
Magnetic Circuits
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Two circuits are said to be coupled circuits when energy transfer takes place from one circuit to the other 

without having any electrical connection between them. Such coupled circuits are frequently used in network 

analysis and synthesis. Common examples of coupled circuits are transformer, gyrator, etc. In this chapter, we 

will discuss self and mutual inductance, magnetically coupled circuits, dot conventions and tuned circuits.
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Consider a coil of N turns carrying a current i as shown in Fig. 4.1.

When current flows through the coil, a flux � is produced in the coil. 

The flux produced by the coil links with the coil itself. If the current 

flowing through the coil changes, the flux linking the coil also changes. 

Hence, an emf is induced in the coil. This is known as self-induced emf. 

The direction of this emf is given by Lenz’s law.

We know that
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Hence, rate of change of flux � k �� rate of change of current
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According to Faraday’s laws of electromagnetic induction, a self-induced emf can be expressed as

v N
d
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where L
N

i
�

�
 and is called coefficient of self-inductance.

The property of a coil that opposes any change in the current flowing through it is called self-inductance or 

inductance of the coil. If the current in the coil is increasing, the self-induced emf is set up in such a direction so 

v

i

����������������		
�����		���



���	��	��������	
����������	�������
���������
�������

as to oppose the rise in current, i.e., the direction of self-induced emf is opposite to that of the applied voltage. 

Similarly, if the current in the coil is decreasing, the self-induced emf will be in the same direction as the applied 

voltage. Self-inductance does not prevent the current from changing, it serves only to delay the change.
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If the flux produced by one coil links with the other coil, placed closed to the first coil, an emf is induced in 

the second coil due to change in the flux produced by the first coil. This is known as mutually induced emf.

Consider two coils 1 and 2 placed adjacent to each other as shown in Fig. 4.2. Let Coil 1 has N
1
 turns while 

Coil 2 has N
2
 turns.

L1 v2

Mutual flux

v1

Coil 2Coil 1

i1
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If a current i
1
 flows in Coil 1, flux is produced and a part of this flux links Coil 2. The emf induced in Coil 2 

is called mutually induced emf.

We know that
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, a constant

Hence, rate of change of flux � k � rate of change of current i
1

d

dt
k

di

dt
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According to Faraday’s law of electromagnetic induction, the induced emf is expressed as

v N
d

dt
N k
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dt
N
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where M
N

i
� 2 2

1

�
 and is called coefficient of mutual inductance.
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The coefficient of coupling (k) between coils is defined as fraction of magnetic flux produced by the current 

in one coil that links the other.

Consider two coils having number of turns N
1
 and N

2
 respectively. When a current i

1
 is flowing in Coil 1 

and is changing, an emf is induced in Coil 2.

M
N

i
� 2 2

1

�



4.5�����������������	������


Let k1
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If the current i
2
 is flowing in Coil 2 and is changing, an emf is induced in Coil 1,
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Multiplying Eqs (4.1) and (4.2),

where

M k k
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1. Cumulative Coupling Figure 4.3 shows two coils 1 and 2 connected 

in series, so that currents through the two coils are in the same direction in 

order to produce flux in the same direction. Such a connection of two coils 

is known as cumulative coupling.

Let L
1
� coefficient of self-inductance of Coil 1

L
2
� coefficient of self-inductance of Coil 2

M � coefficient of mutual inductance

If the current in the coil increases by di amperes in dt seconds then

Self-induced emf in Coil 1 � �L
di

dt
1

Self-induced emf in Coil 2 � �L
di

dt
2

Mutually induced emf in Coil 1 due to change of current in Coil 2 � �M
di

dt

Mutually induced emf in Coil 2 due to change of current in Coil 1 � �M
di

dt

Total induced emf v L L M
di

dt
� � � �( )1 2 2 …(4.3)
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Coil 1 Coil 2
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If L is the equivalent inductance then total induced emf in that single coil would have been

v L
di

dt
� � …(4.4)

Equating Eqs (4.3) and (4.4),

L L L M� � �1 2 2

2. Differential Coupling Figure 4.4 shows the coils connected in series 

but the direction of current in Coil 2 is now opposite to that in 1. Such a 

connection of two coils is known as differential coupling.

Hence, total induced emf in coils 1 and 2.

v L
di

dt
L

di

dt
M

di

dt
L L M

di

dt
� � � � � � � �1 2 1 22 2( )

Coils 1 and 2 connected in series can be considered as a single coil with equivalent inductance L. The 

induced emf in the equivalent single coil with same rate of change of current is given by,

v L
di

dt
� �

� � � � �

� � �

L
di

dt
L L M

di

dt

L L L M

( )1 2

1 2

2

2

�4.6�����	
�����������������

Cumulative Coupling1. Figure 4.5 shows two coils 1 and 2 connected in parallel such that fluxes 

produced by the coils act in the same direction. Such a connection of two coils is known as cumulative 

coupling.

Let L
1
� coefficient of self-inductance of Coil 1

L
2
� coefficient of self-inductance of Coil 2

M � coefficient of mutual inductance

If the current in the coils changes by di amperes in dt seconds then

Self-induced emf in Coil 1 � �L
di

dt
1

1

Self-induced emf in Coil 2 � �L
di

dt
2

2

Mutually induced emf in Coil 1 due to change of current in Coil 2 � �M
di

dt

2

Mutually induced emf in Coil 2 due to change of current in Coil 1 � �M
di

dt

1

Total induced emf in Coil 1 � � �L
di

dt
M

di

dt
1

1 2

i

Coil 1 Coil 2
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Total induced emf in Coil 2 � � �L
di

dt
M

di

dt
2

2 1

As both the coils are connected in parallel, the emf induced in both the coils must be equal.

� � � � �

� � �

L
di

dt
M

di

dt
L

di

dt
M

di

dt

L
di

dt
M

di

dt
L

di

dt
M

di

1
1 2

2
2 1

1
1 1

2
2 2

ddt

L M
di

dt
L M

di

dt
( ) ( )1

1
2

2� � �

di

dt

L M

L M

di

dt

1 2

1

2�
�
�

�
	


�
�

...(4.5)

Now, i i i� �1 2

di

dt

di

dt

di

dt

L M

L M

di

dt

di

dt

L M

L M

� �

�
�
�

�
	


�
�

�

�
�
�

�
�
	


�
�

1 2

2

1

2 2

2

1

1
di

dt

2

�
� �
�

�
	


�
�

L L M

L M

di

dt

1 2

1

22
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If L is the equivalent inductance of the parallel combination then the induced emf is given by

v L
di

dt
� �

Since induced emf in parallel combination is same as induced emf in any one coil,
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tt
...(4.7)

Substituting Eq. (4.6) in Eq. (4.7),

L L M
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dt L
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L L L M L M M

L L M

L L M

L L M

1 2 1 1
2

1 2

1 2
2

1 2

2
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Differential Coupling2. Figure 4.6 shows two coils 1 and 

2 connected in parallel such that fluxes produced by the coils 

act in the opposite direction. Such a connection of two coils is 

known as differential coupling.

Self-induced emf in Coil 1 � �L
di

dt
1

1

Self-induced emf in Coil 2 � �L
di

dt
2

2

Mutually induced emf in Coil 1 due to change of current in Coil 2 � M
di

dt

2

Mutually induced emf in Coil 2 due to change of current in Coil 1 � M
di

dt

1

Total induced emf in Coil 1 � � �L
di

dt
M

di

dt
1

1 2

Total induced emf in Coil 2 � � �L
di

dt
M

di

dt
2

2 1

As both the coils are connected in parallel, the emf induced in the coils must be equal.

� � � � �

� � �

L
di

dt
M

di

dt
L

di

dt
M

di

dt

L
di

dt
M

di

dt
L

di

dt
M

di

1
1 2

2
2 1

1
1 1

2
2 2

ddt

L M
di

dt
L M

di

dt
( ) ( )1

1
2

2� � �

di

dt

L M

L M

di

dt

1 2

1

2�
�
�

�
	


�
�

...(4.8)

Now, i i i� �1 2
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i2

i1 Coil 1

Coil 2
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If L is the equivalent inductance of the parallel combination then the induced emf is given by

v L
di

dt
� �

Since induced emf in parallel combination is same as induced emf in any one coil,

L
di

dt
L

di

dt
M

di

dt

di

dt L
L

di

dt
M

di

dt

L
L

L M

L

� �

� ��
	


�
�

�
�

1
1 2

1
1 2

1
2

1

1

1

��
�
	


�
�

�
�

�
�

�

�
�

M

di

dt
M

di

dt

2 2

�
�
�

�
	


�
�
�

�

�
�

�

�
�

1
1

2

1

2

L
L

L M

L M
M

di

dt
...(4.10)

Substituting Eq. (4.9) in Eq. (4.10),
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L L M

�
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���������� � The combined inductance of two coils connected in series is 0.6 H or 0.1 H depend-

ing on relative directions of currents in the two coils. If one of the coils has a self-inductance of 0.2 H, find 

(a) mutual inductance, and (b) coefficient of coupling.

Solution L L L1 0 2 0 1 0 6� � �. . .H, H, Hdiff cum

(a) Mutual inductance

L L L M

L L L M

cum .

.

� � � �
� � � �

1 2

1 2

2 0 6

2 0 1diff

...(i)

...(ii)

Adding Eqs (i) and (ii),

2 0 7

0 35

0 35 0 2 0 15

1 2

1 2

2

( ) .

.

. . .

L L

L L

L

� �
� �

� � � H
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Subtracting Eqs (ii) from Eqs (i),

4 0 5

0 125

M

M

�
�

.

. H
(b) Coefficient of coupling

k
M

L L
� �

�
�

1 2

0 125

0 2 0 15
0 72

.

. .
.

����������!� Two coils with a coefficient of coupling of 0.6 between them are connected in series so 

as to magnetise in (a) same direction, and (b) opposite direction. The total inductance in the same direction 

is 1.5 H and in the opposite direction is 0.5 H. Find the self-inductance of the coils.

Solution   k L L� � �0 6 0 5 1 5. , . .diff cumH, H

L L L M

L L L M

diff

cum

� � � �
� � � �

1 2

1 2

2 0 5

2 1 5

.

.

...(i)

...(ii)

Subtracting Eq. (i) from Eq. (ii),

4 1

0 25

M

M

�
� . H

Adding Eq. (i) and (ii),

2 2

1

1 2

1 2

( )L L

L L

� �
� � ...(iii)

k
M

L L

L L

L L

�

�

�

1 2

1 2

1 2

0 6
0 25

0 1736

.
.

. ...(iv)

Solving Eqs (iii) and (iv),

L

L

1

2

0 22

0 78

�
�

.

.

H

H

����������"� Two coils having self-inductances of 4 mH and 7 mH respectively are connected in 

parallel. If the mutual inductance between them is 5 mH, find the equivalent inductance.

Solution L L M1 24 7 5� � � mH,  mH,  mH

For cumulative coupling,

L
L L M

L L M
�

�
� �

�
� �
� �

�1 2
2

1 2

2

2

4 7 5

4 7 2 5
3

( )

( )
 mH

For differential coupling,

L
L L M

L L M
�

�
� �

�
� �
� �

�1 2
2

1 2

2

2

4 7 5

4 7 2 5
0 143

( )

( )
. mH
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�������� ���� Two inductors are connected in parallel. Their equivalent inductance when the 

mutual inductance aids the self-inductance is 6 mH and it is 2 mH when the mutual inductance opposes 

the self-inductance. If the ratio of the self- inductances is 1:3 and the mutual inductance between the coils 

is 4 mH, find the self-inductances.

Solution

     L L
L

L
Mcum diffmH, mH, mH� � � �6 2 1 3 4

1

2

. ,

For cumulative coupling,

L
L L M

L L M

L L

L L

L L

L L

�
�

� �

�
�

� �

�
�

� �

1 2
2

1 2

1 2
2

1 2

1 2

1 2

2

6
4

2 4

6
16

8

( )

( )

...(i)

For differential coupling,

L
L L M

L L M

L L

L L

L L

L L

�
�

� �

�
�

� �

�
�

� �

1 2
2

1 2

1 2
2

1 2

1 2

1 2

2

2
4

8

2
16

8

( )

...(ii)

From Eqs (i) and (ii),

2 8 6 8

8 3 3 24

16

1 2 1 2

1 2 1 2

1 2

( ) ( )L L L L

L L L L

L L

� � � � �

� � � � �

� �

But
L

L

1

2

1 3� .

1 3 16

2 3 16

2 2

2

.

.

L L

L

� �

�

L

L L

2

1 2

6 95

1 3 9 035

�

� �

.

. .

mH

mH
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Consider two coils of inductances L
1
 and L

2
 respectively connected in series as shown in Fig. 4.7. Each 

coil will contribute the same mutual flux (since it is in a series connection, the same current flows through 

L
1
 and L

2
) and hence, same mutual inductance (M). If the mutual fluxes of the two coils aid each other as 
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shown in Fig 4.7 (a), the inductances of each coil will be increased by M, i.e., the inductance of coils will 

become (L
1
� M) and (L

2
� M). If the mutual fluxes oppose each other as shown in Fig. 4.7 (b), inductance 

of the coils will become (L
1
� M) and (L

2
� M). Whether the two mutual fluxes aid to each other or oppose 

will depend upon the manner in which coils are wound. The method described above is very inconvenient 

because we have to include the pictures of the coils in the circuit. There is another simple method of 

defining the directions of currents in the coils. This is known as dot convention.

L1I
L2 L1I

I

L2

L1 L2L1

I

(a) (b)

(c) (d)

L2

�������� �������������

Figure 4.7 shows the schematic connection of the two coils. It is not possible to state from Fig. 4.7(a) and 

Fig. 4.7(b) whether the mutual fluxes are additive or in opposition. However dot convention removes this 

confusion.

If the current enters from both the dotted ends of Coil 1 and Coil 2, the mutual fluxes of the two coils aid 

each other as shown in Fig. 4.7(c). If the current enters from the dotted end of Coil 1 and leaves from the 

dotted end of Coil 2, the mutual fluxes of the two coils oppose each other as shown in Fig. 4.7(d).

