(—1) (D)
Applying KVL to Mesh 1,
_4Vx —2]1 —5(11 —12) = 0
—4[5(1, -1, ]-21, =51, +51, =0
—271,+251,=0 ...(11)
Applying KVL to Mesh 2,
—5([2 —[1)—4[2 -1=0
5I1-91, =1 ...(1i1)
Solving Egs (ii) and (iii),
I, =-021A cA
I, =-023A
_ _ 4350
Hence, current supplied by voltage source of 1 Vis 0.23 A.

1
Ry = —— =435Q
™7 023

Hence, Thevenin’s equivalent network is shown in Fig. 2.190.

” SET W  Find the current in the 9 2 resistor in Fig. 2.191.

6l,
-+

4Q
6Q 9Q

20V

Fig. 2.191

Fig. 2.190



2.8 Thevenin’s Theorem 2.79

Solution 61,
Step I Calculation of V., (Fig. 2.192) It | i A
Applying KVL to the mesh, ‘0 X
+
20-41,+61,—61, =0 6Q Vi,
I,=5A -
Writing the V7, equation, 20V T _
61, —Viy =0 °B
6(5)—Vm =0 Fig. 2.192
VTh =30V
Step II  Calculation of I, (Fig. 2.193). 6lx
From Fig. 2.193, N | A
X
]x =0 4 Q
The dependent source 6/ depends on the controlling 6Q In
variable /. When [, =0, the dependent source vanishes, 20 V
i.e., 6/, = 0 as shown in Fig. 2.194. B
20
Iv="7=3A Fig. 2.193
6l
— + A A
4Q 4Q
I = In
20V 20V
B T B
(@) (b)
Fig. 2.194 60
. A
Step III  Calculation of R,
V30
RTh‘E‘?‘“Z 30V — /) 90Q
L
Step IV Calculation of /, (Fig. 2.195)
B
30
I} =—-=2A .
L 6+9 F]g. 2.195
” SEIWCWHWIB  Determine the current in the 16 2 resistor in Fig. 2.196.
10Q 6 Q
/X
40V — L 0.8, 16 Q

Fig. 2.196
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Solution

Step I Calculation of V., (Fig. 2.197)
From Fig. 2.197,

1,=0
The dependent source 0.8/ depends on the controlling
variable /. When /= 0, the dependent source vanishes, as
shown in Fig. 2.198.
ie., 0.8/, =0

VTh = 40 A\
Step Il Calculation of /, (Fig. 2.199)
From Fig. 2.199,

Ix = ]2 .. (1)
Meshes 1 and 2 will form a supermesh,
Writing current equation for the supermesh,

11—[2 =0-81x =0.8[2

.3
11 -1.8 [2 =0 ( )
Applying KVL to the outer path of the supermesh,
40-10,-61,=0 i
...(ii1)
10, +6 1, =40 40V

Solving Egs (ii) and (iii),

11 =3A
5
L==A
273
5
Iyn=0L==-A
nv=h=3
Step III  Calculation of R,
L R Y
N el
3
Step IV Calculation of /, (Fig. 2.200)
IL = 40 =1A
24+16

40V

10Q 6Q
oA
i +
[ v) 08l Vi
o B
Fig. 2.197
10Q 60
A
+
40V Vin
[ 0B

10Q
) ¢ 0.81, ) I
[ Iy A

Fig. 2.198

6Q Iy
- A

40V —|—

” SET N WWER  Find the current in the 6 82 resistor in Fig. 2.201.

2V,

18V — G 3A

-+

6 Q

Fig. 2.201

B
Fig. 2.199
24 Q
A
) 16 Q
It
B
Fig. 2.200



Solution
Step I Calculation of V., (Fig. 2.202)
From Fig. 2.202,

Vi=-l=-1I
For Mesh 1,

I =-3A

V.=3V

Writing the V7, equation,
1815442V, =V, =0
18+3+23) -V =0
Vih =27V

Step Il Calculation of /, (Fig. 2.203)
From Fig. 2.203,

Meshes 1 and 2 will form a supermesh,
Writing current equation for supermesh,

]2 —11 =3

Applying KVL to the outer path of the supermesh,
18-15+2V, =0
18—1+2(-1;)=0

L =6A
Solving Egs (ii) and (iii),
LHL=9A
IN = 12 = 9 A
Step III ~ Calculation of R,
RTh = @ = 277 = 3 Q
Iy 9
Step IV Calculation of /, (Fig. 2.204)
[L = l =3A
3+6

2.8 Thevenin’s Theorem 2.81

1Q 2V,
-+ o A
- + +
...(4) Vy
...(i1) Iy
0B
Fig. 2.202
1Q 2V,
. . A
) _VVV] )
V, Iy
18V — ) Q 3A )
...(i1) Iy I
B
Fig. 2.203
...(iii)
3Q
A
27V —|(— ) 6Q
I
B
Fig. 2.204

” SET I WWNENR  Find the current in the 10 2 resistor.

10Q

10V,

100V —(—

SSsa (Do
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Solution
Step I Calculation of V., (Fig. 2.206)
From Fig. 2.206,

Vy=10x5=50V

Writing the V7, equation,
100 =V, +10V, =V, =0
100 =V, +9V, =0
100 =V, +9(50) =0
Vin =550V
Step I1  Calculation of 7, (Fig. 2.207)
From Fig. 2.207,
Ve =5y +10)
Applying KVL to Mesh 1,
100+10V, =V, =0

100
ey
—@ = SIN +50
9
550
Iy=—"-7A
N s
Step III  Calculation of R,
550
Ry =——-=-45Q
Th 550 5
45
Step IV Calculation of /, (Fig. 2.208)
_ S50 _ 110
FT 454100 7

EXJ| NoRrTON’S THEOREM

+Vm 10V,
— +
oMo >
+
100V — 502V, Q 10A
Fig. 2.206
A B 10V,
—
In
N
1oovT v, S50 (DmA
Fig. 2.207
450
A
550 V —— ) 100
I
B
Fig. 2.208

It states that ‘any two terminals of a network can be replaced by an equivalent current source and an equivalent
parallel resistance.” The constant current is equal to the current which would flow in a short circuit placed across
the terminals. The parallel resistance is the resistance of the network when viewed from these open-circuited
terminals after all voltage and current sources have been removed and replaced by internal resistances.

Network R,

I

Fig. 2.209 Network illustrating Norton’s theorem



2.9 Norton’s Theorem 2.83

Explanation Consider a simple network as shown in Fig. 2.210.

R, Rs
A
vV —_— RZ HL
B
Fig. 2.210 Network
For finding load current through R;, first remove the load R Rs
resistor R; from the network and calculate short circuit A
current Igc or Iy which would flow in a short circuit placed
across terminals A and B as shown in Fig. 2.211. v —4 R, In
For finding parallel resistance Ry,replace the voltage
source by a short circuit and calculate resistance between
points 4 and B as shown in Fig. 2.212. B
Ry = Ry + RiRy Fig. 2.211 Calculation of I,
Rl + R2 3 R,
Norton’s equivalent network is shown in Fig. 2.213. °A
Ry
L N RN + RL 2 N
If the network contains both independent and dependent o B
sources, Norton’s resistances R, is calculated as
Fig. 2.212 Calculation of R,
Ry = V.
=
Iy
I

where V7, is the open-circuit voltage across terminals 4 and
B. If the network contains only dependent sources, then

VTh = 0
1 N — O
To find R}, in such network, a known voltage V" or current

1 is applied across the terminals 4 and B, and the current / or
the voltage V' is calculated respectively.

v
Ry = —
N

Norton’s equivalent network for such a network is shown in
Fig. 2.214.

In CD Ry R

Fig. 2.213 Norton’s equivalent network

OA

OB

Fig. 2.214 Norton’s equivalent network
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Steps to be followed in Norton’s Theorem

Remove the load resistance R, and put a short circuit across the terminals.
Find the short-circuit current /. or /.

Find the resistance R, as seen from points 4 and B.

Replace the network by a current source /, in parallel with resistance R,.
Find current through R, by current—division rule.

InRy
I =
RN +RL

” SETN RN Find the current through the 10 2 resistor in Fig. 2.215.
5Q

kv =

1Q

Solution

Step I Calculation of 7, (Fig. 2.216)
Applying KVL to Mesh 1,

2-1;=0
I =2
Meshes 2 and 3 will form a supermesh. B
Writing the current equation for the supermesh, Fig. 2.216
L-1,=4 ..(i1) 50
Applying KVL to the supermesh, i
=51, =151 =0 ...(1i1) A
10 <~ Ry 150Q
Solving Egs (i), (ii) and (iii), B
I} =2A T
hL=-3A Fig. 2.217
L =1A A
Iy=05L-1,=2-(-3)=5A I,
Step Il Calculation of R (Fig. 2.217) 5A (D 0.950Q 100
Ry =1]|(5+15)=10.95 Q
Step III  Calculation of /, (Fig. 2.218) B
I =5x—2%  _oa3a Fig. 2.218

0.95+10



2.9 Norton’s Theorem 2.85

” SETNWRIN  Find the current through the 10 2 resistor in Fig. 2.219.
10Q 20Q 30 Q

5ovi %209 20Q i1oov
[ T oV [

Fig. 2.219

Solution

30 Q

Step I Calculation of 7, (Fig. 2.220)

A Iy B 2Q
Applying KVL to Mesh 1, l
50-20(1; —1,)-40=0 Q) 50 V ) 20Q )
gt
201, —207, =10 [ h lo
40V
T 40

Applying KVL to Mesh 2,

20 Q )
I3

— 100V

40-20(1, —1,)—201, -20(1, —13)=0 Fig. 2.220

=207, +607, —2013=40 ...(ii)
Applying KVL to Mesh 3,
—20(13 —1,)—-30/5 -100=0
—207, +5075 = -100
Solving Egs (i), (ii) and (iii),
I, =0.81A
Iy == 0.81A

Step Il Calculation of R, (Fig. 2.221)

Ry 20Q

30 Q

...(iii)

Ry =[(20]]30)+20]]20 =12.3Q 20Q

20Q

Fig. 2.221

Step III  Calculation of /, (Fig. 2.222)

12.3 0.81 A D

=045A
12.3+10

IL =0.81X

123 Q

Fig. 2.222

I
10Q
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” SEN RN Find the current through the 8 £2 resistor in Fig. 2.223.