When two mutual fluxes aid each other, the mutual inductance is positive and polarity of the mutually 

induced emf is same as that of the self-induced emf. When two mutual fluxes oppose each other, the 

mutual inductance is negative and polarity of the mutually induced emf is opposite to that of the self-

induced emf.

����������$� Obtain the dotted equivalent circuit for Fig. 4.8 shown below.

L2

L1

C

R

i(t )

v (t )

+

−

��������

Solution The current in the two coils is shown in Fig. 4.9. The corresponding flux due to current in each 

coil is also drawn with the help of right-hand thumb rule.
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L2

L1

C

R

+

f1

f2

−
v (t )

��������

From Fig. 4.9, it is seen that, the flux �
1
 is in upward direction in 

Coil 1, and flux �
2
 is in downward direction in Coil 2. Hence, fluxes 

are opposing each other. The mutual inductances are negative and 

mutually induced emfs have opposite polarities as that of self-induced 

emf. The dots are placed in two coils to illustrate these conditions. 

Hence, current i(t) enters from the dotted end in Coil 1 and leaves 

from the dotted end in Coil 2.

The dotted equivalent circuit is shown in Fig. 4.10.

����������%� Obtain the dotted equivalent circuit for the circuit of Fig. 4.11.

j2 � j3 �

j4 �

j3 � j5 � j6 �

���������

Solution The current in the three coils is shown in Fig. 4.12. 

The corresponding flux due to current in each coil is also 

drawn with the help of right-hand thumb rule.

From Fig. 4.12, it is seen that the flux is towards the left 

in Coil 1, towards the right in Coil 2 and towards the left in 

Coil 3. Hence, fluxes �
1
 and �

2
 oppose each other in coils 

1 and 2, fluxes �
2
 and �

3
 oppose each other in coils 2 and 

3, and fluxes �
1
 and �

3
 aid each other in coils 1 and 3. The 

dots are placed in three coils to illustrate these conditions. 

Hence, current enters from the dotted end in Coil 1, leaves 

from the dotted end in Coil 2 and enters from the dotted end 

in Coil 3.

The dotted equivalent circuit is shown in Fig. 4.13.

L2

C

R

+

−

L1

v (t)

i(t )

���������

j2 �

f1 f2f3

j3 �

j4 �

j3 �

i

j5 � j6 �

���������

j3 �
j2 �

j5 �
j3 �

j4�

j6 �

��������
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����������&� Obtain the dotted equivalent circuit for the circuit shown in Fig. 4.14.

j2�

j5� j3�

A B

j4�

j6�

j1�

���������

Solution The current in the three coils is shown in 

Fig. 4.15. The corresponding flux due to current in each coil 

is also drawn with the help of right-hand thumb rule.

From Fig. 4.15, it is seen that all the three fluxes �
1
, �

2
, �

3

aid each other. Hence, all the mutual reactances are positive 

and mutually induced emfs have same polarities as that of 

self-induced emfs. The dots are placed in three coils to 

illustrate these conditions. Hence, currents enter from the 

dotted end in each of the three coils. The dotted equivalent 

circuit is shown in Fig. 4.16.

j5 �
j4 �

j2 �
j1 �

j6 �

A B

j3 �

���������

����������'� Obtain the dotted equivalent circuit for the coupled circuit of Fig. 4.17.

50��0�V

� j8 �

j3 �j5 �

10 �

� �

��������

Solution The current in the two coils is shown in Fig. 4.18 . The corresponding flux due to current in each 

coil is also drawn with the help of right-hand thumb rule.

j2 �

j5 �

i

j3 �

A B

j4 �

j6 �

j1 �

f1

f2 f3

���������
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50��0�V

� j8 �

j3 �j5 �

10 �

� �

f1 f2

���������

From Fig. 4.18, it is seen that the flux �
1
 is in clockwise 

direction in Coil 1 and in anti-clockwise direction in Coil 2. 

Hence, fluxes are opposing each other. The dots are placed 

in two coils to illustrate these conditions. Hence, current 

enters from the dotted end in Coil 1 and leaves from the 

dotted end in Coil 2. The dotted equivalent circuit is shown 

in Fig. 4.19.

����������(� Find the equivalent inductance of the network shown in Fig. 4.20.

1 H 5 H
1 H

1 H

0.5 H
2 Hi

���������

Solution

L L M M L M M L M M� � � � � � � � �
� � � � � �

( ) ( ) ( )

( . ) ( .

1 12 13 2 23 21 3 31 32

1 0 5 1 2 1 0 55 5 1 1

13

) ( )� � �
� H

���������� )� Find the equivalent inductance of the network shown in Fig. 4.21.

10 Hi 6 H
1 H

1 H

2 H

5 H

���������

Solution

L L M M L M M L M M� � � � � � � � �
� � � � � � �

( ) ( ) ( )

( ) ( )

1 12 13 2 23 21 3 31 23

10 2 1 5 1 2 (( )6 1 1 21� � � H

� �

j5 � �j8 �j3 �10 �

M12

50��0�V

���������
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����������  � Find the equivalent inductance of the network shown in Fig. 4.22.

12 Hi 14 H

k1 = 0.33 k2 = 0.37

k3 = 0.65

14 H

���������

Solution

M M k L L

M M k L L

12 21 1 1 2

23 32 2 2 3

0 33 12 14 4 28

0 37 14 1

� � � �

� � �

. ( )( ) .

. ( )(

H

44 5 18

0 65 12 14 8 4231 13 3 3 1

) .

. ( )( ) .

�

� � � �

H

HM M k L L

L L M M L M M L M M� � � � � � � � �
� � � �

( ) ( ) ( )

( . . ) (

1 12 13 2 23 21 3 31 32

12 4 28 8 42 144 5 18 4 28 14 8 42 5 18

37 92

� � � � �
�

. . ) ( . . )

. H

���������� !� Find the equivalent inductance of the network shown in Fig. 4.23.

15 H

8 H

16 H

A B

��������


Solution For Coil A,

L L MA � � � � �1 12 15 8 7 H

For Coil B,

L L MB � � � � �2 12 16 8 8 H

1 1 1 1

7

1

8

15

56

56

15
3 73

L L L

L

A B

� � � � �

� � . H

���������� "� Find the equivalent inductance of the network shown in Fig. 4.24.

15 H

10 H

10 H

25 H 35 H

BA C

30 H

���������
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Solution For Coil A,

L L M MA � � � � � � �1 12 13 25 10 10 25 H

For Coil B,

L L M MB � � � � � � �2 23 21 35 15 10 25 H

For Coil C,

L L M M

L L L L

L

C

A B C

� � � � � � �

� � � � � � �

�

3 32 31 35 15 10 10

1 1 1 1 1

25

1

25

1

10

9

50

H

550

9
5 55� . H

���������� �� Find the equivalent impedance across the terminals A and B in Fig. 4.25.

A

B

2 �

5 �

j4 � j3 �

j2 �

3 �

���������

Solution Z Z Z Z1 2 35 2 4 3 3 2� � � � � � � � � �, ( ) , ( ) ,j j jM

Z Z
Z Z Z

Z Z Z
� �

�
� �

� �
� � �
� � � �1

2 3
2

2 3

2

2
5

2 4 3 3 2

2 4 3 3 2 2

M

M

j j j

j j j

( ) ( ) ( )

( )
�� � �6 9 24 16. . �

���'�����
��	�����
���

Consider two coils located physically close to one another as shown 

in Fig. 4.26.

When current i
1
 flows in the first coil and i

2
� 0 in the second coil, 

flux �
1
 is produced in the coil. A fraction of this flux also links the 

second coil and induces a voltage in this coil. The voltage v
1
 induced 

in the first coil is

v L
di

dt i

1 1
1

02

�
�

The voltage v
2
 induced in the second coil is

v M
di

dt i

2
1

02

�
�

L1 L2

M

i1

+

−

i2

v1 v2

+

−

�������������������	���
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The polarity of the voltage induced in the second coil depends on the way the coils are wound and it is usually 

indicated by dots. The dots signify that the induced voltages in the two coils (due to single current) have the 

same polarities at the dotted ends of the coils. Thus, due to i
1
, the induced voltage v

1
 must be positive at the 

dotted end of Coil 1. The voltage v
2
 is also positive at the dotted end in Coil 2.

The same reasoning applies if a current i
2
 flows in Coil 2 and i

1
� 0 in Coil 1. The induced voltages v

2
 and 

v
1
 are

v L
di

dt i

2 2
2

01

�
�

and v M
di

dt i

1
2

01

�
�

The polarities of v
1
 and v

2
 follow the dot convention. The voltage polarity is positive at the doted end of 

inductor L
2
 when the current direction for i

2
 is as shown in Fig. 4.26. Therefore, the voltage induced in Coil 1 

must be positive at the dotted end also.

Now if both currents i
1
 and i

2
 are present, by using superposition principle, we can write

v L
di

dt
M

di

dt

v M
di

dt
L

di

dt

1 1
1 2

2
1

2
2

� �

� �

This can be represented in terms of dependent sources, as shown in Fig. 4.27.

L1 L2

i1

+

−

i2

Mdi1
dt

v1 v2

+

−

+
−

+
−

Mdi2
dt

���������#$����������	���

Now consider the case when the dots are placed at the opposite ends in the two coils, as shown in Fig. 4.28.

L1 L2

M

i1

+

−

i2

v1 v2

+

−

�������������������	���

Due to i
1
, with i

2
� 0, the dotted end in Coil 1 is positive, so the induced voltage in Coil 2 is positive at the 

dot, which is the reverse of the designated polarity for v
2
. Similarly, due to i

2
, with i

1
� 0, the dotted ends have 

negative polarities for the induced voltages. The mutually induced voltages in both cases have polarities that 

are the reverse of terminal voltages and the equations are
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v L
di

dt
M

di

dt

v M
di

dt
L

di

dt

1 1
1 2

2
1

2
2

� �

� � �

This can be repressed in terms of dependent sources as shown in Fig. 4.29.

L1 L2

i1

+

−

i2

Mdi1
dt

v1 v2

+

−

−
+

−
+

Mdi2
dr

����������#$����������	���

The various cases are summarised in the table shown in Fig. 4.30.

Coupled circuit Time-domain equivalent circuit Frequency-domain equivalent 

circuit

L1 L2

M

i1

+

−

i2

v1 v2

+

−

L1 L2

M

i1

+

−

i2

v1 v2

+

−

L1 L2

M

i1

+

−

i2

v1 v2

+

−

L1

i1

+

−

v1
+
−

Mdi2
dt

L2

i2

+

−

v2
+
−

Mdi1
dt

L1

i1

+

−

v1
+
−

Mdi2
dt

L2

i2

+

−

v2
+
−

Mdi1
dt

L1

i1

+

−

v1
−
+

Mdi2
dt

L2

i2

+

−

v2
−
+

Mdi1
dt

i1

+

−

v1
+
−

i2

+

−

v2
+
−

jwL1 jwL2

jwMi2 jwMi1

i1

+

−

v1
+
−

i2

+

−

v2
+
−

jwL1 jwL2

jwMi2 jwMi1

i1

+

−

v1
−
+

i2

+

−

v2
−
+

jwL1 jwL2

jwMi2 jwMi1

L1 L2

M

i1

+

−

i2

v1 v2

+

−

L1

i1

+

−

v1
−
+

Mdi2
dt

L2

i2

+

−

v2
−
+

Mdi1
dt

i1

+

−

v1
−
+

i2

+

−

v2
−
+

jwL1 jwL2

jwMi2 jwMi1

�������
�����������	�����!�	���	���������
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���������� $� Write mesh equations for the network shown in Fig. 4.31.

+

−

R1

R3

L1

v1(t ) M12
M23

L3

L2

R2

i1 i2

�������
�

Solution Coil 1 is magnetically coupled to Coil 2. Similarly, Coil 2 is magnetically coupled with Coil 1 

and Coil 3. By applying dot convention, the equivalent circuit is drawn with the dependent sources.

The equivalent circuit in terms of dependent sources is shown in Fig. 4.32.

+

−

R1

R3

L1

v1(t )

M23

M12
di1

dt

L3

L2

R2

i1 i2
di2

dt

M23 (i1 − i2)
d

dt
M12 (i1 − i2)

d

dt

−
+

+ − − +

+
−

�������
�

(a) In Coil 1, there is a mutually induced emf due to current (i
1
��i

2
) in Coil 2. The polarity of the mutually 

induced emf is same as that of self-induced emf because currents i
1
 and (i

1
�� i

2
) enter in respective coils 

from the dotted ends.

(b) In Coil 2, there are two mutually induced emfs, one due to current i
1
 in Coil 1 and the other due to current 

i
2
 in Coil 3. The polarity of the mutually induced emf in Coil 2 due to the current i

1
 is same as that of the 

self-induced emf because currents i
1
 and (i

1
�� i

2
) enter in respective coils from dotted ends. The polarity 

of the mutually induced emf in Coil 2 due to the current i
2
 is opposite to that of the self-induced emf 

because current (i
1
� i

2
) leaves from the dotted end in Coil 2 and the current i

2
 enters from the dotted end 

in Coil 3.

(c) In Coil 3, there is a mutually induced emf due to the current (i
1

� i
2
) in Coil 2. The polarity of the 

mutually induced emf is opposite to that of self-induced emf because the current (i
1
� i

2
) leaves from the 

dotted end in Coil 2 and the current i
2
 enters from the dotted end in Coil 3.

Applying KVL to Mesh 1,

v t R i L
di

dt
M

d

dt
i i R i i L

d

dt
i i M1 1 1 1

1
12 1 2 2 1 2 2 1 2 2( ) ( ) ( ) ( )� � � � � � � � � 33

2
12

1
0

di

dt
M

di

dt
� �
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( ) ( ) ( ) ( )R R i L L M
di

dt
R i L M M

di

dt
v t1 2 1 1 2 12

1
2 2 2 12 23

2
12� � � � � � � � � 	(i)

Applying KVL to Mesh 2,

M
di

dt
M

di

dt
L

d

dt
i i R i i L

di

dt
M

d

dt
i12

1
23

2
2 2 1 2 2 1 3

2
23 1� � � � � � �( ) ( ) ( �� � �i R i2 3 2 0)

� � � � � � � � � �R i L M M
di

dt
R R i L L M

di

dt
2 1 2 12 23

1
2 3 2 2 3 23

2
2 0( ) ( ) ( ) 	(ii)

���������� %� Write KVL equations for the circuit shown in Fig. 4.33.

L1 L2

R3

R1

R2

C

M+

−
+

−
v2(t )

v1(t )

i2
i1

i3

�������



Solution The equivalent circuit in terms of dependent sources is shown in Fig. 4.34.

L1 L2

R3
R1

R2

C

+

−

+

−
v2v1(t)

i2

i1

i3

Mdi1
dt

Mdi2
dt

+
−

+
−

�������
�

Applying KVL to Mesh 1,

v t R i L
di

dt
M

di

dt
1 1 1 1

1 2
0( ) � � � �

R i L
di

dt
M

di

dt
v t1 1 1

1 2
1� � � ( ) 	(i)

Applying KVL to Mesh 2,

M
di

dt
L

di

dt
R i i

C
i i dt v t

t
1

2
2

3 2 3 2 3 2

0

1
0� � � � � � �
( ) ( ) ( )
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M
di

dt
L

di

dt
R i i

C
i i dt v t

t
1

2
2

3 2 3 2 3 2

0

1
� � � � � �
( ) ( ) ( ) 	(ii)

Applying KVL to Mesh 3,

� � � � � �
R i
C

i i dt R i i

t

2 3 3 2 3 3 2

0

1
0( ) ( ) 	(iii)

���������� &� Write down the mesh equations for the network shown in Fig. 4.35.

+

−

L1

V1

L2

I1 I2Z2

ZL

Z1 M

�������
�

Solution The equivalent circuit in terms of dependent sources is shown in Fig. 4.36.

+

−
V1

I1 I2Z2

ZL

Z1

+
−

+
−

jwL1 jwL2

jwM I2 jwM I1

�������
�

Applying KVL to Mesh 1,

V Z I I I Z I I

Z Z I Z I

1 1 1 1 1 2 2 1 2

1 1 2 1 2 2

0� � � � � �
� � � � �

j L j M

j L j M

� �
� �

( )

( ) ( ) VV1 	(i)

Applying KVL to Mesh 2,

�Z I I I I Z I

Z I Z Z I

2 2 1 1 2 2 2

2 1 2 2 2

0

0

( )

( ) ( )

� � � � �
� � � � � �

j M j L

j M j L

L

L

� �
� � 	(ii)
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���������� '� Write mesh equations for the network shown in Fig. 4.37.

+

−
v(t)

i1

L1 L2

L3

i2 i3

R

C

�������


Solution The equivalent circuit in terms of dependent sources is shown in Fig. 4.38.

+

−
v1

+
−

−
+

+
−

+
−

−
+

+
−

L1

R

C

L2 L3

M12
d

dt
M21

d

dt

M23
di3
dt

M31
d

dt

M32
d

dtM13
di3

(i2 − i3) (i1 − i2) (i1 − i2)

(i2 − i3)

dt

i1 i2 i3

�������
�

Applying KVL to Mesh 1,

v t Ri L
d

dt
i i M

d

dt
i i M

di

dt

Ri L
d

dt
i

( ) ( ) ( )

(

� � � � � � �

�

1 1 1 2 12 2 3 13
3

1 1 1

0

�� � � � �i M
d

dt
i i M

di

dt
v t2 12 2 3 13

3
) ( ) ( ) 	(i)

Applying KVL to Mesh 2,

� � � � � � � �M
di

dt
M

d

dt
i i L

d

dt
i i L

d

dt
i i M

d

dt
i13

3
12 2 3 1 2 1 2 2 3 21( ) ( ) ( ) ( 11 2 23

3
0� � �i M

di

dt
)

M
di

dt
M

d

dt
i i L

d

dt
i i L

d

dt
i i M

d

dt
i13

3
12 2 3 1 2 1 2 2 3 21 1� � � � � � �( ) ( ) ( ) ( �� � �i M

di

dt
2 23

3
0) 	(ii)

Applying KVL to Mesh 3,

M
di

dt
M

d

dt
i i L

d

dt
i i L

di

dt
M

d

dt
i i23

3
21 1 2 2 3 2 3

3
31 1 2� � � � � � � �( ) ( ) ( ) MM

d

dt
i i

C
i dt32 2 3 3

1
0( )� � �


� � � � � � � �M
di

dt
M

d

dt
i i L

d

dt
i i L

di

dt
M

d

dt
i i23

3
21 1 2 2 3 2 3

3
31 1 2( ) ( ) ( ) �� � � �
M

d

dt
i i

C
i dt32 2 3 3

1
0( ) …(iii)
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���������� (� Write KVL equations for the network shown in Fig. 4.39.

+

−
v(t)

i1

L1 L2

L3

i2 i3

R

C

�������
�

Solution The equivalent circuit in terms of dependent sources is shown in Fig. 4.40.

+

−
v1

+
−

−
+

+
−

+
−

−
+

+
−

L1

R

C

L2 L3

M12
di2
dt

M21
di1
dt

M23
di3
dt

M31
di1
dt

M32
di2
dtM13

di3
dt

i1

i2 i3

���������

Applying KVL to Loop 1,

v t R i i i L
di

dt
M

di

dt
M

di

dt

R i i i L

( ) ( )

( )

� � � � � � �

� � �

1 2 3 1
1

12
2

13
3

1 2 3 1

0

ddi

dt
M

di

dt
M

di

dt
v t

1
12

2
13

3� � � ( ) 	(i)

Applying KVL to Loop 2,

v t R i i i L
di

dt
M

di

dt
M

di

dt

R i i i L

( ) ( )

( )

� � � � � � �

� � �

1 2 3 2
2

21
1

23
3

1 2 3 2

0

ddi

dt
M

di

dt
M

di

dt
v t

2
21

1
23

3� � � ( )
	(ii)

Applying KVL to Loop 3,

v t R i i i L
di

dt
M

di

dt
M

di

dt C
i dt

R i i

( ) ( )

(

� � � � � � � �

�


1 2 3 3
3

31
1

32
2

3

1

1
0

22 3 3
3

31
1

32
2

3

1
� � � � � �
i L

di

dt
M

di

dt
M

di

dt C
i dt v t) ( ) 	(iii)
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����������!)� In the network shown in Fig. 4.41, find the voltages V
1
 and V

2
.

M = 2 H

v1

i1 = 5e−t A i2 = 10e−t A

+ −
v2

+ −
i3

3 H 5 H

���������

Solution The equivalent circuit in terms of dependent sources is shown in Fig. 4.42.

+ − + −

di3

i3

v1
v2

i1 = 5e−t A i2 = 10e−t A

dt
2

3 H 5 H

di1
dt

2

+ +− −

���������

From Fig. 4.42,

i i i e e et t t
3 1 2 5 10 15� � � � �� � � A

v
di

dt

di

dt

d

dt
e

d

dt
e e e et t t t

1
1 3

3 2 3 5 2 15 15 30 45� � � � � � � � �� � � � �( ) ( ) ttV

v
di

dt

di

dt

d

dt
e

d

dt
e e e et t t t

2
3 1

5 2 5 15 2 5 75 10 85� � � � � � � � �� � � � �( ) ( ) tt V

����������! � In the network shown in Fig. 4.43, find the voltages V
1
 and V

2
.

M = 2 H

2 H 4 H

v1

i1 = 10e−t A i2 = 10e−t A

+ − v2
+ −

i3

��������
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Solution The equivalent circuit in terms of dependent sources is shown in Fig. 4.44.

− + − +

di3

i3

v1

i1 = 10e−t A i2 = 10e−t A

dt
2

2 H 4 H

di1
dt

2

+ +− −

���������

From Fig. 4.44,

i i i e e et t t
3 1 2 10 10 20� � � � �� � � A

v
di

dt

di

dt

d

dt
e

d

dt
e e e et t t t

1
1 3

2 2 2 10 2 20 20 40 20� � � � � � � �� � � � �( ) ( ) ttA

v
di

dt

di

dt

d

dt
e

d

dt
e e e et t t t

2
3 1

4 2 4 20 2 10 80 20 60� � � � � � � � �� � � �( ) ( ) ��t A

����������!!� Calculate the current i
2
(t) in the coupled circuit of Fig. 4.45.

+

−

i1(t) i2(t)

30 sint 0.2 H

0.1 H

0.2 H

���������

Solution The equivalent circuit in terms of dependent sources is shown in Fig. 4.46.

+

−

i1(t) i2(t)

30 sint

−
+

−
+

di1
dt

0.2 H 0.2 H

0.1
di2
dt

0.1

���������

Applying KVL to Mesh 1,

30 0 2 0 1 0
1 2

sin . .t
di

dt

di

dt
� � � 	(i)



4.8����������	���������

Applying KVL to Mesh 2,

� � �

�

0 2 0 1 0

2

2 1

1 2

. .
di

dt

di

dt

di

dt

di

dt
	(ii)

Substituting Eq. (ii) in Eq. (i),

30 0 2 2 0 1 0

0 3 30

2 2

2

sin . .

. sin

t
di

dt

di

dt

di

dt
t

� �
�

�
��

� �

�

di

dt
t

di t dt

2

2

100

100

�

�

sin

sin

Integrating both the sides,

i t t dt

t

t

t

t

2

0

0

100

100

100 1

( ) sin

cos

( cos )

�

� �� �
� �




����������!"�  Find the voltage V
2
 in the circuit shown in Fig. 4.47 such that the current in the 

left-hand loop (Loop 1) is zero.

5�0��V

j2 �

j4 � j3 �

2 � 1 �

�

�

�

�
V2

Loop 1 Loop 2

I1 I2

��������

Solution The equivalent circuit in terms of dependent sources is shown in Fig. 4.48.

�

�

�

�
V2

�
�

�
� j2�I1j2�I2

j3��

2�� 1��

j4��

I1 I2
5�0��V

���������



����	��	��������	
����������	�������
���������
�������

Applying KVL to Loop 1,

5 0 4 2 0

2 4 2 5 0

1 1 2

1 2

� � � �

� � � �

� � �

�

I I I

I I

j j

j j( ) �(i)

Applying KVL to Loop 2,

� � � � �

� � � �

j j

j j

2 3 1 0

2 1 3

1 2 2 2

1 2 2

I I I V

I I V( ) �(ii)

Writing Eqs (i) and (ii) in matrix form,

2 4 2

2 1 3

5 01

2 2

� �
� � �

�

	

�

�
�

	

�

�
�

��

	

�

�
j j

j j( )

I

I V

�

By Cramer’s rule,

I
V

1
2

5 0 2

1 3

2 4 2

2 1 3

�

� �
� �

� �
� � �

� j

j

j j

j j

( )

( )

But I
1
� 0.

�� � � � �

�
� �

� � �

( )( )

( )( )
. .

5 0 1 3 2 0

5 0 1 3

2
7 91 18 43

2

2

�

�
�

j j

j

j

V

V V

����������!�� Determine the ratio 
V

V

2

1

 in the circuit of Fig. 4.49, if I
1
 = 0.

j2 �

j8 � j2 �

8 � 2 �

�

�

�

�

V2
V1

I1 I2

���������

Solution The equivalent circuit in terms of dependent sources is as shown in Fig. 4.50.

�

�

�

�
V1 V2

�
�

�
� j2�I1j2�I2

j2��

8�� 2��

j8��

I1 I2

���������

Applying KVL to Mesh 1,

V I I I

I I V

1 1 1 2

1 2 1

8 8 2 0

8 8 2

� � � �

� � �

j j

j j( ) �(i)
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Putting I
1
� 0 in Eq (i),

j2 2 1I V� �(ii)

Applying KVL to Mesh 2,

V I I I

I I V

2 2 2 1

1 2 2

2 2 2 0

2 2 2

� � � �

� � �

j j

j j( ) �(iii)

Putting I
1
� 0 in Eq (iii),

( )2 2 2 2� �j I V �(iv)

From Eqs (ii) and (iv),

V

V

I

I

2

1

2

2

2 2

2

2 2

2
1 41 45�

�
�

�
� � �

( )
.

j

j

j

j
� V

����������!$� For the coupled circuit shown in Fig. 4.51, find input impedance at terminals A and B.

�

�
V1

j4��

j5�� �j8��

3 �A

B

j3 �

���������

Solution The equivalent circuit in terms of dependent sources is shown in Fig. 4.52.

�

�
V1

����

j3�(I1 ��I2)

j3�I1

j4��

j5��

�j8��

3 �

�
�

A

B

I1 I2

���������

Applying KVL to Mesh 1,

V I I I I I I I

I I V

1 1 1 1 2 1 2 1

1 2 1

3 4 3 5 3 0

3 15 8

� � � � � � � �

� � �

j j j j

j j

( ) ( )

( ) �(i)

Applying KVL to Mesh 2,

j j j

j j

j

j

3 5 8 0

8 3 0

8

3
2 67

1 2 1 2

1 2

2 1 1

I I I I

I I

I I I

� � � �

� �

� � � �

( )

. �(ii)



����	��	��������	
����������	�������
���������
�������

Substituting Eq (ii) in Eq (i),

( ) ( . )

( . )

( . )

3 15 8 2 67

3 36 36

3 36 36

1 1 1

1 1

1

1

� � � �

� �

� � � �

j j

j

ji

I I V

I V

Z
V

I
�� � �36 48 85 28. . �

����������!%� Find equivalent impedance of the network shown in Fig. 4.53.

j2 �2 �

5 �

j3 �j4 �

�j5 �

j4 �
j6 �

Zeq

��������


Solution The equivalent circuit in terms of dependent sources is shown in Fig. 4.54.