5V
[y
‘ I
5A 120 40 2A 80
Fig. 2.223
Solution
Step I Calculation of 7, (Fig. 2.224)
5V
I A
5A 12Q 40Q 2A In
B
Fig. 2.224

The resistor of the 4 Q gets shorted as it is in parallel with the short circuit. Simplifying the network by
source transformation (Fig. 2.225),

12Q 5V

—AA—] A

60V — ) 2A ) Iy
Iy A

B
Fig. 2.225
Meshes 1 and 2 will form a supermesh.
Writing the current equation for the supermesh,
oA
L-1=2 (D)
Applying KVL to the supermesh,
120 40 <— Ry
60-127,-5=0
121, =55 ..(ii)
B
Solving Egs (i) and (i), °
I, =4.58A Fig. 2.226
I, =6.58A A
Iy == 6.58A I
Step I Calculation of R, (Fig. 2.226) 658A(4) 30 8Q
Ry =12]]4= 3Q
Step III  Calculation of /, (Fig. 2.227) B

I, = 6.58><i =1.79A Fig. 2.227
3+8



2.9 Norton’s Theorem

” SETNWREN  Find the current through the 1 82 resistor in Fig. 2.228.

2Q
1Q
1A G) 3Q v 20
2Q
Fig. 2.228
Solution
Step I Calculation of 7, (Fig. 2.229)
o A
2Q
IN
1A (D 3@ 1y 2Q
o B
2Q
Fig. 2.229

By source transformation (Fig. 2.230),

O A

0g )
I1

1V 2Q
W1 Y
b
o B
2Q
Fig. 2.230

Applying KVL to Mesh 1,

-3-31 —2(11 —13)+1= 0
511 —213 =-2

2.87

()
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Applying KVL to Mesh 2, 0A
2Q
-1-2(/,-1;)-2,=0 3
...(ii)
412-2[32—1 <—HN
3Q 2Q
Applying KVL to Mesh 3,
B
“2L-5H)-2(I3-1)=0 (i) 20
25 -2, +415=0 (a)
Solving Egs (i), (ii) and (iii), 2Q 2Q
I, =-0.64A
I, =-0.55A A
I, =-059A
Iy =1, =-0.59A 3Q 2Q
(b)
Step II Calculation of R, (Fig. 2.231
ep alculation of R, (Fig ) 120 o
Ry =22Q Ao oB
. . ()
Step III  Calculation of /; (Fig. 2.232)
Fig. 2.231
A
0.59 A 22Q 1Q
I; =0.59 % 2.2 =041A CD
2241 I
B
Fig. 2.232

EXAMPLES WITH DEPENDENT SOURCES

” SENWRTLN  Find Norton’s equivalent network across terminals A and B of Fig. 2.233.

3/,

10 Q




2.9 Norton’s Theorem 2.89

Solution
Step I Calculation of V., (Fig. 2.234) 3/ 100
From Fig. 2.234, — + oA
L=1 G h ¥
2 x 10Q 5Q
]l = _]x
Applying KVL to the mesh, ) Vrn
[}
5-107,-51,-101, =0 5V x 10
5-101,-51,-101, =0 o8B
I,=02A
I 02 A Fig. 2.234
1=-0.

Writing the V7, equation,
5-101,+3L =V =0
5-10(0.2)+3(-0.2) =V, =0
Vih =24V

Step Il Calculation of /, (Fig. 2.235)
From Fig. 2.235,

. [}
L =1, ..(0) 1092

Li=1,-1, .. ()
Applying KVL to Mesh 1, )
5V Ix

5-101, —5(I, —1,)~10I, =0
5-101, =51, +51,-101,=0
251, -51,=5  ...(iii)

Applying KVL to Mesh 2,
107, =5(1, —1,)+31,-10/, =0
104, =51, +51, +3({, - 1,)-101, =0
121, -121, =0 ...(1v)
Solving Eqs (iii) and (iv),
I,=025A
1,=025A

Iy=1,=025A 0.25 A D 960
_Vmo_ 24
Iy 025
Step IV Norton’s Equivalent Network (Fig. 2.236) Fig. 2.236

OA

Step III  Calculation of R,

N 9.6 Q 0B
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” SETIWREN  For the network shown in Fig. 2.237, find Norton’s equivalent network.
20 Q

5Q

Solution
Step I Calculation of V., (Fig. 2.238)
From Fig. 2.238,

Ve=2I, (1)

For Mesh 1,
I =-3V, =-3(21,)=—-61, ...(11)

For Mesh 2,
I, =2 ...(iii)

I =—61, =-6(2)=—-12 A
Writing the V7, equation,

Vin =0+ 50 +15(1, —1,)-21, =0
Vin +5(=12)+15(~12-2)=2(2)= 0
Vin =274V

Step Il Calculation of /, (Fig. 2.239)
From Fig. 2.239,

Ve=2I,-15) (i)

For Mesh 2,

I, =2 ...(1)
Meshes 1 and 3 will form a supermesh.
Writing the current equation for the supermesh,

I—1 =3V, =3[2, - ;)| =6, - 6]3

L+61,-7I3=0 ....(iii)
Applying KVL to the outer path of the supermesh,
=51, =201y —2(I3 = 1,)-15(1; = 1,) = 0
=200, +171, =221;, =0 ...(iv)
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Solving Egs (ii), (iii) and (iv),

291

I} =-0.16 A
L=2A oA
5=1.69 A
Iy =1;=1.69 A 169 A D 162.13 Q
Step III  Calculation of R,
274
Ry="m -2 130 0B
Iy 1.69
Step IV Norton’s Equivalent Network (Fig. 2.240) Fig. 2.240
” SET IR Obtain Norton’s equivalent network across A-B in the network of Fig. 2.241.
5Q 2Q
0 A
l2
15V 104, 06y, <15Q
o B
Fig. 2.241
Solution
Step I Calculation of V., (Fig. 2.242)
2 A
+ L
15V 10l 0.6V, ) 15Q
I h
o B
Fig. 2.242
From Fig. 2.242,
n=81U.-1,) (1)
Applying KVL to Mesh 1,
15-51, =81, —1,)=0
1371, -81, =15 ...(11)
Applying KVL to Mesh 2,
=81, —1,)-21,-101, =0
87, -10/, -10/, =0 ...(ii1)
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For Mesh 3,
L=0.6V1=06[81.-1,)]

481, -481,-1,=0 ...(iv)
Solving Eqs (ii), (iii) and (iv),
I,=328A
I,=345A A
I,=-083 A lo
Writing the V7, equation, 15V — 104, 0.6V, 150 In
15, =V, =0
15(-0.83) -V =0 B
Vih=-1245V
Step I1  Calculation of 7, (Fig. 2.243)
From Fig. 2.243, A
[2 =0
The dependent source of 10 7, depends 15V 0.6V; v
on the controlling variable /,, When
I, =0, the dependent source vanishes, B
i.e. 10/, =0 as shown in Fig. 2.244.
From Fig. 2.244,
Vi =8(I,-1,) (1)
Applying KVL to Mesh 1,
15-51, -8, —1,)=0
137, -81, =15 ...(11)
Applying KVL to Mesh 2,
=81, —1,)-21,=0
=81, +101, =0 ...(ii1)
Solving Eqs (ii) and (iii),
1,=227A
I,=182A
Vi=8,—-1,)=8227-182)=3.6 V oA
For Mesh 3,
Iy =0.671=0.6(3.6)=2.16 A
v : 216a (%) 5760
Step III  Calculation of R,
V; —-12.45
Ry=-"= =-5.76 Q 0B
Iy 2.16

Step IV Norton’s Equivalent Network (Fig. 2.245) Fig. 2.245
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” SETIWRIYN  Find Norton’s equivalent network of Fig. 2.246.
oA
I
0.5/,
1Q
2Q
2V
1 o
Fig. 2.246 . QA
;
0.5,
Solution +
Step I Calculation of V., (Fig. 2.247) 1Q Vrn
Applying KVL to the mesh, 2Q -
2-20L+05L-11,=0 2V
2-250=0 1 oB
L=084A Fig. 2.247
Writing the V7, equation, oA
Uy =Vm =0 Iy
1(0.8) Vi, =0 0.5k
Vin =08V 10 In
Step II  Calculation of I, (Fig. 2.248) 20
When a short circuit is placed across the 1 Q resistor, it gets shorted. .y
11 =0 T 5B
The dependent source of 0.5/, depends on the controlling variable /,. Fig. 2.248
When 7, = 0, the dependent source vanishes, i.e. 0.5 7, = 0 as shown in n
Fig. 2.249. A
2
Iy=—=1A
N7 20 In
Step Il Calculation of R, oy
Ry="m_08_g0 B
Iy 1
Step IV Norton’s Equivalent Network (Fig. 2.250) Fig. 2.249
oA
1A (D 08Q
oB

Fig. 2.250
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” SETN RN Find Norton’s equivalent network at the terminals A and B of Fig. 2.251.