�

�
V1

I1 I2

����

�
�

�
�

�
�

j4�(I1 ��I2)

j6�(I1 ��I2)

j4 I1

j6 I2

j2��

j4��

�j5��

j3��

2 �

5 �

���������

Applying KVL to Mesh 1,

V I I I I I I I I I I1 1 1 1 2 1 2 1 1 2 22 2 4 3 4 5 6 0

7 3

� � � � � � � � � � �

�

j j j j j

j

( ) ( ) ( )

( ) II I V1 2 15 5� � �( )j �(i)
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Applying KVL to Mesh 2,

� � � � � � � � � � �
�

j j j j j j

j

6 5 4 3 4 6 5 0

5 5

2 2 1 1 2 1 2 1 2 2I I I I I I I I I I

I

( ) ( ) ( )

( ) 11 2

2 1

5 4

5 5

5 4

� �

�
�
�

�
��

�
	


( )j

j

j

I

I I �(ii)

Substituting Eq. (ii) in Eq. (i),

( ) ( )

( ) (

7 3 5 5
5 5

5 4

7 3
5 5 5 5

1 1 1

1

1

� � �
�
�

�
��

�
	


�

� � � �
� �

j j
j

j

j
j j

i

I I V

Z
V

I

))
. .

5 4
5 63 47 15

�
� � � �

j


����������!&� Find the voltage across the 5 � resistor in Fig. 4.55 using mesh analysis.

�

�
5 �

j5 � j10 �
j5.66 �

I1 I2

3 �

�j4 �

50�0��V

���������

Solution The equivalent circuit in terms of dependent sources is shown in Fig. 4.56.

�

�
5 �

3 �

j5 � j5.66 I2 j5.66 I1j10 �

�j4 �I1 I2

���� ����

50�0��V

���������

Applying KVL to Mesh 1,

50 0 5 5 66 3 4 0

3 1 3 9 66 50

1 2 1 2

1 2

� � � � � � �
� � � � �

 j j j

j j

I I I I

I I

. ( ) ( )

( ) ( . ) 00 �(i)

Applying KVL to Mesh 2,

� � � � � � �
� � � � �

( ) ( ) .

( . ) ( )

3 4 10 5 66 5 0

3 9 66 8 6 0

2 1 2 1 2

1 2

j j j

j j

I I I I I

I I �(ii)



��
�	��	��������	
����������	�������
���������
�������

Writing Eqs (i) and (ii) in matrix form,

3 1 3 9 66

3 9 66 8 6

50 0

0
1

2

� � �
� � �
�
��

�
��
�
��
�
��
� ��
��

�
��

j j

j j

( . )

( . )

I

I



By Cramer’s rule,

I2

3 1 50 0

3 9 66 0

3 1 3 9 66

3 9 66 8 6

3 82�

� �
� �
� � �

� � �

� � �

j

j

j j

j j


( . )

( . )

( . )

. 1112 14.  �

V I5 25 5 3 82 112 14 19 1 112 14�  � � � � � � �( . . ) . . V

����������!'� Find the voltage across the 5 � resistor in Fig. 4.57 using mesh analysis.

�

�
5 �

j5 � j10 �

I1 I2

3 �

�j4 �

50�0��V

k � 0.8

��������

Solution For a magnetically coupled circuit,

X k X XM L L�

�

� �

1 2

0 8 5 10

5 66

. ( ) ( )

.

The equivalent circuit in terms of dependent sources is shown in Fig. 4.58.

�

�
5 �

3 �

j5 � j5.66 I2 j5.66 I1j10 �

�j4 �
I1 I2

���� ����

50�0��V

���������

Applying KVL to Mesh 1,

50 0 5 5 66 3 4 0

3 1 3 1 66 50

1 2 1 2

1 2

� � � � � � �

� � � � �

� j j j

j j

I I I I

I I

. ( ) ( )

( ) ( . ) 00� �(i)
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�

Applying KVL to Mesh 2,

� � � � � � �

� � � � �

( ) ( ) .

( . ) ( )

3 4 10 5 66 5 0

3 1 66 8 6 0

2 1 2 1 2

1 2

j j j

j j

I I I I I

I I �(ii)

Writing Eqs (i) and (ii) in matrix form,

3 1 3 1 66

3 1 66 8 6

50 0

0
1

2

� � �
� � �
�

	

�

�
�

	

�

�
�

��

	

�

�
j j

j j

( . )

( . )

I

I

�

By Cramer’s rule,

I2

3 1 50 0

3 1 66 0

3 1 3 1 66

3 1 66 8 6

8 62�

� �
� �

� � �
� � �

� � �

j

j

j j

j j

�
( . )

( . )

( . )

. 224 79. � �

V I5 25 5 8 62 24 79 43 1 24 79� � � �� � � � � ��( . . ) . .

����������!(� Find the current through the capacitor in Fig. 4.59 using mesh analysis.

j4 �3 �

�

�

I1 I2

50�45��V j5 �
j3 �

�j8 �

���������

Solution The equivalent circuit in terms of dependent sources is shown in Fig. 4.60.

j4 �3 �

�

�

I1

����

50�45��V
�
�

j3�(I1 ��I2)

j3 I1

j5 �

�j8 �

I2

���������

Applying KVL to Mesh 1,

50 45 3 4 3 5 3 0

3 15 8 5

1 1 2 1 2 1

1 2

� � � � � � � � �

� � �

� ( ) ( ) ( )

( )

j j j j

j j

I I I I I I

I I 00 45� � � (i)
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Applying KVL to Mesh 2,

 j j j

j j

3 5 8 0

8 3 0

1 2 1 2

1 2

I I I I
I I

� � � �

� � �

( )   
�(ii)

Writing Eqs (i) and (ii) in matrix form,

 
3 15 8

8 3

50 45

0
1

2

� �
� �

�

��
�

	

�

��
�

	

�

��

��
�

	

j j

j j

I
I

�
 

By Cramer’s rule,

 I2

3 15 50 45

8 0

3 15 8

8 3

3 66 139 72�

� �
�

� �
� �

� �

j

j

j j

j j

�

� . .  

 I IC � � �2 3 66 139 72. . �  

��������	
��� Find the voltage across the 15 � resistor in Fig. 4.61 using mesh analysis.

�

�

120�0��V

I1 I2

20 �

15 �j20 �
j5 �

j10 �

��������	

Solution The equivalent circuit in terms of dependent sources is shown in Fig. 4.62.

�
�

�

�
120�0��V

I1 I2j5�I2

j5�(I1 ��I2)
20 �

15 �

j20 �

j10 �
����

��������


Applying KVL to Mesh 1,

 

120 0 20 20 5 0

20 20 15 120 0

1 1 2 2

1 2

� � � � � �

� � � �

�

�

I I I I
I I

j j

j j

( )

( )   �(i)
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Applying KVL to Mesh 2,

j j j j

j j

5 20 10 5 15 0

15 15 20 0

2 2 1 2 1 2 2

1 2

I I I I I I I

I I

� � � � � � �

� � � �

( ) ( )

( ) � (ii)

Writing Eqs (i) and (ii) in matrix form,

20 20 15

15 15 20

120 0

0
1

2

� �
� �

�

�	



��
�

�	



��
�

��

�	



��
j j

j j

I

I

�

By Cramer’s rule,

I2

20 20 120 0

15 0

20 20 15

15 15 20

2 53 10 12�

� �
�

� �
� �

� �

j

j

j j

j j

�

�. .

V I15 215 15 2 53 10 12 37 95 10 12� � � � � �( . . ) . .� �V

����������" � Find the current through the 6 � resistor in Fig. 4.63 using mesh analysis.

�

�
120�0��V

I1 I2

4 �

6 �

j8 �j3 �

j2 �

��������


Solution The equivalent circuit in terms of dependent sources is shown in Fig. 4.64.

�
� �

�

�

�
200�30��V

I1 I2j2�I2
j2�(I1 ��I2)

4 �

6 �

j8 �
j3 �

���������

Applying KVL to Mesh 1,

120 0 4 3 2 0

4 3 5 120 0

1 1 2 2

1 2

� � � � � �

� � � �

�

�

I I I I

I I

j j

j j

( )

( ) �(i)



��
�	��	��������	
����������	�������
���������
�������

Applying KVL to Mesh 2,

� � � � � � � �

� � � �

j j j j

j j

2 3 8 2 6 0

5 6 15 0

2 2 1 2 1 2 2

1 2

I I I I I I I

I I

( ) ( )

( ) �(ii)

Writing Eqs (i) and (ii) in matrix form,

4 3 5

5 6 15

120 0

0
1

2

� �
� �

�

�	



��
�

�	



��
�

��

�	



��
j j

j j

I

I

�

By Cramer’s rule,

I2

4 3 120 0

5 0

4 3 5

5 6 15

7 68 2 94�

� �
�

� �
� �

� �

j

j

j j

j j

�

�. .

����������"!� Determine the mesh current I
3
 in the network of Fig. 4.65.

�

�
200�30��V

I1 I2

I3

j16��

4 � 7 �

6 �

12 �

�j8 �

j4 �

j5 �

�j4 �

���������

Solution The equivalent circuit in terms of dependent sources is shown in Fig. 4.66.

�
�

�

�
200�30��V

I1 I2

I3

����

j5�I3

j5�(I1 ��I2)
j16��

4 � 7 �

6 �

12 �

�j8 �

j4 �

�j4 �

���������



4.8����������	�������
�

Applying KVL to Mesh 1,

200 30 4 4 5 0

4 4 4 4 5 20

1 3 1 2 3

1 2 3

� � � � � � �

� � � � �

� ( ) ( )

( ) ( )

I I I I I

I I I

j j

j j j 00 30� � �(i)

Applying KVL to Mesh 2,

� � � � � � � � �

� � � �

j j j j

j j

5 4 7 8 6 4 0

4 13 8 7

3 2 1 2 3 2

1 2

I I I I I I

I I

( ) ( ) ( ) ( )

( ) ( �� �j13 03) I �(ii)

Applying KVL to Mesh 3,

� � � � � � � � � �

� � �

j j j

j

16 5 12 7 8 4 0

4 5 7

3 1 2 3 3 2 3 1

1

I I I I I I I I

I

( ) ( ) ( ) ( )

( ) ( �� � � �j j13 23 8 02 3) ( )I I �(iii)

Writing Eqs. (i), (ii) and (iii) in matrix form,

4 4 4 4 5

4 13 8 7 13

4 5 7 13 23 8

� � � �
� � � �

� � � � �

�

�

	
	




�

�
�

j j j

j j j

j j j

( )

( )

( ) ( )

II

I

I

1

2

3

200 30

0

0

�

�

	
	




�

�
�
�

��

�

	
	




�

�
�

�

By Cramer’s rule,

I3

4 4 4 200 30

4 13 8 0

4 5 7 13 0

4 4 4 4 5
�

� � �
� �

� � � �

� � � �
�

j j

j j

j j

j j j

j

�

( ) ( )

( )

44 13 8 7 13

4 5 7 13 23 8

16 28 16 87

� � �
� � � � �

� �

j j

j j j

( )

( ) ( )

. . �

����������""� Obtain the dotted equivalent circuit for the coupled circuit shown in Fig. 4.67 and 

find mesh currents. Also find the voltage across the capacitor.

10��0��V

j5 �j5 �

5 � 5 �

�

�
10��90��V

�

�

j2 �

�j10 �

��������

Solution The currents in the coils are as shown in Fig. 4.68. The corresponding flux due to current in each 

coil is also drawn with the help of right-hand thumb rule.



��
�	��	��������	
����������	�������
���������
�������

10��0�V

j5 �j5 �

5 � 5 �

�

�
10��90�V

�

�

f1I1

I1 I2

I2

f2

j2 �

�j10 �

���������

From Fig. 4.68, it is seen that two fluxes �
1
 and �

2
 aid each other. Hence, dots are placed at the two coils as 

shown in Fig. 4.69.

�

�

�

�

5 � j5 � j5 �

�j10 �

5 �

I1 I2

j2 �

10�0��V 10�90��V

���������

The equivalent circuit in terms of dependent sources is shown in Fig. 4.70.

j5 � j5 �

�j10 �

j2 I2 j2 I15 � 5 �

�

�

I1 I2

���� ����

�

�

� �� �

10�0��V
�

�
10�90��V

��������

Applying KVL to Mesh 1,

10 � � � � � � � �

� � � � �

0 5 5 2 10 0

5 5 8 10 0

1 2 1 2

1 2

( ) ( )

( )

j j j

j j

I I I I

I I �(i)

Applying KVL to Mesh 2,

� � � � � � � �

� � � � �

j j j

j j

10 5 2 5 10 90 0

8 5 5 10 90

2 1 2 1 2

1 2

( )

( )

I I I I I

I I

�

� �(ii)

Writing Eqs. (i) and (ii) in matrix form,

5 5 8

8 5 5

10 0

10 90
1

2

� �
� �

�

�	



��
�

�	



��
�

�
�

�

�	



��
j j

j j

I

I

�
�
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By Cramer’s rule,

I1

10 0 8

10 90 5 5

5 5 8

8 5 5

0 72 82 97�

� �
� �

� �
� �

� � �

�
�

�

j

j

j j

j j

. . A

I2

5 5 10 0

8 10 90

5 5 8

8 5 5

1 71 106 96�

� �
� �

� �
� �

� �

j

j

j j

j j

�
�

�. . A

V I IC j j� � � � � �� � �

� �

10 10 0 72 82 97 1 71 106 96

10 08 24

1 2( ) ( ) ( . . . . )

.

� � 

..03�V

���(������	
���#�*���
��	�+
�#���������
���

For simplifying circuit analysis, it is desirable to replace a magnetically coupled circuit with an equivalent 

circuit called conductively coupled circuit. In this circuit, no magnetic coupling is involved. The dot 

convention is also not needed in the conductively coupled circuit.

Consider a coupled circuit as shown in Fig. 4.71.

+

−

+

−

I1 I2

V1 V2
jwL1

jwM

jwL2

������������������	���

The equivalent circuit in terms of dependent sources is shown in Fig. 4.72.

+

−

+

−

I1 I2

V1 V2

jwL1 jwL2

+
−

+
−

jwM I2 jwM I1

���������#$����������	���

Applying KVL to Mesh 1,

V I I

I I

1 1 1 2

1 1 2

� � �

� �

j L j M

j L j M

� �

� � �(4.11)

Applying KVL to Mesh 2,

V I I

I I V

2 2 2 1

1 2 2 2

0� � �

� �

j L j M

j M j L

� �

� � �(4.12)
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Writing Eqs (4.11) and (4.12) in matrix form,

j L j M

j M j L

� �
� �

1

2

1

2

1

2

�

�	



��
�

�	



��
�
�

�	



��
I

I

V

V
�(4.13)

Consider a T-network as shown in Fig. 4.73.

−
V1

I1
Z1 Z2

Z3

I2

+

−
V2

+

�������
��%�����	�

Applying KVL to Mesh 1,

V Z I Z I I

Z Z I Z I V

1 1 1 3 1 2

1 3 1 3 2 1

0� � � �

� � �

( )

( ) � (4.14)

Applying KVL to Mesh 2,

RTh � � � �[( ) ] .2 12 1 3 1 43� � � (4.15)

Writing Eqs (4.14) and (4.15) in matrix form,

Z Z Z

Z Z Z

I

I

V

V

1 3 3

3 2 3

1

2

1

2

�
�

�

�	



��
�

�	



��
�
�

�	



��

Comparing matrix equations,

Z Z

Z

Z Z

1 3 1

3

2 3 2

� �

�

� �

j L

j M

j L

�

�

�

Solving these equations,

Z

Z

Z

1 1 1

2 2 2

3

� � � �

� � � �

�

j L j M j L M

j L j M j L M

j M

� � �

� � �

�

( )

( )

Hence, the conductively coupled circuit of a magnetically coupled circuit is shown in Fig. 4.74.

−
V1

I1 I2

+

−
V2

+
jwM

jw (L1 −M ) jw (L2 −M )

�������������������
���������$����������	���
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�

����������"�� Find the conductively coupled equivalent circuit for the network shown in Fig. 4.75.

j3 � j5 �

j6 �
j2 �

I1

V1

I2

�

�

2 �

10 �

�j4 �

��������

Solution The current I
1

leaves from the dotted end and I
2

enters from the dotted end. Hence, mutual 

inductance M is negative.

In the conductively coupled equivalent circuit,

Z

Z

1 1

2 2

3 2 1

5 2

� � � � � � �

� � � � � � �

j M j L j M j j j

j M j L j M j j j

� � �

� � �

( 1L )

( )

�

� L 33

2

�

��Z � �j M j�

The conductively coupled equivalent circuit is shown in Fig. 4.76.

�
V1

�
10 �

2 �

j3 �j1 � j6 �

j2 �

�j4 �

I1 I2

��������

����������"$� Draw the conductively coupled equivalent circuit of Fig. 4.77.

�
V1

�
5 �

3 �

j5 �
j6 �

j10 �

�j4 �I1 I2

�������

Solution The current I
1

enters from the dotted end and I
2

leaves from the dotted end. Hence, the mutual 

inductance M is negative.
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In the conductively coupled equivalent circuit,

Z

Z

1 1 1

2 2

5 6 1

10 6

� � � � � � � �

� � � � � �

j L M j L j M j j j

j L M j L j M j j

� � �

� � �

( )

( )

�

� ��

� �

j

j M j

4

63

�

�Z �

The conductively coupled equivalent circuit is shown in Fig. 4.78.

j6 �

5 �
(3 ��j4) �

�j1 � j4 �

I2I1
�

V1

�

��������

����������"%� Find the conductively coupled equivalent circuit of the network in Fig. 4.79.

j1�

j2 �

4 �

�

V1

�

j4 �

2 �

I1

��������

Solution The currents I
1
and I

2
leave from the dotted terminals. Hence, mutual inductance is positive.

In the conductively coupled equivalent circuit,

Z

Z

1 1 1 4 2 6

2 2

� � � � � � �

� � � � � � �

j L M j L j M j j j

j L M j L j M j j j

� � �

� � �

( )

)

�

� ( 2 2 44

2

�

�	Z � 
 � 
j M j�

The conductively coupled equivalent circuit is shown in Fig. 4.80.

�j2 �

(4 ��j2) �

(2 ��j4) �

j6 � j4 �

I2I1
�

V1

�

���������



Exercises

4.1 Two coupled coils have inductances of 0.8 H 

and 0.2 H. The coefficient of coupling is 0.90. 

Find the mutual inductance and the turns ratio 

N

N

1

2

.

[0.36 H, 2]

4.2 Two coils with coefficient of coupling 0.5 are 

connected in such a way that they magnetise 

(i) in the same direction, and (ii) in opposite 

directions. The corresponding equivalent 

inductances are 1.9 H and 0.7 H. Find self-

inductances of the two coils and the mutual 

inductance between them.

[0.4 H, 0.9 H, 0.3 H]

4.3 Two coils having 3000 and 2000 turns are 

wound on a magnetic ring. 60% of the flux 

produced in the first coil links with the 

second coil. A current of 3 A produce a flux 

of 0.5 mwb in the first coil and 0.3 mwb in the 

second coil. Determine the mutual inductance 

and coefficient of coupling.

[0.2 H, 0.63]

4.4 Find the equivalent inductance of the network 

shown in Fig. 4.81.

2 H
3 H 5 H

6 H4 H

7 H

���������

[10 H]

4.5 Find the effective inductance of the network 

shown in Fig. 4.82.

5 H

3 H

2 H

2 H

4 H

���������

[4.8 H]

4.6 Write mesh equations of the network shown 

in Fig. 4.83.

+

− i1

v(t)

R1 L2

L1 R2

R3

L3

i2 i3

��������


v i R L
d

dt
i i M

di

dt
M

di

dt

R i i R i L
di

d

� � � � �

� � �

1 1 1 1 2 12
2

13
3

2 3 2 3 3 3
3

( )

( )
tt

M
d

dt
i i

M
di

dt

� �

� �

�

�

�
�
�
�
�
�
�

�

�

	
	
	
	
	
	
	

13 1 2

23
2

0

( )

4.7 Find the input impedance at terminals AB

of the coupled circuits shown in Fig. 4.84 to 

4.85.

(i)

j3 


j4 
3 


j5 
 �j8 


A

B

���������

(ii)

j2 �

2 � 2 �

j5 � j5 �

A

B

���������

#&�	����������



����	��	��������	
����������	�������
���������
�������

(iii)

j4 


j5 


j8 


�j3 


2 


4 


A

B

���������

(a) (b)

(c)

3 36 3 1 1 5

6 22 4 65

��  �� 
�� 

�

�
�
�

�

�
	
	

j j

j

. .

. .

� � �

� �

4.8 In the coupled circuit shown in Fig. 4.87, find 

V
2

for which I
1

= 0. What voltage appears 

at the 8 � inductive reactance under this 

condition?

100�0�V

j2 �

j8 � j2 �

5 � 2 �

�

�

�

�
V2

��������

[ .141 5 45� � �� �V, 100 0 V]

4.9 For the coupled circuit shown in Fig. 4.88, 

find the components of the current I
2
resulting

from each source V
1
and V

2
.

V1 �
10�0�V

V2 �
10�0�V

j2 �

j4 � j3 �

2 �

I2

�

�

�

�

���������

[ . .0 77 112 6� ��������	 
������

4.10 Find the voltage across the 5 � resistor in the 

network shown in Fig. 4.89.

10�0��V

j1 �

�j3 �

k ��0.5
j2 �

5 �
�

�

���������

[ . . ]19 2 33 02� � �V

4.11 Find the power dissipated in the 5 � resistor 

in the network of Fig. 4.90.

100�0�V

j4 �j2 �
j3 �

2 � 5 �

�

�
3 �

���������

[ .668 16 W]

4.12 Find the current I in the circuit of Fig. 4.91.

100�20��V 70��30��V

�j15 �
j4 �

j10 � j12 �

j3 �14 � 10 �

I

�

�

�

�

���������

[ .7 07 45� � V, 1.

4.13 Obtain a conductively coupled circuit for the 

circuit shown in Fig. 4.92.

3 �100�0�V �j2 �

j4 �j5 �
j3 �

2 �

�

�

���������



3 �
100�0�V

j3 �
�j2 �

�j1 �j2 �2 �

�

�

��������


Objective-Type Questions

Two coils are wound on a common magnetic 4.1

core. The sign of mutual inductance M for 

finding out effective inductance of each coil 

is positive if the 

(a) two coils are wound in the same sense.

(b)  fluxes produced by the two coils are 

equal

(c)  fluxes produced by the coils act in the 

same direction

(d)  fluxes produced by the two coils act in 

opposition

When two coils having self-inductances 4.2

of L
1

and L
2
 are coupled through a mutual 

inductance M, the coefficient of coupling k is 

given by

(a) k
M

L L
�

2 1 2

(b) k
M

L L
�

1 2

(c) k
M

L L
� 2

1 2

(d) k
L L

M
� 1 2

The overall inductance of two coils connected 4.3

in series, with mutual inductance aiding self-

inductance is L
1
; with mutual inductance 

opposing self-inductance, the overall 

inductance is L
2
. The mutual inductance M is 

given by

(a) L
1
��L

2
(b) L

1
	 L

2

(c)
1

4
1 2( )L L	 (d)

1

2
1 2( )L L�

Consider the following statements:4.4

The coefficient of coupling between two oils 

depends upon

1. Orientation of the coils

2. Core material

3. Number of turns on the two coils

4. Self-inductance of the two coils

of these statements,

(a) 1, 2 and 3 are correct

(b) 1 and 2 are correct

(c) 3 and 4 are correct

(d) 1, 2 and 4 are correct

Two coupled coils connected in series have 4.5

an equivalent inductance of 16 mH or 8 mH 

depending on the inter connection.

Then the mutual inductance M between the 

coils is 

(a) 12 mH (b) 8 2 mH

(c) 4 mH (d) 2 mH

Two coupled coils with 4.6 L
1
��L

2
��0.6 H have 

a coupling coefficient of k ��0.8. The turns 

ratio
N

N

1

2

 is

(a) 4 (b) 2

(c) 1 (d) 0.5

The coupling between two magnetically 4.7

coupled coils is said to be ideal if the 

coefficient of coupling is

(a) zero (b) 0.5

(c) 1 (d) 2

The mutual inductance between two coupled 4.8

coils is 10 mH . If the turns in one coil are 

doubled and that in the other are halved then 

the mutual inductance will be

(a) 5 mH (b) 10 mH

(c) 14 mH (d) 20 mH

'(�������%�
���)�����������




����	��	��������	
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���������
�������

Two perfectly coupled coils each of 1 H self-4.9

inductance are connected in parallel so as 

to aid each other. The overall inductance in 

henrys is

(a) 2 (b) 1

(c)
1

2
(d) Zero

The impedance 4.10 Z as shown in Fig. 4.94 is 

j10 �j10 �

j5 � j2 �

j2 �

���������

(a) j 29 
 (b) j9 

(c) j19 
 (d) j39 


Answers to Objective-Type Questions

4.1 (c) 4.2 (b) 4.3 (c)  4.4 (d) 4.5 (d) 4.6 (c)

4.7 (c) 4.8 (b) 4.9 (b) 4.10 (b)
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Solution Nodes 1 and 2 will form a supernode.

Writing the voltage equation for the supernode,

1 2V VV 12 30�V2V � �30 …(i)

Applying KCL to the supernode,

V V V1 2V VV V 2VV

1 2 2
2 60

j j1 2
� �2 � 2 �

( ) ( . ) � �j) () ()) 0 2) � 602)j(((� 5 0j� )) 2. ).j( .(� 0j� )) …(ii)

Writing Eqs (i) and (ii) in matrix form,

1 1

1 0 5 0 5

12 30

2 60
1

2�
�
�
��


�
��
��
��

�
�
��


�
��
��
��

� � �30

� �60

�
�
��


�
��
��
��j j1 0 51 0 5 .055

V1

V2

By Cramer’s rule,

V

V V

2VV

2V

1 12 30

1 2 60

1 1

1 0 5 0 5

18 157 42

18 5

�

� �30

� �1 2 �

�

� �18 55 �

�V2V

j

j j1 0 51 0 5

cVV

.0j55

. .55 157�55

.

 V

55 57� �157 42. V

��!����
)�)�������������

The superposition theorem can be used to analyse an ac network containing more than one source. The 

superposition theorem states that in a network containing more than one voltage source or current source, 

the total current or voltage in any branch of the network is the phasor sum of currents or voltages produced 

in that branch by each source acting separately. As each source is considered, all of the other sources are 

replaced by their internal impedances. This theorem is valid only for linear systems.

����������$��Find the current through the 3 � j4 ohm impedance.

3 �

50�90��V 50�0��V

5 � j5 �

j4 �

�

��

�

���������

Solution

Step I When the 50 �90° V source is acting alone (Fig. 3.18)

ZT

j j

j
� � � �5

3 9j�
6 35 2� 3 2

( )j3 4j� ( )j5
35 2� 3 �

IT �
� �
� �

� �
50 90

6 35� 3 2
7 87 6� 6 8

35 2� 3
87 6� 6 A

3 �
50�90��V

5 � j5 �

j4 �

I�

�

�

��������



3.4�Superposition Theorem����


By current division rule,

� �
�
��
��
��

�
��
��
��
� 	 
I ( . . )	 . . ( )
8. 7 6� 6.

5

3 9�
4 15 8�� 5 3.

j

j

Step II When the 50�0° V source is acting alone (Fig. 3.19)

ZT j
j

� �j � 	5
5

8 4j�
6 74 6� 8 2

( )j�3 4
74 6� 8 

  IT �
� 	
� 	

� � 	
50 0

6 74� 8 2
7 42 6�� 8 2

74 6� 8
42 6� 8 A

By current division rule,

   
I� �

�
��
��
��

�
��
��
��
� � 	 � � 	( . . )	 . . ( )� . .� (4. 2 6�� 8.

5

8 4�
4 15 9��� 4 7. 7 4	 �( )� 15 3

j
A A 

)

Step III By superposition theorem,

        I � I� � I�� � 4.15 �85.3° � 4.15 �85.3° � 8.31 �85.3°A (�)

����������%��Determine the voltage across the (2 + j5) ohm impedance for the network shown in 

Fig. 3.20.