6/,
—
3Q 2Q
I °A
9V — 60
o B
Fig. 2.251
61,
Solution NG~
Step I Calculation of V., (Fig. 2.252) )
From Fig. 2.252, 3Q I 2Q
A
I, =1, () PV YRR
Applying KVL to Mesh 1, CA ) 60Q Vin
9-3(I,—1,)—6l, =0 g _
91, -31,=9 (i) °B
For Mesh 2, Fig. 2.252
I, =61, =61
6l,—-1,=0 ...(1i1)
Solving Egs (ii) and (iii),
11 =-1A
L=-6A
Writing the V7, equation,
9-3(L} —1)+2l, -V =0
9-3(-1+6)+2(-6) -V =0
Vin =—18V
Step Il Calculation of /, (Fig. 2.253) 61,
From Fig. 2.253, =
I,=1—1I () )
, 30, 20
Applying KVL to Mesh 1, . A
9-3(, 1) =6(1y ~15) = 0 1 ) ,
T 6Q
91, =31, —613=9 ..(ii) . , N
! 3
For Mesh 2, B
Iy =6, =6(I1 - I3) Fig. 2.253
61, —1,-61;=0 ...(1i1)
Applying KVL to Mesh 3,

—6(13—1)-2(I3-1,)=0
-6, -21,+815=0

.(iv)
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Solving Egs (ii), (iii) and (iv), OA

L =5A

L=3A asa(}) -4Q

13 =45A

Iyn=1=45A oB
Step Il Calculation of R, Fig. 2.254

V= V. - 18 =40
Iy 45

Step IV Norton’s Equivalent Network (Fig. 2.254)

” SET I WRLEN  Find Norton’s equivalent network to the left of terminal A-B in Fig. 2.255.

A
60 0.5/ 4Q
I
o B
Fig. 2.255
v
. . . * A
Solution Since the network does not contain any
independent source, 60
4Q
Vi =0 0.5/ 1A
[N =0 !
But R, can be calculated by applying a known current B
source of 1 A at the terminals 4 and B as shown in Fig. 2.256
Fig. 2.256.
From Fig. 2.256,
=7
6
Applying KCL at the node,
K+ 0.57+ r =1
y +0.5 v + Y 1
6) 4
A
(1 + E + 1) V = 1
6 6 4 20
V=2
Vo2
Ry=—=—=2Q B
YT

Hence, Norton’s equivalent network is shown in Fig. 2.257. Fig. 2.257
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” SETN RN Find the current through the 2 82 resistor in the network shown in Fig. 2.258.

20 I 21y
-~ i
1oV Q 2A 4Q 10Q
Fig. 2.258
Solution . -21,
Step I Calculation of V,, (Fig. 2.259) vy, B o
From Fig. 2.259, o
I,=0
~10V Q 2A 4Q 10Q
The dependent source of =2 I depends on
the controlling variable /. When I, =0, the
dependent source vanishes, i.e. -2/, =0 as
shown in Fig. 2.260. Fig. 2.259
L =2
Writing the V7, equation, A Vi B X
Q2 ¥Th©
—10 _VTh —411 = 0
~10~Vr, ~4(2)=0 ~10V a4 2A/) 40 100
;
Vin=-18V
Step Il  Calculation of /, (Fig. 2.261) Fig. 2.260
From Fig. 2.261,
_ , -2,
I, =1 ...(1) A In B o~

Mesh 1 and 2 will form a supermesh.

Writing the current equation for the
supermesh, -1ov Q 2A 4Q 100
14 I I3

L -1 =2 ...(i1)
Applying KVL to the outer path of the
supermesh, Fig. 2.261
-10-4(1, -13)=0
—41,+41; =10 ...(ii)

For Mesh 3,
I3 =—(-21,)=2I, =21
2[1—[320 (IV)
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Solving Egs (ii), (iii) and (iv),
L =45A
[2 =065A
I3=9A
Iy=1L=45A

Step III  Calculation of R,
Vin  —18
Ry=—"=—17=-4Q 45A -40 20
Ny 45 D

Step IV Calculation of /, (Fig. 2.262) B

-4

=9A Fig. 2.262
—4+2

I; =4.5x%

” S ET I WREN  Find the current through the 242 resistor in the network of Fig. 2.263.

2Q

Solution s v
Step I Calculation of ¥, (Fig. 2.264) '
From Fig. 2.264,

5+V;+4V; =0

Vi=-1V
Writing the V7, equation, [
—4V; =V =0
Vin = =4V, = —4(-1)=4V Fig. 2.264

Step Il Calculation of /, (Fig. 2.265) e V o A

From Fig. 2.265,
547, =0 e
In

Vi=-5V 5V
av,

Applying KVL to the mesh,

—4V; =1y =0
Iy =—4V; =—4(=5)=20 A Fig. 2.265
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Step III  Calculation of R, A
Ry=—=—=02Q
-N Iy 20 20 A Q) 02Q 2Q
Step IV Calculation of /, (Fig. 2.266)
B
Ip =20 ><£ =182A i
L 02+2 Fig. 2.266

” SETNWEPE  Find the current in the 2 82 resistor in the network of Fig. 2.267.

1Q Iy 21,
EWW >

10V[ 1A 3Q 20

Fig. 2.267

Solution
Step I Calculation of V., (Fig. 2.268)

1Q I, 21,
Meshes 1 and 2 will form a supermesh. EWW N @—i A
Writing current equation for the supermesh, 10V
) 1A ) 3Q
I h< =

Vn

o B

I,-1 =1 ...(1)
Applying KVL to the outer path of the
supermesh,
10-14, -3, =0 Fig. 2.268
L+3L, =10 ...(i)
Solving Egs (i) and (ii),
L =175A
L, =275A
Writing the V7, equation,
30, =V =0
3(2.75) =V =0
Vrpn =825V
Step Il Calculation of /, (Fig. 2.269) 1Q I,

From Fig. 2.269,

21

X

> >
h-1 o
. 1 ® 10V 1A 3Q In
Meshes 1 and 2 will form a supermesh. T | , ,
1 2 3

Writing the current equation for the supermesh,

12—[121 (ll)
Applying KVL to the outer path of the supermesh,
10-14; -3(I, - 13)=0

Fig. 2.269



L +31,-31;=10

For Mesh 3,

Solving Egs (ii), (iii) and (iv),

Step III  Calculation of R,

Ry i 82550
Iy -7

Step IV Calculation of /, (Fig. 2.270)

I =-7x—18 10074
11842

Iy =21, =21

2[1 —13 =0

I =-35A
I=-25A
L=-TA
Iy=I=-TA

2.9 Norton’s Theorem 2.99

7A D

-1.18 Q

Fig. 2.270

” SETNWRER  Find the current through the 10 2 resistor for the network of Fig. 2.271.

2Q

oV

Solution

Step I Calculation of V., (Fig. 2.272)
Applying KVL to the mesh,

10-27,+31,-51,=0
I,=25A
Writing the V7, equation,
51, —Vm =0
52.5)-Vm =0
Vin =125V

Step Il Calculation of /, (Fig. 2.273)
From Fig. 2.273,

I,=0

3l,
-+
IX
5Q
Fig. 2.271

...(iii)

(iv)

10 Q
31,
40/4
I +
4
2Q
5Q Vi
10V -
i S
Fig. 2.272
3/,
-+
IX
2Q
5Q In
10V T
Fig. 2.273
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The dependent source of 3 I depends on the controlling variable 1 .
When /_= 0, the dependent source 3 /_vanishes, i.e. 3 / = 0 as shown
in Fig. 2.274.

Iy=—=5A
N7
Step III  Calculation of R,
Ry = Fm 125 5540
Iy 5
Step IV Calculation of /, (Fig. 2.275)
I; =5x 2.3 =1A
2.5+10

20
10V

Fig. 2.274

5A CD 250

Fig. 2.275

” S ET I WRLE  Find the current through the 5 82 resistor in the network of Fig. 2.276.

20 |, 40
12V —( 5Q 41,
Fig. 2.276
Solution
Step | Calculation of V, (Fig. 2.277) 2Q Iy 40
Applying KVL to the mesh, + - (L
+0A
12-21,-41,-41,=0 1oy = Vin
12-107, =0 0B
I,=12A T
Writing the V7, equation, Fig. 2.277
12-21, -V, =0
12-2(1.2)— V1, =0
VTh =96V
Step II  Calculation of /, (Fig. 2.278)
From Fig. 2.278,
IL,=L  ..3) 2Q I 4Q
Applying KVL to Mesh 1, L
12-21; =0 Y |
L=6A .. i) / N /
Applying KVL to Mesh 2, ! 2
—A4l,-41, =0 .
41, —4L, =0 ..(iii) Fig. 2.278
Solving Egs (ii) and (iii),
Ih=—6A

[N =[1—[2=6—(—6)=12A

41,

41,
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Step III  Calculation of R,
[}
Ry =/ 26 50 ‘
Iy 12 12A 08Q 5Q

Step IV Calculation of /, (Fig. 2.279)

0.8
L =12x 2 =166 A Fig. 2.279

” SET I WREW  Find the current through the 10 2 resistor for the network of Fig. 2.280.

Solution
Step I Calculation of V., (Fig. 2.281)
For the mesh,

1=-0.5V, =-0.5Vm,

Writing the V., equation,
5-4/-0-V1, =0
5-4(-0.5Vr)—Vm =0
Vih=-5V

Step Il Calculation of /, (Fig. 2.282)
From Fig. 2.282,

V=0

The dependent source of 0.5 V' depends on the controlling
variable V. When V_= 0, the dependent source vanishes, i.e. 0.5 A
V_ =0 as shown in Fig. 2.283.

5 5 s I
Iy=—-7=2A N
4+5 5V T
Step III  Calculation of R, B
Vin =5 Fig. 2.283
Ry=—12=—"=29Q
N v 5 ;4
9 ; L
=A — 10Q
Step IV Calculation of I, (Fig. 2.284) A (D oQ
L=2x—"2 =5 5
9" -9+10

Fig. 2.284
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” SETN RN Find the current through the 10 2 resistor in the network shown in Fig. 2.285.