50�0� V 20�30� A

j4 �

j5 �

�j� 3 �

2 �

�

�

���������

Solution

Step I When the 50�0° V source is acting alone (Fig. 3.21)

I �
� 	

� � 	
50 0

2 4� 5
5 42 7� � 7 47

j j�4
2 7� 7 A

Voltage cross (2 � j5) � impedance

     V� �  (2 � j5) (5.42 �− 77.47°) � 29.16 �− 9.28° V

Step II When the 20�30° A source is acting alone (Fig. 3.22)

By current division rule,

I �
�
��
��
��

�
��
��
��
� 	( )� 	 . .

4

2 9�
8 6. 8 4�� 2 5. 3

j

j
A

Voltage across (2 � j5) � impedance

V�� �  (2 � j5) (8.68 �42.53°) � 46.69 �110.72° V

3 �

50�0� V

5 � j5 �

j4 �

I�

�

�

���������

50�0� V

j4 �

j5 �I

�j� 3 �

2 �

�

�

���������

20�30��A

j4 �

j5 �

�j� 3 �

I
2 �

���������
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Step III By superposition theorem,

V � V� � V�� � 29.16 �−9.28° � 46.69 �110.72° � 40.85 �72.53° V

����������&�� Determine the voltage V
AB

  for the network shown in Fig. 3.23.

50�0� V

4�0� A

j5 �

�j� 2 �

5 �

A

B

�

�

���������

Solution

Step I When the 50�0° V source is acting alone (Fig. 3.24)

50�0��V

j5 �

�j� 2 �

5 �

A

B

�

�

���������

VABV
�
� 	 
50 0 V

Step II When the 4�0° A source is acting alone (Fig. 3.25)

4�0� A

j5 �

�j� 2 �

5 �

A

B

��������


VABV
�
� 0

Step III By superposition theorem,

      V V VABV ABV ABV�VABV � 
 	 

� � 5 5
 �0 0		 0 0� 5� 0 V




3.4�Superposition Theorem�����

���������('��Find the current I in the network shown in Fig. 3.26.

13 �25� V 20 ��30� V3 �50� A

j3 � �j� 5 �4 � 2 �I

�

�

�

�

���������

Solution

Step I When the 13�25° V source is acting alone (Fig. 3.27)

13 �25��V

j3 � �j� 5 �4 � 2 �

�

� I

���������

I� �
	 


� 	 

13 5

6 2�
2 0 43 43

j
.	.057 43 ( )�

Step II When the 20�−30° V source is acting alone (Fig. 3.28)

20 ��30� V

j3 � �j� 5 �4 � 2 �

�

�I�

��������

�� �
� � �

� � � � �I
20 30

6 2�
3 16 1�� 1 5 3�7� 16 43

V
A A( )�

j
16 1� 1 ( )�� .�.16 168

Step III When the 3�50° A source is acting alone (Fig. 3.29)

3 �50� A

j3 � �j� 5 �4 � 2 �I���

���������
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By current division rule,

��� � � � � � � � � �I 3 5� 0
2 5�

6 2�
2 56 0� 23 2 56 179 77

j

j
.56 0� ( )� .�56 179  A( )�

Step IV By superposition theorem,

I � I� � I�� � I���   � 2.057 �43.13° � 3.16 �168.43° � 2.56 �−179.77° A � 4.62 �153.99° A (�)

���������(�� Find the current through the j3 �  reactance in the network of Fig. 3.30.

10	60
 V5	30
 V j5 �

j3 �

�j� 5 �

�j� 2 �



�



�

���������

Solution

Step I When the 5�30° V source is acting alone (Fig. 3.31)

5	30
 V j5 �

j3 �

�j� 5 �

�j� 2 �



�

���������

When a short circuit is placed across j15 � reactance, it gets shorted as shown in Fig. 3.32.

5	30
 V

j3 �

�j� 5 �

�j� 2 �



�

I�

���������

I� �
� �

�
� �

5 3� 0

5 3
2 5

j j5�
� �5 120 ( )�



3.4�Superposition Theorem�����

Step II When the 10�60° V source is acting alone (Fig. 3.33)

10	60
 Vj5 �

j3 �

�j� 5 �

�j� 2 �



�

���������

When a short circuit is placed across the −j2 � reactance, it gets shorted as shown in Fig. 3.34

10	60
�Vj5 �

j3 �

�j� 5 �



�

I��

���������

I� �
� �

�
� � � � �� � �

10 60

5 3
5 150 30

j j5�
A ( ) 5� A ( )

Step III By superposition theorem,

I I I�I � � �� � �� �I� 2 5 120 5 3�� 0 3� � 1 6��.� �5 120 5 3� 0 3 . �21 ( )�

���������((� Find the current I
0
 in the network of Fig. 3.35.

10	30
�A

2	0
�A

j4 �

6 �

8 �

�j� 2 �



�

I0

��������


Solution

Step I When the 10�30° V source is acting alone (Fig. 3.36)

Z

I

T

T

j j

j j
� � � � �

�
� �

� �
�

6
4

4 8 2
8 64 2� 4 12

10 30

8 64�
1 16

( )j8 2
.6 2� 4

.64�
. � ���5 8 A�88

10	30
 Vj4 �

6 �

8 �

�j� 2 �



�

I0�
IT

���������
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By current division rule,

I0 1 16 5 88
4

8 2 4
0 56 81 84� � 1 16 � � � 0 56 � �. .6 516 56 8156

j

j j2 �2
( )

Step II When the 2�0° A source is acting alone (Fig. 3.37)

2�0� A

j4 �

6 �

8 �

�j� 2 �

I0��

���������

The network can be redrawn as shown in Fig. 3.38.

2� 0��Aj4 �8 � 6 �

(a)

�j�2 �

I0��

(b)

2� 0��A8 �

(1.85 � j2.77) �

�j�2 �

I0��

��������

By current division rule,

I0 2 0
1 85 2 77

1 85 2 77 8 2
0 6 51 83� 	2 
� 	 �0 67 
 

.285

85
67 5167

j

j j2 77 8�2 77.22
( )

Step III By superposition theorem,

I I I0 0 0 0 56 81 84 0 67 83 1 19 65 46�I0I 	0 56 
 � 
51 83 	1 19 
 � �I� 56 8156 . .67 51� 51 . 9 6519 ( )

���������(�� Find the current through the j5 � branch for the network shown in Fig. 3.39.

j5 � �j� 4 �3 �

10�0��V 15�90� V 20�0� V

�

�

�

�

�

�

���������
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Solution

Step I When the 10�0° V source is acting alone (Fig. 3.40)

j5 � �j� 4 �3 �

10�0��V
�

�

I�

���������

Z

I

T j
j

	 �j 	 
 �

	
� 


� 

	

5
3

3 4j�
4 04 6� 1 66

10 0

4 04� 1 66
2 48 6� � 1

( )j4j�
04 6� 1

04 6� 1
. .8 6� 1� 6666 
 �A ( )

Step II When the 15�90° V source is acting alone (Fig. 3.41)

Z

I

T

T

j j

j j
	 � 	 �� 
 �

	
� 


� � 

	

3
5 4j

20 22 81 47

15 90

20 22 81 47
0

( )j5 ( )j4j
. .� 81

. .�22 81
.. .74 7 7� 
.171 47 A

By current division rule,

  

I� 	� �
�

�
� �	 �0 7 171 47

4

4 5
2 9 8� 53 171.�7 171 .96 8� . (
47 )

j

j j4 �
A ( ) 2 96

Step III When the 20 �0° V source is acting along (Fig. 3.42)

j5 � �j� 4 �3 �

20 �0� V

�

�

I��� IT

���������

Z

I

T

T

j
j

� � � � �� � �

�
� �

� �
�

4
3

3 5j�
3 4 5�� 0 51

20 0

3 47 5�� 0 51
5 76 5� 0

( )j5j
47 5� 0

47 5� 0
.76 5� 0.51.. � A

By current division rule,

I�� � � 	 � � � 
 �� �5 76 5� 0 51
3

3 5�
2 96 8�� 53 17176 5� 0 .96 8� . (�47 )

j
A ( ) 2 96

j5 � j 4 �3 �

15 �90� V

�



I��
IT

���������
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Step IV By superposition theorem,

I I I I�I �I � � �� � � �� �I� �� 2 48 6�� 1 66 2� � 96 7 2 96 171 47 4 8.48 6� 1 .�.96 7 .�96 171 . 686 1�� 6466 41. � A

���������(!� Find the voltage drop across the capacitor for the network shown in Fig. 3.43.

2 �

4 �

2 �

10 �0� V

20 �45� V

j 2 �

� � 



j5 �

���������

Solution

Step I  When the 10�0° V source is acting alone 

(Fig. 3.44)

Z

I

T

T

j j

j j
� �

� � � � �

�
� �

� �
� �

4
2 5j� j 2 2j

7 5�� 91

10 0

7 5� � 91
1 43

( )j2 5j� j ( )j2 2j

.

.
. 5�3 5 955 1� A

By current division rule,

I� � �
�
��
��
��

�
��
��
��
� � �( . . )� . .4. 3 5�

2 5�
2 5� 2 2

1 5. 4 3�� 7 2. 4
j

j j�5 2 �
A ( )

Step II When the 20�45° V source is acting alone (Fig. 3.45)

2 �

4 �

2 �
20 �45� V

j 2 �

� 

j5 �

I��

��������


Z

I

T
j

� �
� �

� � � �

�
� �

�
�

( )j
( )j�

. .

. .

j�
4(

4 2� 5
4 48 8��� 84

20 5

4 4. 8 8� �� 84
�� 4 444 6 3 8.46 53� �53 8453 
A ( ) A4 46 53 84. .46 53�4 46.46 � ( )�

2 �

4 �

2 �

10 �0� V

j 2 �

�



j5 �

I�

���������
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Step III By superposition theorem,

        I I I

V I

�I � � � � � � � �� �I� 1 54 3� 7 24 4� 46 53 84 3 01 117 7854 3� 7 .�. 6 53 .�01 117

( )2 (

A

cVV jI � �) ( 2 322 01 117 78 02 5) ( . .01 117 ) .6 .�� �) � �152 22. V

���������("� Find the node voltage V
2

in the network of Fig. 3.46.

5 �0� V

5 �30� V

10 �0� A 5 � 2 � j10 �

V1 V2

���������

Solution

Step I When the 10 0� �0  A  source is acting alone (Fig. 3.47)

5 �30� V

10 �0��A 5 � 2 � j10 �

V1
� V2

�

���������

Applying KCL at Node 1,

V V V

V V

1 1V VV V 2VV

1 2V VV V

5 5 30
10 0

1

5

1

5 30

1

5 30
10 0

� � �

� �1

�
�

� �30
� �10 �

�
� �30

�
�	
��
��



��



�� �30

� �10 �

( . ) ( . )3. 7 0 ) ( 1 0 10 02) �2 � �0j j. ) (0 ) 1 (0 ) V)( 17 0 2. )0. )0 2)0j( 171 ( .( 17� �
…(i)

Applying KCL at Node 2,

V V V V

VV

2 1V VV V 2 2V VV V

1VV

5 30 2 10
0

1

5 30

1

5 30

1

2

1

10

� � � �

�

� �30
� �2 �

�
� �30 � �30

�
���



��

j

j
22V 0� �

� �( . ) ( . )1. 7 0� ) ( 6 0 02)j j. ) (0 ) 1 ( V)( 67 0 2. )0.j� ( 67 �( .� ( 67� �
…(ii)
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Writing Eqs (i) and (ii) in matrix form,

0 37 0 1 17 0

17 0 0 67 0 2
1

2

37 ( .0 . )1

(0( .0 . )1 017�(0


��

��

�
��
��
��



�
�


��

�j j0 1 17.0 ( .00 1 �
j j0 0 67. )1 .67 �

V1

V2

�

�
��
�
��

����
� � �

��

��

�
��
��
��

10 0

0

By Cramer’s rule,

V2V

0 37 0 1 10 0

17 0 0

0 37 0 1 17 0

17

� �

0 1 10 �
17�

�

. .37 00

(0( .00 . )1

37 (0 . )1

( .0

j

j

j j0 1 170 1 �.0 ( .0

��

� � �

j j0 0 67 0j� 2

8 57 3�� 36

)1 .0j

.57 3� V

Step II When the 5 0� �0  A  source is acting alone (Fig. 3.48)

5 �0��A

5 �30� V

5 � 2 � j10 �

V2
��

��������

V V V

V

V

2 2V VV V 2VV

2V

2VV

5 30 5 2 10
5 0

61 11 5V2V 0

8 2

� �� �

�

�

� �30
� �2 � 5 �

V2VV � �0

� 8

j

( .0 . )93�

. 12�2 1111 93. � V

Step III By superposition theorem,

V V V2 2V V 2V 8 57 3 36 8 2 11 93 16 62�V2V � 8 57 � �3 36 � �8 2 � � � �4 12� � .57 357 .11�2 . .62�4  V

���������(#� Find current through inductor in the network of Fig. 3.49.

2�0��A

8�135� V

2�90� A

�j� 1 �j2 �

� �

2 �

���������

Solution

Step I When the 8 135� �135  V  source is acting alone (Fig. 3.50)

Applying KVL to the mesh,

8 35 2 0

8 135

1
8 45 8 135

� �135 � � � �

� �
� �135

� 8 � �8 � �135

( )1�

( )� (

j)1

j

I2

I  A ��)

8�135��V

�j� 1 �j2 �

� �

2 �

I�

�������
�



3.4�Superposition Theorem����


Step II When the 2 0� �0 A  source is acting alone (Fig. 3.51)

2�0� A

�j� 1 �j2 �

2 �

�������
�

The network can be redrawn as shown in Fig. 3.52.

By current division rule,

�� � �
�

�
�
�	
��
��



��



��

� �
��

�	
��
��



��



��

� � � �I 2 0�
1

1 2
2 0�

1

1
2 180

j

j j1�
j

j
A( )

Step III When the 2 90� �90 A  source is acting alone (Fig. 3.53)

2�90� A

�j� 1 �j2 �

2 �

�������
�

The network can be redrawn as shown in Fig. 3.54.