1000Q
+
V, > 25Q 10Q
Fig. 2.285
Solution 1000Q 1
Step I Calculation of V., (Fig. 2.286) iA
From Fig. 2.286, +
Vv, =-25(51)=-1251, ..() 2V 2Vy Sh Vig25Q  Vm
Applying KVL to Mesh 1, - _
B
12-10001; -2, =0 °
1210007, —2(-125,) =0 ...(ii) Fig. 2.286
1,=0.016 A
Ve =-125I, =-125(0.016)=-2 V
Writing the V7, equation, 1000Q |,
A
Vhn=Vy=-2V
+
Step Il Calculation of /, (Fig. 2.287) 12V —/— 2V, 51, Vi 25Q In
From Fig. 2.287, _
V,=0 B
The dependent source of 2V depends Fig. 2.287
on the controlling variable V When
=0, the dependent source vanlshes 10000/, A
i.e. 2V =0, as shown in Fig. 2.288.
n=—%2 _00124 12V 5l I
1000
Iy =-5I; =-5(0.012) = -0.06 A B
Step III  Calculation of R, Fig. 2.288
|12 -2 A
Ry=-=—<- -3333Q I
Iy —0.06
7006AQ> 33330 = 10Q
Step IV Calculation of /, (Fig. 2.289)
B
I =-0.06x LBI =-0.046 A

33.33+10 Fig. 2.289
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” SETNI RV  Find the current through the 5 2 resistor for the network of Fig. 2.290.

JEX
1Q 2Q
e
1Q 50
4V,
2A
Fig. 2.290
Solution
Step I Calculation of V., (Fig. 2.291)
From Fig. 2.291,
Ve=2I ..(1)
For the mesh,
I1=2 ...(i1)
Ve=2(2)=4V
Writing the V7, equation,
4V, +2I+1U +4 -V, =0
44D +22)+2+4-V1, =0
Vin =26V
Step Il Calculation of /, (Fig. 2.292)
From Fig. 2.292,
Ve=2(11-1,) (1)
For Mesh 1,
I =2 ...(i)
Applying KVL to Mesh 2,
4Vx —2([2 —[1)—1(12 —11)+4= 0
2L - L) -2, +2L -1, +1;+4=0
1L -1, =4 ...(1ii)
Solving Egs (ii) and (iii),
11 =2A
I, =236 A A
In=1,=236A I
Step III  Calculation of R, 11.02.Q 50
Vi 26 236 A G)
Ry=—=—-=11.02Q
Iy 236
B
Step IV Calculation of /, (Fig. 2.293)
Fig. 2.293
I, =236x% 11.02 =162 A

11.02+5
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” SETNWRLEN  Find the current through the 1 82 resistor in the network of Fig. 2.294.

wk
[

6Q I,

3l 30 10

Fig. 2.294

Solution
Step I Calculation of V., (Fig. 2.295)
From Fig. 2.295,

6Q Iy
L=1 .G L o ) ;
12V Q V;
Meshes 1 and 2 will form a supermesh. T I XIZ < ™

Writing the current equation for the supermesh,
]2 —11 = 3Ix = 31]

+0O

(o]

Fig. 2.295
45 -1, =0 ...(i1)
Applying KVL to the outer path of the supermesh,
12-61,-31,=0
6,+31, =12 ...(1i1)
Solving Egs (ii) and (iii),
I, =0.67 A
I, =2.67A 6Q I,
Writing the V7, equation, i A
302 =V =0 12V 3l 3Q Iy
3(2.67) =V =0 T
Vihn =8V B
Step Il Calculation of /, (Fig. 2.296) Fig. 2.296
When a short circuit is placed across a 3 € resistor, it n
gets shorted as shown in Fig. 2.297. 6Q I
From Fig. 2.297, A
I,=1 ..Q0)
Meshes 1 and 2 will form a supermesh. 12V =" ) 8l ) In
Writing the current equation for the supermesh, h h
B
I, -1, =31, =3]
AL -1,=0 .. Fig. 2.297

Applying KVL to the outer path of the supermesh,
12-61,=0
I =2 ...(ii1)
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Solving Egs (ii) and (iii),

I1=2A
12 =8 A
IN 212 =8 A
Step III  Calculation of R, 8 A (D 10
rRy="m=8_10
Iy 8
Step IV Calculation of /, (Fig. 2.298) Fig. 2.298
I =8><L=4A
1+1

” SETNWRLR  Find the current through the 1.6 2 resistor in the network of Fig. 2.299.

3l
-+
IX
10a(4) 10 60 160
Fig. 2.299
Solution 31,
Step I Calculation of V., (Fig. 2.300) g oA
From Fig. 2.300, Ix .
Li=h-I ..G() 10A(}) ) 10 ) 60 v,
For Mesh 1, h L -
L=10 .. °B
Applying KVL to Mesh 2, Fig. 2.300
(I, -1))+3l,-61,=0
L+ L+3(—-1,)-61,=0
41, -101, =0 ...(ii1)
Solving Egs (ii) and (iii),
L =10A
L =4A
Writing the V7, equation,
61, —Vm =0
6(4)—Vrm=0

Vin =24V
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Step I1  Calculation of 7, (Fig. 2.301) 31,
When a short circuit is placed across the 3 € resistor, it ah A

gets shorted as shown in Fig. 2.302. Iy

From Fig. 2.302,  10A D 10 6Q Iy
1x=]l_12 (l)

For Mesh 1, B
I =10 ...(11)

Applying KVL to Mesh 2, Fig. 2.301

-1, -1))+3[,=0 3y
-+ A

-1, +[1+3([1 —[2)20

IX
45, —41,=0 ... (1i1)
l}
Solving Egs (ii) and (iii), 10A(4) / 1e / W
1 2

L =10A
B
I,=10A
Iy=05=10A Fig. 2.302
Step III  Calculation of R, A
I
Ry="m-2 240 ’
Iy 10 10A<D 240 160Q
Step IV Calculation of /, (Fig. 2.303)
. B
I =10x—2% __6a
2.4+1.6 Fig. 2.303

EET]| MAXIMUM POWER TRANSFER THEOREM

It states that ‘the maximum power is delivered from a source to a load when the load resistance is equal to

the source resistance.’

Proof From Fig. 2.304,

VPR

(R +Ry)?

To determine the value of R, for maximum power to be transferred
to the load,

Power delivered to the load R, = P = I? R, =

dapr _
dR;
P d y?
- = 772 RL
dRL dRL (Rs + RL)

VIR +Ry)* —(2RL)(R, + Ry)]

0

(R, +Rp)*

Rs

vV — ) Ry
/

Fig. 2.304 Network illustrating
maximum power transfer
theorem
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(Ry+R.)’ =2 R, (R, +R;)=0
R +R;>+2RR;, —2R,R,—2R? =0
Rs = RL

Hence, the maximum power will be transferred to the load when load resistance is equal to the source
resistance.

Steps to be followed in Maximum Power Transfer R
Theorem A
1. Remove the variable load resistor R, .
Find the open circuit voltage V., across points 4 and Vin— Ry=FRm
B. I
3. Find the resistance R, as seen from points 4 and 5
B.
4. Find the resistance R, for maximum power Fig, 2.305 Thevenin’s equivalent network
transfer.
Ry = Ry

5. Find the maximum power (Fig. 2.305).

I = Vih  Vm
p=— =
RTh +RL 2RTh
)2 y2
Prax =17 Ry =—2—X Ry = —1
4RTh 4 Th

” SET[IWBMOON  For the value of resistance R, in Fig. 2.306 for maximum power transfer and

calculate the maximum power.

15Q ;% 18Q

10Q 20Q 27 Q
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Solution
Step I Calculation of V., (Fig. 2.307)
15Q A B 18 Q
:J_ Vin ©
5Q 15Q 27 Q 9Q
10Q 20 Q 27 Q

By star-delta transformation (Fig. 2.308),
100

1= 3154201949 =2.08A
Writing the V7, equation,
10051 =V, =91 =0
Vi =100-141
=100-14(2.08)
=70.88V

Step Il Calculation of R, (Fig. 2.309)

50 A B 90

—\V\N\N—o0 R o—ANN— 5Q A B 9Q
—V\V\—o0 R
140 T“
340
9.920
(c) (d)

Fig. 2.309
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RTh =23.92Q
Step III  Calculation of R, 23.92 O
For maximum power transfer, ' A

RL = RTh =23.92Q
Step IV Calculation of P___(Fig. 2.310) 7088V = 23920
2 2
Pmaxzh=M=52-51W B
4Rm, 4x23.92
Fig. 2.310

” SETIWBOEN  For the value of resistance R, in Fig. 2.311 for maximum power transfer and

calculate the maximum power-.
5Q

OF

10Q 20Q

—— 20V

80V —-
AL

Solution
Step I Calculation of V., (Fig. 2.312)
2A
5Q
@

¥ -
_foQ /2)_20Q+

80V —_—
h

— 20V

Applying KVL to Mesh 1,

80—51,—10(1, —1,)—-20(I; —1,)—20=0
35[1 —3012 =60

...

Writing the current equation for Mesh 2,
L, =2 ...(11)
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Solving Egs (i) and (ii), 5Q
O O
I, =343A
10Q 20 Q
Writing the V7, equation,
A

VTh—20(11—12)—20=0 HTh

Vrn =20(3.43-2)+20=48.6 V TB
Step II Calculation of R (Fig. 2.313

P m (Fig ) Fig. 2.313

R =15[20=8.57Q

Step III  Calculation of R,
. 8.57 Q
For maximum power transfer, A

RL = RTh =8.57Q

Step IV Calculation of P, (Fig. 2.314) 488V 8.57Q
2 2
48. B
Pmax= VTh =(86) =689 W
o X837 Fig. 2.314

” SETNWBOPE  For the value of resistance R, in Fig. 2.315 for maximum power transfer and

calculate the maximum power.

10Q 200
100V — %
R.
30Q 40 Q
Fig. 2.315
Solution
Step I Calculation of V., (Fig. 2.316)
100
= =25A -
1 10430 100V
I, = 100 =1.66 A
20+40

Writing the V7, equation,

Vi +10 1, =207, =0
Vin = 200, =101, = 20(1.66)—10(2.5) = 8.2 V
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Step I1  Calculation of R, (Fig. 2.317)

Fig. 2.317
Redrawing the network (Fig. 2.318),
10Q 20Q
A B
Ry, =(10]]30)+ (201 40) = 20.83 Q
30 Q 40 Q
Fig. 2.318
Step Il Value of R, 20.83 Q
For maximum power transfer, A
R; = Ry, =20.83 Q
8.2V 20.83 Q
Step IV Calculation of P, (Fig. 2.319) I
2 2
2 B
e == B2 g1
4RTh 4x20.83 Flg. 2.319

” SETIWBMOEN  For the value of resistance R, in Fig. 2.320 for maximum power transfer and

calculate the maximum power.

72V —/—
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Solution
Step I Calculation of V., (Fig. 2.321)
Applying KVL to Mesh 1,
72—-60-3(-1,)=0
95, =31, =72 ...(1) 2V &

Applying KVL to Mesh 2,
—3([2 —11)—212 —412 =0
=31,+91, =0 ...(ii)

Solving Egs (i) and (ii),
L =9A
I,=3A
Writing the V7, equation,
Vin =61, =21, =0
Vin =611 +21, =6(9)+2(3) =60 V

Step Il Calculation of R, (Fig. 2.322)

A 2Q
6 Q
Rrh
B
D\ 60 A
20 4Q
Rrh
3Q 4Q
B
Fig. 2.322
Ry =[(6]3)+2]]|4=2Q
Step III  Calculation of R, " A
For maximum power transfer,
Ry = Rm =20 60V = 20
Step IV Calculation of P (Fig. 2.323)
2 2 B
P =002 OO _ 50 vy
4R, 4x2 Fig. 2.323

EXAMPLES WITH DEPENDENT SOURCES
” SETN RO  For the network shown in Fig. 2.324, find the value of R, for maximum power

transfer. Also, calculate maximum power.
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20Q 40 Q

101/ 50V

Fig. 2.324
/
Solution >
Step I Calculation of V., (Fig. 2.325)
Applying KVL to the mesh, 200 A+ 40Q
107 =207 =407 =50 =0 Vrn
I=—1A 101 Be- 50V
Writing the V., equation, T
Vi —400=50=0 Fig. 2.325
Vrn —40(-1)-50=0
Vin =10V
Step Il Calculation of /, (Fig. 2.326) /
From Fig. 2.326,
I=1, ... (1) 20Q A 40Q
Applying KVL to Mesh 1, ) | )
N
107/ -207; =0 10/ Iy B b 50V
10/, -20/; =0 ...(i1) T
Applying KVL to Mesh 2, Fig. 2.326
—407, -50=0
I,=-125A ...(1i1)
Solving Eqs (i), (ii) and (iii),
I, =-0.625 A

Iy =11 -1, =-0.625+1.25=0.625 A
Step III  Calculation of R,

Ry = @ — L =16 Q
Iy 0.625 60
Step IV Calculation of R, A
For maximum power transfer,
Ry = Ry =16 Q 1oV —— 160
Step V' Calculation of P (Fig. 2.327)
12 10)? B
Pmax= Th _( ) =156 W

4Ry, 4x16 Fig. 2.327
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” SETNWROEN  For the network shown in Fig. 2.328, calculate the maximum power that may be

dissipated in the load resistor R, .

21, 3Q
~+
IX
10A (D 40 60 R,
Fig. 2.328
21
Solution 3 39
. . - VV\V—o0 A
Step I Calculation of V., (Fig. 2.329) > I, +
From Fig. 2.329, *
10 A 40 6Q Vi
I, =1 (@) 2 A =
For Mesh 1, o B
I,=10 -..(i1) Fig. 2.329
Applying KVL to Mesh 2,
Al -1))+21, -6, =0
—AL, +41+21, —61, =0
41, -8, =0 ...(1i1)
Solving Egs (ii) and (iii),
L =10A
L=5A
Writing the V7, equation,
612 -0- VTh =0
Vih =61, =6(5)=30V
Step Il Calculation of /, (Fig. 2.330) 21, 30
From Fig. 2.330, — + A
I.=L-1 . X
For Mesh 1, 10 A D ) 40 ) 6Q ) Iy
I, =10 ...(ii) h Iy I3
Applying KVL to Mesh 2, B
4L, = 1))+ 21, —6(I, - 13)=0 Fig. 2.330

41, +41, +2(I, - 13)—61, +613 =0
4]] —8]2 +413 = 0

...(iii)
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Applying KVL to Mesh 3,
—6(13 —]2)—3]3 =0
612—9[3=0 (IV)

Solving Egs (ii), (iii) and (iv),

L =10A
I,=75A
L=5A
Iy=5L=5A
Step III  Calculation of R, 6Q
A
Rm="1-30_6q
Ino3 30V — 6Q
Step IV Calculation of R,
For maximum power transfer, B
Ry =R =6 Q Fig. 2.331
Step V' Calculation of P (Fig. 2.331)
Vi (30)°
Prax = Th =( ) =375W
4R, 4x16

” SETN BN  For the network shown in Fig. 2.332, find the value of R, for maximum power

transfer. Also, find maximum power.

1Q ZY
|
At [
1Q
2V, R,
1A
Fig. 2.332
Solution 1Q ZY
Step I Calculation of V., (Fig. 2.333) e 1 2A
From Fig. 2.333, : 10
Ve=-1=-I L) 2 ) Vrn
/ 1A
For Mesh 1, B
I=-1 . (ii)
V. =1V Fig. 2.333
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Writing the V., equation,
W, -1U+2-Vmy =0
2 -(-D+2 -V =0
Vih=5V
Step Il Calculation of /, (Fig. 2.334)
From Fig. 2.334,
Vx=—1[1=—[1 (l)
Meshes 1 and 2 will form a supermesh.
Writing the current equation for the supermesh,

L -1 =1 ...(i1)
Applying KVL to the outer path of the supermesh,
2V, -1 +2=0
2(-I))-L+2=0
3 =0
Solving Egs (ii) and (iii),
1, =0.67A
I, =167 A
Iy=01L=167A
Step III  Calculation of R,
Rm=" o> _39
Iy 1.67

Step IV Calculation of R,
For maximum power transfer,

RL = RTh = 3 Q
Step V' Calculation of P (Fig. 2.335)

VZ 52
b VA _0)

4Ry, 4%3

——=2.08W

1Q 2V
WA | A
Vi
1Q
2v, ) ) In
Iy 1A I
B
Fig. 2.334
...(1i)
3Q
A
5V —/— 3Q
B
Fig. 2.335

” SET) WBOYA  What will be the value of R, in Fig. 2.336 to get maximum power delivered to it?

What is the value of this power?

05V

-+

SACD 40

Fig. 2.336



Solution

Step I Calculation of V., (Fig. 2.337)
By source transformation,

From Fig. 2.337,

Vin =41
Applying KVL to the mesh,
12-4714+05V1, —41=0
12—V +0.5Vm =V =0
Vih =8V
Step Il Calculation of /, (Fig. 2.338)

If two terminals 4 and B are shorted, the 4 € resistor gets
shorted.

V=0
Dependent source 0.5 V depends on the controlling

variable V. When V' = 0, the dependent source vanishes, i.e.
0.5 V=0 as shown in Fig. 2.339 and Fig. 2.340.

12
Iy =—=3A
N7y
05V
-+ A +
o T
4Q Iy V
12V l

Fig. 2.339
Step II1  Calculation of R,

Vo 8
Rypy=—=-=2.67Q
Th 7 3

N

Step IV Calculation of R,
For maximum power transfer,

R, =Ry, =2.67Q

Step V' Calculation of P (Fig. 2.341)

max

Vi (8)

P = = =
" ARy, 4%2.67

2.10 Maximum Power Transfer Theorem

2.117

0.5 Vi
-+ i A
3A CD 40 40 Vi,
o B
Fig. 2.337
05 Vi
-+ EA
40
) 40 Vin
12V !
L 58
Fig. 2.338

12V —
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Solved Exercises @

Superposition Theorem

Problem 4.1 Calculate the voltage V across the resistor R by using the superposition theorem.

i1Q
) m _T_
—j50
1A R=1Q =1V
j4Q
Fig.4.30
Solution We consider two cases: j1Q
Case (1) When the 1-A current source is acting alone * + w
For Fig. 431(a), the voltage across the resistor R = 1 () s, V’=1L . 1A 10 v
+J _
Case (2) When the 1-V voltage source is acting alone
1 Fig.4.31(a) Circuit with current
For Fig. 4.31(b), the current through the resistor /"= a7 source acting alone
+J
1 j1Q
and hence, the voltage across the resistor R =1 Qis V"”’=1"x1 WL
J

So, by the superposition theorem, total voltage across the resistor when
both the sources are acting simultaneously is,

1
V=('+V")=—L+— =1V Fig. 431 (b) Circuitwith

I+7 1+ voltage source acting alone

Problem 4.2 Use the superposition theorem on the circuit shown in

Fig. 4.32 to find 1", 2V,

Solution We consider two cases:
Case(1) When the 10-V voltage source is acting alone
For Fig. 4.33(a), by KVL, 5i"-2v+2i’=10with v/ =-2i"

=77 +4i'=10 = =10/ A

Case (2) When 1-V voltage source is acting alone
For Fig 4.33(b), by KCL at the node (x)

4

%
2=i +i"=——24{" (1)
X 2

But loop analysis in the left loop gives

5"+ 3Vv” =0 or, "= _évx” Fig.4.33 (a) Voltage source
’ 5 acting alone
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v/l
From (i), 2=——X—§v” = v"=—§
2 57 A |

3202,
5 11 11

So, by the superposition theorem total current, when both the sources are
acting simultaneously, is,

pmin={ 2] 2
11 11 11

Fig.4.33 (b) Current source
acting alone

Problem 4.3 Determine the current in the capacitor branch by the superposition
theorem.
Solution 'When the voltage source is acting alone
Here, the current in the capacitor branch is
, 4.£0°

2 o

When the current source is acting alone

Here, the current in the capacitor branch is

+j4 4
=220 x— O [ 4, 50,
3+j4)+(3-j4) 3
30
.. total current when both the sources are acting simultane- j40
ously is 30 —j4Q
2 4 2
I=(I'+1")=| ===+l |=| -=+/1
=12/1237° A 2,90° A
Fig.4.35 (a) Fig. 4.35 (b)
Problem 4.4  Find the currenti, using superposition When voltagesource  When current source
theorem. acting alone acting alone
(a) 40 50 (c) 2,0°(A)
IO
5,0°V —j2Q ¢ 2L0°A —j2Q
1 -
40 20 80 3 ja0 @ 10/30° (V.