By current division rule,

��� � �
�

�
�
�	
��
��



��



��

� � � �I 2 9� 0
1

1 2
2 9� � 0 2� 90

j

j j1�
A A� �2�( )��� ( )�

Step III By superposition theorem,

I I I I� � �� ��� � �� � � � ��8 135 2 80 2 9� 0 8� 49 154 47� �� �2 180 � ��8� 49 154 47.�.49 154 A

���������($� Determine the source voltage V
S
  so that the current through 2 �  resistor is zero in 

the network of Fig. 3.55.

20�90��V

3 � 2 � 4 �

�j� 3 �j3 �
�

�

�

�
Vs

�������



2�0� A 2 �

�j� 1 �

j2 �

I��

�������
�

2�90� A2 �

j2 �

�j� 1 �

I���

�������
�
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Solution

Step I When the voltage source V
s
 is acting alone (Fig. 3.56)

3 � 2 � 4 �

�j� 3 �j3 �
�

Vs
I1� I2� I3�

�������
�

Appling KVL to Mesh 1,

V IsV j �3 3I jI 01 j3j�� � �( )I II1I 2

( ) 3 23 �j) 1) sI I33j�1 Vs
� �

…(i)

Appling KVL to Mesh 2,

� j j3 2� 0�3j3( ) ( )�2 3� I j� 3j� 3� � � � �

        � j j�3 2 3 0�3I2��� � �
…(ii)

Appling KVL to Mesh 3,

� �j3 4� 03( )3 2� I
� � �

       j j3 03
� �( )4 3)jj3j4 3j3 …(iii)

Writing Eqs (i), (ii) and (iii) in matrix form,

3 3 3 0

3 2 3

0 3 4 3

0

0

1

2

3

�
�

�

�
��

�
��

��
�

	



��



		





�

�

�

�

�

�
��

�
��

�
��

���

��

�

	



��














		




�
�

�

�
��j j3 �3

j j3 2

j j3 4

s
I

I

I

Vs

��
����

����
�

	



��



		





By Cramer’s rule,

I

V

V
2

3 3 0

3 0 3

0 0 4 3

3 3 3 0

3 2 3

0 3 4 3

� �

�

�

�

j

j j3 0

j

j j3 �3

j j3 2

j j3 4

sV

sV( )9 12j

�

Step II When the 20 �90° V source is acting alone (Fig. 3.57)

3 � 2 � 4 �

�j� 3 �j3 �
�

�I1�� I2�� I3��
20�90��V

�������
�

Applying KVL to Mesh 1,

� �3 3 01 333�� � �j ( )�1 2I I

        ( ) 3 023j) 1) I 33j�1
� �

…(i)



3.5�Thevenin’s Theorem�����

Applying KVL to Mesh 2,

j j3 2� 0�3j3( ) ( )�2 3� I j� 3j� 3� � � � �

      � j j�3 2 3 0�3I2��� � �
…(ii)

Applying KVL to Mesh 3,

j3 4 20 90 03( )3 2 I
� � � � �20 � �

j j3 20 903
� � � �90( )j4 3j3j4 3j3 …(iii)

Writing Eqs (i), (ii) and (iii) in matrix form,

3 3 3 0

3 2 3

0 3 4 3

0

0

20 90

1

2

3

�
�

�

	
��

	
��

		



�

�




�
��

��

�

�

	
��

	
		

	
��

		




�

�




�
��

�
��

�� �
� �20 �

j j3 �3

j j3 2

j j3 4

I

I

I

�

�

�

��

�

	
����

	
��

		



�

�




�
��

��

By Cramer’s rule,

I2

3 3 0 0

3 0 3

0 20 90 4 3

3 3 3 0

3 2 3

0 3 4 3

180 18� �

�
20 � �4

�

�
� �180

j

j j3 0

j

j j3 �3

j j3 2

j j3 4

j 00



Step III By superposition theorem,

I I I2 2 2 0

0

� �I I2I 2 �

�

� � ( )9 12 ( )180 180

( )9 12 ( )180 180

�)12)112 ( 180� �180

�)12)12 ( 180� �180

V

V



( )((

. .

180 180

16 9 8 1. 3�.� 16 97 � �8 13

j) 180�) �

s

V

Vs V

��"�����*���+�������

Thevenin’s theorem gives us a method for simplifying a network. In Thevenin’s theorem, any linear network 

can be replaced by a voltage source V
Th

in series with an impedance Z
Th

.

���������(%��Obtain Thevenin’s equivalent network for the terminals A and B in Fig. 3.58.

3 �

4 �

�j� 4 � �j� 4 �j5

j6 �

�

�

A

B

50�0� V

�������
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Solution

Step I Calculation of V
Th

 (Fig. 3.59)

3 �

4 �

�j� 4 � �j� 4 �j5

j6 �

�
�

�
� I

VTh

A

B

50�0� V

�������
�

Applying KVL to the mesh,

50 �0° − (3 − j4) I − (4 � j6) I � 0

    I � � � � � �50 0
6 87 1�� 5 95

( )3 4� ( )4 6
87 1� 5

�)4 (4 �
 A

V
Th
� (4 � j6) I � (4 � j6) (6.87 �−15.95°) � 49.5 �40.35° V

Step II Calculation of Z
Th

 (Fig. 3.60)

ZTh � � � � �( )
( )( )

( ) ( )
. .

)(

�) (
� � �

� �
4 8. 3 1��� 13 �

3 �

4 �

�j� 4 � �j� 4 �j5

j6 �
ZTh

A

B

���������

Step III Thevenin’s Equivalent Network (Fig. 3.61)

�

�

A

B

4.83 ��1.13� �

49.5 �40.35� V

���������

���������(&��Find Thevenin’s equivalent network for Fig. 3.62.

5 �

5 �3 �

�j� 2 � j5 �
A

B

10 �30� V

�

�

���������



3.5�Thevenin’s Theorem�����

Solution

Step I Calculation of V
Th

 (Fig. 3.63)

5 �

5 �3 �

�j� 2 � j5 �
A

B

I1 I2

10 �30��V
�

�

�
�

VTh

���������

Applying KVL to Mesh 1,

10 �30° − (5 − j2) I
1

− 3(I
 1

− I
2
) � 0

             (8 − j2) I
1

− 3I
2
� 10 �30° …(i)

Applying KVL to Mesh 2,

       −3 (I
2

− I
1
) − j5 I

2
− 5 I

2
� 0

              −3I
1
� (8 � j5) I

2
� 0 …(ii)

Writing Eqs (i) and (ii) in matrix form;

            
3

3 8 5

10 30

0
1

2

�2

� �3 8

�

��
��

��

�

��
��

��

�

��
��

��

�

��
��

��
	


 �30�

��
��

��

�

��
��

��

j

j

I

I

By Cramer’s rule,

I

V I

2

2

8 2 10 30

3 0

8 2 3

3 8 5

0 433 9 7

5 5I2 433 9

	


2 10 �
�

�2

� �3 8

	 
0 433 �

I2 


j

j

j

. 33 9
433

( .0

 A

ThVV .. ) .7 ) 16 9 7.�)) 
 �9 7. V

Step II Calculation of Z
Th

 (Fig. 3.64)

ZTh 	
�

�

��

�


�
�
��

�
�� �

�

�
�
��

��

�

�
�
��

��

	 	

( )

[ . . ] ( .

� 3

5 2� 3
5 5�

9. 4 0� 5] 9.

j
j

j j. �0

�

� 4 444 5

94 4 5

6 94 4 735
3 04 33 4	 	 3 04 �

j

j

j

. )735

( .1 . )735

.494 j
04 3304

�

�

Step III Thevenin’s equivalent Network (Fig. 3.65)

�

�

A

B

3.04 �33.4� �

2.16 �9.7��V

��������


3 � 5 �5 �

�j� 2 � j5 �
A

B

ZTh

���������
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����������'��Obtain Thevenin’s equivalent network for Fig. 3.66.

4 �

2 �

�j� 4 �j6 �

A

B

10 �0� V

5 �90� V

� � �

�

���������

Solution

Step I Calculation of V
Th

4 �

2 �

�j� 4 �Ij6 �

A

B

10 �0� V

5 �90� V

�

�
�

� �

�

�

� VTh

���������

Applying KVL to the mesh,

( ) 5) 90 0�5 � �
                           

I � � � � �5 9� 0

2 2�
1 77 4� 5

j
A

          V
Th
� (−j4) I � 5 �90° − 10 � 0°� (4 �−90°) (1.77 �45°) � 5 �90° − 10 �0° � 18 �146.31° V

Step II Calculation of Z
Th

 (Fig. 3.67)

4 �

2 �

�j� 4 �
j6 �

A

B

ZTh

��������

ZTh � � � � �4
2 2�

11 3 4�� 4 93
( )2 6� ( )4

.3 4� 4
)6 (�
j

�

Step III Thevenin’s Equivalent Network 

�

�

A

B

11.3 ��44.93� �

18 �146.31��V

���������
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������������ Obtain Thevenin’s equivalent network for Fig. 3.70.

2 �

3 � �j� 5 �

j15 �

A

B

10 �0� A

���������

Solution

Step I Calculation of V
Th

 (Fig. 3.71)

By current division rule,

I � � � �( )� � ( )
. .�)� (

5 5� 15
13 42 26 57

j j	5
 A

  V
Th
� (−j5) I

       � (5 �−90°) (13.42 �26.57°) � 67.08 �−63.43° V

Step II Calculation of Z
Th

 (Fig. 3.72)

ZTh � �
� � �( )� ( )

. .
)( 	

j j	
)()(

5 5	 15
7 0. 7 8� �� 1 8. 6 


Step III Thevenin’s Equivalent Network 

�

�

A

B

7.07 ��81.86� �

67.08 ��63.43� V

���������

����������(��Obtain Thevenin’s equivalent network for Fig. 3.74.

21 � 50 �

30 �12 �

j24 � j60 �

A B20 �0� V

�

�

���������

2 �

3 � �j� 5 �

j15 �

A

B

10 �0� A

I

�

�

VTh

���������

2 �

3 � �j� 5 �

j15 �

A

B

ZTh

���������
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Solution

Step I Calculation of V
Th

 (Fig. 3.75)

21 � 50 �

30 �12 �

j24 � j60 �

A B
20 �0� V

�
� �

�

I1 I2

VTh

��������


I1

20 0

21 12 24
0 49 36 02� � �0

	 	12
� 0 49 
 �36 02

j
49 3649  A

I2

20 0

80 60
0 2 36 86� � �0

	
� �0 2 
 �36 86

j
.2 36�2 A

V
Th
� (12 � j24) I

1
− (30 � j60) I

 2

          � (26.83 �63.43°) (0.49 �−36.02°) − (67.08 �63.43°) (0.2 �−36.86°)

� 0.33 �171.12° V

Step II Calculation of Z
Th

 (Fig. 3.76)

21

12 j24

50

30 j60

A B

���������

ZTh � 	
	

	
� �21

33 24

50

80 60
47 4 2� 6 8

( )	12 24 ( )	30 60
. 2� 6

j j
�

Step III Thevenin’s Equivalent Network

�

�

A

B

47.4 �26.8���

0.33 �171.12� V

���������



3.5�Thevenin’s Theorem�����

������������ Find Thevenin’s equivalent network across terminals A and B for Fig. 3.78.

j2 �

5 �1 �

A

B

2�45� A

10�90� V
�

�

��������

Solution

Step I Calculation of V
Th

(Fig. 3.79)

j2 �

5 �1 �

A

B

2�45� A

10�90� V

�

�

�

�

VTh

���������

Applying KCL at the node,

V V

V

ThVV ThVV

ThVV

1 2

10 90

5
2 45

1

1 2

1

5
2 45 2 90

�
� �10 �

� 2 �

�
�
��
��
��

	

�
		




� 2 � � �90

j

j

( . ) .

. .

5. 7 45 ) 7 67 5.

6 4. 9 112 5

�)) � �67 5.

� �6 4. 9 �VThVV V

Step II Calculation of Z
Th

 (Fig. 3.80)

5 �

1 �

j2 �

A

B

ZTh

��������

ZTh � �
� �

5

5 1� 2
1 77 4� 5

( )�1 2

j
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Step III Thevenin’s Equivalent Network (Fig. 3.81)

�

�

A

B

1.77�45� �

6.49 �112.5� V

��������

����������!� Find the current through the ( ) �  impedance in the network of Fig. 3.82.

j2 �

�j� 2 �

5 �

3 � 2 �

5 �

20 �0��V

20 �0� A
�

�

��������

Solution

Step I Calculation of V
Th

 (Fig. 3.83)

�j� 2 �

5 �

3 � 2 �

20 �0��V 20 �0� A

�

�
�

�

A

B

VTh

V1

I2

��������

Applying KCL at the node,

V V

V

1 1V VV V

1VV

20 0

5 2 2
20 0

1

5

1

2 2
20 0 4 0

�20 	



�
� �20 	




��

��

�
��
�
�

� �20 	 � 	0

j

j

0 51 9 05 24 0

47 06 29 05

47 06 29 05

51 29

. .06 29

. .06 29

� 	29 0529 24 	
� �47 06.06 � 	29 05

� �� 	
V

V V�

1

1VV

ThVV 1V

V

 VVV



3.5�Thevenin’s Theorem����


Step II Calculation of Z
Th

 (Fig. 3.84)

�j� 2 �

5 �

3 � 2 �

A

B

ZTh

��������

ZTh � �
�

� � �3
5

5 2� 2
4 79 1�� 1 35

( )�2 2
79 1� 1

j
�

Step III Calculation of I
L
 (Fig. 3.85)

�

�

A

B

4.79��11.35� �

47.06 ��29.05� V
IL j2 �

5 �

�������


IL
j

�
�� �

� �
� � �

47 06 29 05

4 79 1�� 1 35 5� � 2
4 73 3�� 9 96

. .�06 29

79 1� 1
73 3� 9 A

����������"� Find the current through the 5 �  resistor in the network of Fig. 3.86.