(b) 10cos4t(V)

Fig.4.36



Solution (a) When the voltage source is acting alone

The current in this case is

4- )2 2

When the current source is acting alone
In this case, the current is,

PN S (TN
4—-j72 \5 5

.. by the superposition theorem, total current is
C (an 8) (1 4 .
%=(%+%)=(1+§)+](E+§)=2942656 A

(b) When the dc source is acting alone

]4><4+2 =2+]6
4+ j4 1+

Equivalent impedance, Z =(

Network Theorems

40 590

5/0°V -j20 __

Fig.4.37 (a) Voltage source acting
alone

40 j5Q
NN LI
I'OH
—j20—— 2/0°A

Fig.4.37 (b) Current source acting
alone

8(1+j) 4(1+j 40 20
.. main current, I=§=M=M ANN——ANN
Z 2+j6  1+;3 i
' j4Q 8V

.. the current, i =1x 4_ =4(1+‘])>< 4. = z—jE A

4+j74 1+j3 4+j4 (5 75
When the ac source is acting alone Fig.4.38 (a) dc source acting alone
Equivalent impedance, Z:4+(é4 X.iJz—AIH—J; 40 20

AR AM—— W\
.. main current, i
° i i 10 cost 4t(V j40

I:1040 —10.20° (1+,2) _10+,20 (V) %

4+j6 4+ 6

.. the current,
g 2 _100+2) 1 (u) JSJA

1+,2 (13 713

1 =
0 2+j4  4+j6

.. by the superposition theorem, total current is, i, = (i, + io")=[

(c) When the voltage source is acting alone

j4(8—j2)+6_28+j22
8+ /2 4+

Equivalent impedance, Z =

+_
13

Fig.4.38 (b) acsource acting alone

100 {8,150 2636358 A
5 13
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o . . . 60
- main current, /= 10£30 (4+])= (8664 j5)(4+))
28+ ;22 28+ 522
.". the current, 10.30° (V)
., 8—j2 8.66+ 5 .
= 1% 8+ 2 - 56+ j44 =0.142-8.16" A Fig.4.39 Voltage source acting alone
When the current source is acting alone
2,0°(A)
—-j20
6 11
|
IO
80 8Q ja4Q 60 2/0°(A)
Fig. 4.40
—-j20
i i | |
where, =J4X6= J12 R
6+j4 342 IA
.. the current, 80 4 2,0°(A)
Z 112
i =2£0°x ————=—=__073,4749°A Fic. 441
8—j2+7Z 12+l11 19. 4.

.. by the superposition theorem, total current is

iy =(i;+i7)=(0.142-8.16° +0.73£4749° )=(0.631+ j0.518)=081£39.38° A

Problem 4.5 Find v, using the superposition theorem.
8Q)

305sin 5t(V) v, __02F % 1H 2cos 10t(A)

Fig.4.42

Solution (a) When the voltage source is acting alone

- . . .
Here, X =—2—=—j10Q d X =jx5x1=;50Q
ere c 5502 J an L J ]
By KCL,
30_ ’ ’ ’
O N Mg e 30 3181120 (V)
8  —j1 j5 8(0.125+0.8)



8Q

M~

30£0°(V) vw__—-j1Q

Fig. 4.43 (a)

When the current source is acting alone

Here, X .= —J =—7j05Q
10x02
By KCL, 2=v," 1+#+%
8 j10 —j05

Voltage source acting alone

50

Network Theorems

2,0°(A)

8Q
AMA-
v,'ZZ-j0.50 §j100
Fig.4.43 (b) Currentsource acting alone

”

Vv, =————
© T 0.125+ /19

and X, =jx10x1= 100

=1.051/-86.24° (V)

By the superposition theorem, when both the sources are acting simultaneously, the voltage is

v, = (v, +v/)=4.631sin(5:—81.12° ) +1.051 cos(10: —86.24° ) (V)

Problem 4.6 Find i, and i from the circuit of Fig. 4.44 using

superposition theorem.

Solution When the 6-V source is acting alone

The circuit is shown.

Y
Here, i/ =i

By KVL, 6/’ +2i'=6 = i’=i/=

oo | N

When the 1-A source is acting alone
By KCL, we get, 1=i"-i" = i”=1+i"
By KVL for the supermesh,

Ixi’+51”+2i"=0 or, 3i+5i”=0

0

or, 3io”+5(1+i0"):O or, i":—j

S 07=1-125=-025A

Alw

A=075A

125A

By the superposition theorem, the total currents when both the

sources are acting simultaneously is given as

i=(@i’+i")=(0.75-025)=05A

i, =(i;+1)=(0.75-125)=-05A

|

0

h 1Q 50
A% A%
6V é)“\ %?2/0

Fig. 4.44
i 10 50 i
ANV ANV
6V 2i/
Fig.4.45 (a) 6-V Source acting alone
I'H
2,’0//

Fig.4.45 (b) 1-Asource acting alone
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Problem 4.7 Using the superposition theorem, calculate the current through the (2 + j3) (2 impedance
branch of the circuit shown in Fig. 4.46.

50 20 j3Q 40
——e—ANN,

sQ 60 20V

Fig. 4.46

Solution  Case (I) When the 30-V source is acting alone
(4.4+ j3)x5

Impedance, Z =5+
44+ j3+ )5

=(6.32+,2.6)Q

1'=£=L=(4.06—j1.67)A
7 632+/26

P N
44+ j3+j5

Case (II) when the 20-V source is acting alone

(4.5+j5.5)x6

=(239+ j027) A

Impedance, Z =4+ =(7.31+,1.41)Q 50 20 j3Q 40

45+j5.5+6 P
150 I‘H
, 20 20 °az 20V
Z 731+ /141 i -
Fig. 4.48
= x—  __(1.064— j0848) A

45+ j55+6
By the superposition theorem, total current flowing through the (2 + j3) impedance is
i=({"+i")=(239+;0.27)—(1.064— j0.848)=(1.325+ j1.117) A=1.733£40.14° A

Problem 4.8 Using the superposition theorem, find V5. —'(\3/\9/\'—@7

Solution We consider three cases: ) 4v

Case (I) When the 2-V source is acting alone 2A 2V

The circuit is shown Fig. 4.50. AT ) B
60 Fig. 4.49

AW
> ey

A @—»—-
A 40 20 B

—— A
Fig. 4.50
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For this circuit, the current in the loop is obtained as I’= %= é A

. the voltage between 4 and Bis | = [’x6:é><6: 1V

Case (II) When the 4-V source is acting alone 4V

L C 6
The circuit is shown in Fig. 4.51. AN Q
\_/
S
ety . AN AV .
12 3 A 40
Fig. 4.51

In this circuit, the loop current is obtained as

.. voltage between 4 and B is,

1
V. =—I”><6=—§><6=—2V
Case (III) When the 2-A source is acting alone

20
6
_I\/V\'—
The circuit is shown in Fig. 4.52. 2 A
*—=¢ r—@

We convert the current source into its equivalent voltage source as A 4Q 20 B
shown in Fig. 4.53. Fig. 4.52
. 2
The loop current is 1”’:§:—A 6
3 AV
.. voltage between 4 and B is 8V "
2 -——@—WMVH—-
VA/;/:_IINX6:_§X6:—4V A 40 20 B

.. voltage between 4 and B when all the sources are acting Fig.4.53

simultaneously is given by superposition theorem as
V=V +Via+V=(1-2-4)=-5V
Problem 4.9  Find the currentiin the circuit shown in the Fig. 4.54 using the
superposition theorem.

Solution We consider the three cases: 8A

Case (I) When the 10-V source is acting alone

The circuit is shown in Fig. 4.55.
4j'

4i o
<>
29 30 2 280 2A 30
Al "y

Fig. 4.55 Fig. 4.56 Fig. 4.57
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By KVL for the loop, we get, —4i"+3i"—10+2i"=0 = i’=10A
Case (II) When the 2-A source is acting alone
The circuit is shown in Fig. 4.56.
We convert the dependent voltage source into its equivalent dependent current source as shown in Fig. 4.57.
The total current (2 + 2i") is divided into two paths, resistors 2 ) and 3 ().
.. by current divider rule, current through the 3-() resistor is

i”= 2 xX(242i") = i"=4A
2+3

Case (III) When the 8-A source is acting alone
The circuit is shown in Fig. 4.58.
By KVL for the loop, we get,
—4i""+3(I-8)+21=0
where, i”’=(I-8) or, I=(""+8)
= —4i""+3i"+2(i""+8)=0 = i=-16A

*. current when all the sources are acting simultaneously is given by the
superposition theorem as

i=(i'+i”+i")=(10+4—16)=—2 A

Problem 4.10 Using the superposition theorem determine V, the
voltage across the 3-ohm resistor in Fig. 4.59.

Solution Case (I) When the 8-A current source is acting alone

By KVL for the supermesh, 3i'+2i—4i'=0 = i =%i’

By KCL at the node x,

1 .
ATERD S it S oA Fig. 4.59

V'=3i"=3x(~16)=—48 V

Case (II) When the 2-A current source is acting
alone

By KVL,
3(i,+2)+2i, 4" =0 = 5i,+6-4i"=0

Now, i”=(i,+2)

o 5i+6-4(i,+2)=0 = i, =2A
w "=, +2)=(2+2)=4A
S V=3i"=3x4=12V

Fig. 4.60 (a) Fig. 4.60 (b)
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Case (III) When the 10-V voltage source is acting alone
By KVL, 3;”—-10+2i""-4i"’=0 = i”’=10A
~V=10x3=30V

When all the sources are acting simultaneously; by the superposition theorem the
voltage is given as

Vi=(V+V/"+V")=(-48+12+30)=-6V

Problem 4.11 For the network shown in Fig. 4.61
calculate the current throughout the impedance (3 + j4)()
using superposition theorem.

Solution When the 102.90° V is acting alone 1020V

10290°  j10(3+9)
5+(3+j4)j5 -5+ ;60
3+ 7445

Main current, /=

j5 jl0xj5  —10

~I'=1x = = 50 j50
3479 =5+;60 -1+ 12
When the 10£0° V is acting alone 30
10£90°V
Main current, /= 1020 —= 108+/4) IS j4n
.5+(3+j4)5 -5+ 60 o
3+j4+5 Fig. 4.62
=T x 5 _ 10x5 _ 10 50 j50
8+j4 —5+j60 —1+ ;12 Wy w
When both the sources are acting simultaneously, by the superposition l 30 1020°V
theorem, the total current flowing through the impedance (3 + j4) is 1840
I=(I'+1")= “10 10 _pa ¢
—1+;12 —1+;12 Fig. 4.63

Problem 4.12 Using the superposition theorem, determine the current in the 4-Q) resistor in the network
shown in Fig. 4.64.
40 2Q

’\N\,j_’\/\/\,
20

202 0°A 50 T—jZQ 100 £90°V

Fig. 4.64
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Solution Case (I) When the 20/ 0°A source is acting alone
The circuit is shown in Fig. 4.65.

40 20
* * ANA- AN
—_—
l1
20/ 0°A 50 29 —j2Q

Fig. 4.65

Reducing the parallel combination, the simplified circuit is
shown in Fig. 4.66.

40
* A%
5% j2 /
Z = e 1857.£682° =(0.69+ /1.72) Q) 20/ O°A z N z,
5 _2%(=j2)

= =(1- j1)Q=1414--45° Q Fig. 4.6

By current division rule, the current through the 4-() resistor is

Z o
1[,=20£0°x——1—=20£0°x 1'3574682 —=648261°=(3.14+ j5.66) A
+Z 0.69+ j1.724+4+1-j1

1+ 2

Case (IT) When the 1002.90° V source is acting alone

4Q 20

Here, the current source is open-circuited. Combining the par- Al i VWV
allel connection of 5 £ and j 2 () the simplified circuit is shown > L _ 20 < 20/ 90°A

I

in Fig. 4.67. ’
By KVL for the two loops, we get,

(4+069+ j172— j2)L, + j21=0 Fig. 4.67
= (4.69-,028)],+2I=0 0
and, 721, +(2-j2)I =100.£90° = 100 (i)
Solving (i) and (ii), we get
0 j2
e (4.6£1i):)).28()2_j2]?2 - _12_823(10 993 1 23L3TT0 (M) =(0T5+/755) A
J2 (2-52)

By superposition theorem, when both the sources are acting simultaneously, the current through the 4-()
resistor is

I=1-1,=(3.14+j5.66)—(9.75+ j7.55)=(-6.61- j1.9)=6.89£-163.67° A

The direction of the current is from right to left.
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Problem 4.13 Find1in the Fig. 4.68 using the superposition theorem. 4V

Solution 'When the 4-V voltage source is acting alone

The circuit is shown in Fig. 4.69.

Here, by KVL,
—4+30'+5V V=0
or, 3+4Ax(=20)=4 [V/=-2I"] Fig. 4.68
4V
o, r=—4a=—08A O 30
5 +
When the 2-A current source is acting alone V) S20 é 5V,
The circuit is shown in Fig. 4.70. I
_ -
VII VI/_ SVII ., 12 X F
By KCL, 2=7x+% =V =—?=—2.4V Fig. 4.69
30
V-5V _152_5X[_152) . e
_‘_[”: X _ X — :E:3'2A VX/, 29 2A 5VX”
3 3 5 ,,,
When both the sources are acting simultaneously, the current by superposi- - y

tion theorem is givenas /=(/'+1")=(-08+32)=24 A

Thevenin’'s and Norton’s Theorem

Problem 4.14 Draw the Thevenin’s equivalent of the cir-
cuitin Fig. 4.71 and find the load current, i.

Solution Open-circuiting the terminals, by KVL for two
meshes,

3i —i,=10 and —i +4i,=—5

Solving, ilz%l, and izz—%l

10)_45
AV =(5+2i)=|5-— |=2v
w=420) ( 11) 11

Fig. 4.72 (a)

1Q 1Q 10

10 10 20 < 2/30 20 <

Fig.4.72 (b)
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5
5 X2 10
Equivalent resistance, R, = T = HQ
+2

45
/1 - —140625A

R+2 1/+2

Problem 4.15 Find], in the given figure, using Thevenin’s theorem.

So, the load current is, i=—2=—

Solution Removing the 2-Q) resistor,
By KVL for the supermesh, —10—v +3v, +v, =0 = v, =10-2v,

But, due to open-circuit, the 1-A source will circulate through thel-Q)
resistor.

Loy, =1X1=1V
v, =(10-2)=8V
Let’s short circuit the terminals x—y,
By KVL,

-10-v,+3v,=0 or, v, =5
But, by KCL at the node (a),

v
L=1-1
1 S
= I_=(-v,)=—4A (eg.,currentisflowing from y to x)
V
Rlzi:§:2ﬂ
A

So, the current through the 2-() resistor, /= 2:;2= 2A

oc

Fig.4.73

Problem 4.16 By the iterative use of Thevenin’s theorem, reduce the Fig. 4.75 (b)
circuit shown in Fig. 4.76 to a single emf acting in series with a single resis-
tor. Hence, calculate the current in the 10-{2 resistor connected across XY.
100 100 Q 100 Q 10000 X
90 Q)
1000 Q) 10Q 100 Q ;100
100V
[ - ,

Fig. 4.76



Solution Consider the section of the net-
work to the left of A—B: By use of Theremin’s
theorem, this portion is reduced to the form of
Fig. 4.77 (b).

1000100 _ 1000
®1000+100 11
1001000 1000
Te11000 11

Applying Thevenin’s theorem to the section left
of CD of Fig. 4.77 (b),

(109///

Ry (210

)Xlo 2100 )
l)+1O

(109///)X10 1000 ,,

L (21q//)+10 21"

Applying Theremin’s theorem to the section left
of EF of Fig. 4.77 (c),

24200
_( /éél)XIOO__24zoo

R = -
" (24200 ) 463
( /é;l +100

1
. 000, X100 ~ 1000
e 24209// ) T 463
( Ly )+100

Section left to X7V is put as in Fig. 4.77 (d).

Q

R 222000 487200
463 463

1000
(10007 65) <1000 1000 v

= -
24299// ) 4872
( L3 +1000

Hence, the current in the 10-() resistor is

[,
_ 4872
487299// )
( 136) 710

=0.0193A

Network Theorems

1000 10000

10Q

A1000

90 Q)
100

100V
I P— v
B
Fig.4.77 (a)
41000 5 1000 1000 O
1000/11Q
10Q 1000 10Q
1000/11V -[
o . . 'y
B D
Fig. 4.77 (b)
c 100 Q g 1000Q %
2100/221Q
100 Q §1OQ
1000/221V
L. L, ,
D F
Fig. 4.77 (c)
1000Q
E X
. ANV
24200/463 Q)
;109
1000/463 V
. Y
F
Fig.4.77 (d)
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Problem 4.17 In the operational-amplifier circuit shown
in Fig. 4.78 find |, in the R = 4-k(} resistor, using Thevenin’s
theorem.

Solution  Open- circuiting the 4-k() resistor,

Here, e2=0, e3=VO
acl2 0 Vo, G g o g =agean) ,
2x10°  4x10° 8x10° ! 0 (1)
O0—e¢ N 0-¥, 0 = v o3, " Fig. 4.78
8x10° 12x10° o 2
From (i) and (ii)), = e, =48V = ¢,

Now, we connect a 1-A current source at the place of the
4-kQ) resistor.

By KCL at the node (1),
4 € K) 4

2x10°  4x10° 8x10°
By KCL at the node (2),

=1 = 7e =8000+2V,

Fig.4.79

V=—2e = 7e1=8000+2(—3e1) = =800V
2 2

Fig. 4.81

~ R =5=8000
LS|
L 48 48
"~ 4000+800 4-8x10° + Vs— a0
Problem 4.18 Find Thevenin’s equivalent about AB for the circuit 20Q
shown in Fig. 4.80. T 20 40
10V
Solution  Open-circuiting the 4-() resistor by KCL, <—> Ay
V. -10 ’
S —4y =4(10-V,) = V, =10V
2 Fig. 4.80
+ Vs — 40 A + Vs =V, 40 A
ANN—2 NVW—s NW——ANN—2
20 2Q
2Q 20
+ +
G)V VOC GJD sc
4V 4V
-B B
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Short-circuiting the terminals 4B, by KCL

V.-10

D4y —ago-r)
2 a4 %7 !