5 � 4 � �j� 2 �

j5 �

4 �0	 A6 �0	 A

��������

Solution

Step I Calculation of V
Th

 (Fig. 3.87)

4 � 
 j2 �

j5 �

4 �0� A6 �0��A Vth

V1 V2

� A

B

��������
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Applying KCL at Node 1,

V V V

V

1 1V VV V 2VV

1 2VV

4 5
6 0 0

1

4

1

5

1

5
6 0

�
�

� 6 � �

�
�
�
��


�
��
��
��

�2 �6 �

j

j j
1

5���
V22

( . )2. 5 0 0) 2 6 02 � �00 )j j. )0 ) 1.0 ) 0 2 2.0 21 …(i)

Applying KCL at Node 2,

V V V

V V

2 1V VV V 2V

1 2VVV

5 2
4 0

1

5

1

5

1

2
4 0

� � 4 �

�
�
�
��


�
��
��
��

�


�
���

� 4 �

j j5

j
1

j5���  j

j j0 2 0 3 4 02jV Vj0 3 2j0 3j0 �2Vj0 3 2j0 3j0 � �0 …(ii)

Writing Eqs (i) and (ii) in matrix form,

0 25 0 2 0 2

0 2 0 3

6 0

4 0
1

2

25 .

0

�
��
��
��

�
��
��
��
�
��
��
��

�
��
��
��
� � �6 �

� �0

�
��
��
��

�
��
��
��

j j0 2.0

j j0 22

V1

V2

By Cramer’s rule,

V

V

1VV

6 0 0 2

4 0 0 3

0 25 0 2 0 2

0 2 0 3

20 8 126 87�

�6 �
� �0

� �20 8 � �126 87

j

j

j j0 2

j j0 2

25 0 .

0j2

. .8 126�8 V

ThVV hh V� � �� �V1V 20 8 126 87.�.8 126

Step II Calculation of Z
Th

 (Fig. 3.88)

4 � �j� 2 �

j5 �

A

B

ZTh

�������

ZTh � � � � �4

4 2� 5
2 4 53 13

( )2� 5

)
. .�53

�2

j j�2

Step III Calculation of I
L
 (Fig. 3.89)

IL �
�� �
� ��

� �� �20 8 126 87

2 4 3 5
3 1 143 47

. .�8 126

. .�4 53
.� 143 � �

�

A

B

2.4 �53.13���

20.8 ��126.87� V
IL

5 �

��������
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����������#� In the network of Fig. 3.90, find the current through the 10 � resistor.

5 �

2 �

10 �
1 �

�j� 2 �

10 �0� V

5 �30��V

�
�

�

�

���������

Solution

Step I Calculation of V
Th

 (Fig. 3.91)

Applying KVL to the mesh,

j2 1 10 0 5 0

10 0

1 58 161 57

I1 I

I

I

�I1 � �0 �5I

�I � �0

� �1 58 � �161 57

( )j2 66

.58 161�58 A

Writing V
Th

 equation,

5 10 0 0 0

5 58 161 10 0 5 30 0

I V10 0 5 30 0

V

V

1010 � � �3030 0 �
� � � � �0 �5 �� �

ThVV

ThVV

TVV

( .1 . )57�
hh V� � � �5 32 110 06.�3 110

Step II Calculation of Z
Th

 (Fig. 3.92)

ZTh � �
�

� � �2
5

5 1� 2
3 48 2� � 1 04

( )�1 2
8 2� 1

j
�

Step III Calculation of I
L
 (Fig. 3.93)

�

�

A

B

3.48 ��21.04� �

5.32 ��110.06� V
IL

10 �

���������

IL � �� �
�

� �� �5 32 110 06

3 48 2�� 1 04 1� � 0
0 4 104 67

.�32 110

48 2� 1
.� 104  A

5 �

2 �

1 �

�j� 2 �

10 �0� V

5 �30��V

�
�

�

� �

�

A

B

VTh

I

���������

5 �

2 �

1 �

�j� 2 �

A

B

ZTh

���������
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����������$� Find the current through ( ) �  impedance in the network of Fig. 3.94.

2 � j5 � �j� 5 �
3 �

100�0�V 50�90�V

�

�

�

�
j6 �

4 �

���������

Solution

Step I Calculation of V
Th

 (Fig. 3.95)

2 � j5 � �j� 5 �
3 �

100 �0�V 50 �90�V

�

�

�

�

A

BI

�

�
VTh

��������


Applying KVL to the mesh,

        
100 0 2 5 3 5 50 90 0

22 36 26 57

� �0 2 � 50 �
	 �22 36 � �26 57

I 5� I I5

I

j j5 335 I 

. .36 26�36 A

Writing V
Th

 equation,

          

V I

V

V

ThVV

ThVV

ThVV

� � � 	
� �� � � � 	

	

3 5I 
I 50 90 0

36 26 50 90 0

8

j I

( )3 5� j ( .22 . )�57

0 600 1 82 8861 82 � V

Step II Calculation of Z
Th

 (Fig. 3.96)

2 � j5 � �j� 5 �
3 �

A

B

ZTh

���������

ZTh � � �( )( )
. .

�
2 5� 3 5

6 2. 8 9�� 16
)( �

j j�5 3�
�
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Step III Calculation of I
L
 (Fig. 3.97)

�

�

A

B

6.28�9.16� �

80.61 ��82.88��V
IL j6 �

4 �

���������

IL
j

� � � �
� � �

� � � �80 61 82 88

6 28� 16 4 6j�
6 52 117 34

. .�61 82

.28 9�
.�5 117 A

����������%� Obtain Thevenin’s equivalent network across terminals A and B in Fig. 3.98.

4 �

� j1 �

10 �0	 V




�


�

j2 �I

2 I

A

B

��������

Solution

Step I Calculation of V
Th

 (Fig. 3.99)

Applying KVL to the mesh,

       10 0 4 1 2 0

1 64 9 46

� �0 4 �2

� 1 64 �
I 1� I

I

j

.64 964 A

Writing V
Th

 equation,

10 0 4 0 0

10 0 4 64 9 0

3 69 17

� �0 4

� �0 644 � �
� 3 69 � �17

I V0�
V

V

Th

ThVV

ThVV V

(1( .1 . )46�

Step II Calculation of I
N
 (Fig. 3.100)

From Fig. 3.100,

I I1

Applying KVL to Mesh 1,

         
10 0 4 1 2 0

10 0 4 1 1 2 0

1

1 2 12

� �0 4 �
� �0 4 2

I 11�1 I2

I I I1 1I1�1 1

j

j j111

( )1 2

                      ( ) 1 10 02 10 �j) 1) I 11j�1 …(i)

Applying KVL to Mesh 2,

2I I

I

2 �I2j j

j jI �I j

1 2 0

2 1I 1 0I I �I1 j I 1 2jj 2

( )I II I�I I�

4 �

� j1 �

10 �0	�V



�


�

j2 �I

2 I

A

B




�

VTh

���������

4 �

� j1 �

100 �0�V
I1 I2

�

�
�
�

j2 �

2 I
IN

I A

B

����������
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( ) 1 021j) 1)I 11j11 …(ii)

Writing Eqs (i) and (ii) in matrix form,

6 1 1

2 1 1

10 0

0
1

2

�

��
��

��

�

��
��

��

�

��
��

��

�

��
��

��
�

� 	0�

��
��

��

�

��
��

��

j j1

j j1 
1

I

I

By Cramer’s rule,

I

I I

2

2

6 1 10 0

2 1 0

6 1 1

2 1 1

2 71 102 53

2 71

�

�1 10 	

� �2 71 
 	102 53

�I2 �


j

j

j j1

j j1 
1

N

.7 102�71 A

10211 53. 	 A

Step III Calculation of Z
Th

Z
V

I
Th

ThVV
� �

	

� 
 	
� 	

N

3 69 1� 
 7

2 71 102 53
1 36 8� 5 53

.�71 102
36 8� 5 �

Step IV Thevenin’s Equivalent Network (Fig. 3.101)

�

�
3.69 ��17� V

1.36 �85.53� �
A

B

����������

����������&� Find Thevenin’s equivalent network across terminals A and B for Fig. 3.102.

�

�
5 �0��V

A

B

2 � j4 �

1 �

0.2 Vx

�

�

Vx

����������

Solution

Step I Calculation of V
Th

 (Fig. 3.103)

From Fig. 3.103,

I � �0 2VxV … (i)

Writing V
Th

 equation,

� � �I V� � ��� 0 0�V� xV

�

�
5�0��V

A

B

2 � j4 �

1 �

0.2 Vx

�

�

Vx � VTh

I

����������



3.6�Norton’s Theorem�����

0 2 0 0

6 25 0

6 25 0

V V0

V

V V

x xV V5 0

xV

xV

55 � �
� 6 25 �

�V � �0
V

 VThVV

Step II Calculation of I
N
 (Fig. 3.104)

�

�
5�0� V

A

B

2 � j4 �

1 �

0.2 Vx

�

�

Vx IN

����������

From Fig. 3.104,

VxV � 0

The dependent source depends on the 

controlling variable V
x
. When VxV � 0,  the 

dependent source vanishes, i.e. 0 2 0VxV �  as 

shown in Fig. 3.105.

IN
j

� � �
� �

� � �5 0�
1 2� 4

1 5�� 3 13 A

Step III Calculation of Z
Th

Z
V

I
Th

ThVV� � � �
�
� � �

N

6 25 0�
1 5�� 3 13

6 2 5� 3 1325 5� 3 �

Step IV Thevenin’s Equivalent Network (Fig. 3.106)

6.25�0��V

A

B

6.25 �53.13� �

�

�

����������

��#���������+�������

Norton’s theorem states that any linear network can be replaced by a current source I
N
 parallel with 

an impedance Z
N

where I
N

is the current flowing through the short-circuited path placed across the 

terminals.

�

�
5�0� V

A

B

2 � j4 �

1 �

IN

���������
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���������!'��Obtain Norton’s equivalent network between terminals A and B as shown in Fig. 3.107.

A

B

�j5 �

4 �

j4 �3 �

25�0� V

�

�

����������

Solution

Step I Calculation of I
N

(Fig. 3.108) 

When a short circuit is placed across (4 − j4)� impedance, 

it gets shorted as shown in Fig. 3.109.

����

�
25�0��V

A

B

3 � j4 �

IN

����������

IN
j

� � 	 � �
 	25 0

3 4j�
5 5�
 3 13 A

Step II Calculation of Z
N
 (Fig. 3.110)

ZN

j j

j j
� � 	( )j ( )j

. .
j� j j

3 4j� j 4 5j
4 5. 3 9�� 92 �

Step III Norton’s Equivalent Network

4.53�9.92� �5��53.13� A

A

B

����������

���������!�� Obtain Norton’s equivalent network at the terminals A and B in Fig. 3.112.

j4 �j2 �

4 �1 �

5 �
A

B

10�30� A

����������

j4 �3 �

25�0��V
4 �

�j5 �

A

B

IN

�

�

���������

A

B

�j5 �

4 �

j4 �3 �

ZN

����������



3.6�Norton’s Theorem�����

Solution

Step I Calculation of I
N
 (Fig. 3.113)

j4 �j2 �

4 �1 �

5 � A

B

10�30��A IN

����������

By series-parallel reduction technique (Fig. 3.114)

5 � A

B

10�30� A 1.62�58.24� � IN

����������

IN � � �� � � �
� �

�
��
��
��

	

�
		



� �10 30

1 62� 8 24

1 62� 8 24 5� �
2 69 7� 5

62 5� 8

62 5� 8
A

Step II Calculation of Z
N
 (Fig. 3.115)

j4 

4 

j2 

1 

5 
A

B

ZN

���������


ZN

j j

j j
� � � �5

1 2j� j 4 4j
6 01 1� 3 24

( )j1 2j� j ( )j4 4j
0 1� 3 �
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Step III Norton’s Equivalent Network (Fig. 3.116)

A

B

2.69�75� A 6.01�13.24� �

����������

���������!(� Find Norton’s equivalent network across terminals A and B in Fig. 3.117.

j4 � 10 �

3 �

A

B

4�45� A

25�90� V
�

�

����������

Solution

Step I Calculation of I
N
 (Fig. 3.118)

j4 � 10 �

3 �

A

B

4�45� A

25�90� V
�

�
IN

���������

When a short circuit is placed across the ( ) �  impedance, it gets shorted as shown in Fig. 3.119.

10 �

A

B

4�45��A

25�90��V
�

�
IN

����������



3.6�Norton’s Theorem����


By source transformation, the network is redrawn as shown in Fig. 3.120.

10 �

A

B

4�45� A IN2.5�90��A

A

B

4�45� A IN2.5�90� A

(a) (b)

����������

IN � �4 4� 5 2� 9� 6�0 2 04� �2� 5 9� 0 ���� �.5 9� 6�0 2 A

Step II Calculation of Z
N
 (Fig. 3.121)

j4 	

10 	

3 	

A

B

ZN

�����������

ZN
j

�
�

� �
10

10 3 4j�
3 68 3� 6 03

( )j3 4j�
68 3� 6 


Step III Norton’s Equivalent Network (Fig. 3.122)

A

B

6.03�62.04� A 3.68�36.03���

����������

���������!�� Obtain the Norton’s equivalent network for Fig. 3.123.

j2 � �j� 5 �

j5 �

5 �

A

B

10 �0� A j3 �

����������
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Solution

Step I Calculation of I
N
 (Fig. 3.124)

j2 � �j� 5 �

5 �

A

B

10 �0��A j3 �

j5 �

IN

����������

By source transformation, the network can be redrawn as shown in Fig. 3.125.

Writing KVL equations in matrix form,

5 5

5 0

50 0

0
1

2

j

j

�

��
��

��

	


�
		





�

��
��

��

	


�
		




�

 �0�

��
��

��

	


�
		





I

I

By Cramer’s rule,

I

I I

2

2

5 50 0

5 0

5 5

5 0

10 90

10 90

�

 �0

� 10 � �90

�I2 � �

j

j

j

N

A

A

Step II Calculation of Z
N
 (Fig. 3.126)

j2 � �j� 5 