180

v

1

=9.47V

SC

th

Va
R, ="=4220

sc

Problem 4.19  In the network, determine the steady current in the 8-2 inductor using Thevenin’s theorem.
j4Q 2 80 j4Q
qy o —s any
+ +
100 £ 0° (V) —__jsn T 100 £ 60° (V)
Fig. 4.82
Solution With a-b open-circuited,
j4Q a b j4Q
an) o o qn
i +
10020° (V) —_jso T 100,60° (V)
Fig. 4.83
V= 1(_)049 (—78)=200£0°V
o j4—j8
V,= M(—j@: 300£60°V
J4-jo
v, =, =V,)=200£0°-300£60°=(50—,25981) V
7, 2UDE) GHEIO)_ 50
" jA-s8 Jj4-=j6
- 0 i= i _00=725981) 445, 1691°A
.. current in the 8-() inductor, 7 +Z, 720+ 8 : .
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Problem 4.20 Obtain Thevenin’s equivalent circuit with respect to terminals A-B in the networks shown

below.
(a) (b)
10.£0° (A)
20£90° (V)
(c) 100 50 (d)
NV
10020° (V) ! 84 .
£0° ——_i5q 40
A 5 j6Q 2cos 2tu(1)
(e) 51
1100 Q CI I
1 °A
‘ -j5Q
10.£0° (V) j10Q
* B
Fig.4.84
Solution
(a) With A-B open, the current is |
_10£0° x j _ 150290°
5-j5+j15 5+ /10 10 20° (A) 50 S20
Thevenin voltage A
o 1 . -
V,=V,=1 x(—jS):MX(SL—90°)=67.084—634°V —j5Q
‘ 5+ /10 T
Thevenin impedance, ' *B
. 15 Fig.4.85 (a)
2,=2,,= X0 507/ 5186 I
Jj5+5+j15 Z,=7.07 L—81.86 (Q/)q

Thus, the Thevenin’s equivalent circuit is shown in Fig. 4.85 (b).

(b) Here, Thevenin voltage,

- 29490 (3= jb)= ]120(3‘—]4)
5+ j10+3—j4 8+
~50/36.87 —10.£0° (V)

" 5,3687°

V, =67.08 2 —63.4° (V)

. B
Fig. 4.85 (b)
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=5.59/-2656°(Q)

Thevenin impedance,

_(5+j10)x(3—j4) 118£6343°x5£-53.13°
® 7 (54 j10)+(3—j4) 10£36.87°

Thus, the Thevenin’s equivalent circuit is shown in Fig. 4.86 (b).

Z,=7.07 £-81.86°(Q)

50 j100 A 100 50
A AW I
30 i A
20 £ 90°(V) V, =67.08 2 -634°(V) 400, 0°(v) L 80
-jaQ T j6Q
T o B * 3 BT
Fig. 4.86 (a) Fig. 4.86 (b) Fig.4.87

(c) Here, with A-B open, the equivalent impedance,

—j5x(13+j6) _160— 55
—j5+(13+j6) 1341

Z=10+

0=12982-2337° (Q)

_100£0°  100£0°
Z  1298/-2337°

.. main current, [ =7.74£2337° (A)

.. Thevenin voltage,

v, =Ix "—15 X(8+ j6)=77,2337° x "—15 X (8+ j6)=29.553/—34.16° (V)
¢ —j5+5+8+j6 13+ 1

10%(—/5)
10— j5

.. Thevenin impedance, Z, =|:

+5]| |(8+j6)=533£-05° ()
(d) The circuit is redrawn as shown in Fig. 4.88, considering two capacitors in parallel.
1 1) 1

SR e

Thevenin voltage is given as

2s (”%) 4s

V (s)= X = V)

" 544 (1+y+1+%) (5" +4)(s+2) Fig. 4.88
s
.. Thevenin impedance, Z, (s)= (l+ %)| |(l+%): 1Q 5/

(¢) To find V, 11000 =:= o
With A-B open, the current of the dependent source can _ —j5Q ;
flow through the capacitor only. 10 £0°(V) —j100 th

10.£0° o
1=2020" 09995/ -57° (A) B

100+ /10 Fig. 4.89
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.. Thevenin voltage,

V.=V, =(Ixj10)={5] (= j5)}= j35I
= j35%0.09995/—5.7° =348./843° (V)

To find I | 1000
Converting the dependent current source into the |—.A
voltage source, by KVL, _j351 —J5Q
10.£0° =(100+ j10)1 — j101 10 £0°(V) 1003 v
and —(—j257)=—j101+1 (10— j5) 5
Solving for Iy, I, =0.6£31° (A) Fig. 4.90
.. Thevenin impedance,
14 o
z, =—“‘=w=5.8453.3° Q)
I, 06431
Problem 4.21 FindV, using Thevenin’s theorem
Solution To find V,, 3
Removing the 2-Q) resistor and open circuiting the termi- 0
nals and then converting the dependent current source into i,
dependent voltage source, we redraw the circuit as follows. ’ZWL J_
By KVL for the two loops, (here, i, = 1)) 12008 (V) 1AF e v,
(4—j4)I +j4l,=-12 and — ;21 +(-;6)I,=0 T T -
Solving for I,, Fig. 4.91
(4-j4) -12 31y
| =j2 0|  —j24 i ’—@—‘
T (4-j4)  j4| —j24-24-8 J_ 2H J_ ny
—Jjz  -Jjé 12 cost (V) 1/4F 114FE== v,
— 3 06,5313 (A) T T ~
4+ ;3 ﬂ

Therefore, Thevenin voltage is

24
V. =1 X(—j8)=——=48/-36.87°(V
w =1, xX(=j8) 113 V)

To find I

Removing the 2-() resistor and short-circuiting the termi-
nals and then converting the dependent current source into

12 £ 0° (V)

Fig. 4.92

dependent voltage source, we redraw the circuit as shown in Fig. 4.92 (b)
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By KVL for the two loops,
(4— )1 +jal, =~12

—j21,+(=j2)I,=0 12 £0° (V)
Solving for 7,,
(4— j4) _12‘ Fig. 4.92 (b)
_n 0 . .
I=1,=—7 S I B 134163435 (A)
(4-j4) Jj4| —8-j8-8 2+
-j2 )2 Z,=3.58 £—100.3°()
Therefore, Thevenin impedance is,
V _ ° o
Jln ABL-308T 40 10030 () V,=4.8 L ~36.87°(V)

T 1341£63.435°

N

Thus, Thevenin’s equivalent circuit becomes as shown
in Fig. 493.

Thus, the required voltage,

V _ o
v0=( m JxZ:( 482-3687 )x2=1.27432°(V)

Fig. 4.93

Z, +2 358£-100.3° +2
Problem 4.22 Obtain the Norton’s equivalent circuit 50 15Q
with respect to the terminals AB for the network shown Wy MW
inFig. 4.94. A
. . 10V 20V
Solution Removing the source, B
XD 5950
4 5+15 20 Fig. 4.94
50 150 50 15Q
AN AN AV AN
A A
10V 20V
B B
Fig. 4.94 (b) Fig.4.95 Ae B
Short-circuiting 4B, 3}\3\5;\19
I :m+§=3.33A —(D—
€* 5 15
3.33A

So, Norton’s equivalent circuit is shown in Fig. Fig. 4.96
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Problem 4.23 Replace the circuit in Fig. 4.97 with the Thevenin’s equivalent circuit across A and B.

I 1kQ
+ ° A
T+
10mVv C v0/104v 30kQ
751 ¢
* * * _=B

Fig. 4.97
Solution By KVL for the left-hand side loop,

”
1x10° x [ +—-=10x10" (i)
10*

In the right-hand side loop, the dependent current source current will circulate in the resistor. By KVL,
V,=30x10" x(~751)=-225x10* 1 (ii)
Substituting the value of / from (ii) in (i), we get,
v V
= 1x10° x| ——— [+—%=10x10"
225x%10 10
= —444x107*V,+1x107*V,=10x10"

10x1073
= V=0 _ gy
0" 344x10" [ ko A

Now, short circuiting the terminals 4 and B, we get by 10mv 30K( |
KVL to left-hand-side loop, 75/ e | ¥

I1x10°xI+0=10x10" = I=1x10"A 23 ® B
Fig. 4.98

Also, from right-hand side loop on the short circuit,
I =-75I=-75x1x10"°==75x10" A

EY

38.67 k()

Thus, the Thevenin equivalent impedance is given as

vV _
Z, == 2 3867k
I, -75x10 B

—-29V

Thevenin’s equivalent circuit is shown in the Fig. 4.99. Fig. 4.99
Problem 24 Find the Thevenin’s equivalent between
terminals a and b of the circuit shown in Fig. 4.100.
Solution By KVL for the right-hand side mesh,

V. =V =(-401)x50=-20007, (1)

From the left-hand side loop, Fig. 4.100



3=-2V 3=-21

Network Theorems

- l 1kQ
L=T000 = 1000 (i) pa |
From (i) and (i7), we get, 8V o) 500 l o
4 ¢ — b

3-2
Ve :_2000( 1000 ) = V=2V Fig. 4.101
To determine the Thevenin’s impedance, we short cir-
cuit the terminals a and b.

Here,

SC

I =-401 =-40X% 3 =-0.12
1000

.
AR =e=—Z 16670
©T 012

SC

Thevenin’s equivalent circuit is shown in Fig. 4.102.

Problem 25 In the network shown in Fig. 4.103

16.67 Q
a
2V
b
Fig. 4.102

1
the switch is closed at time t = 0. Assuming all the >§ 4%
initial currents and voltages as zero, find the cur- =
rent through the inductor L, by the use of Norton’s 3V =
theorem.

Solution The network for ¢ > 0 in Laplace

g o Fig.4.103
domain is shown in Fig. 4.104.

The equivalent network reduces to one as shown
in Fig. 4.105.

AN
[ L
S

g —
S

0|=

L BN

s+2

0=

[ 1

Fig. 4.104

Fig. 4.105

To find the current in L,, we have to find Thevenin’s equivalent circuit across the terminals 4 and B. The

impedance between terminals 4 and B is given as

L, s () (02)

th AB -2 - 2
s+2+1 s*+2s+1 (s+1)
s




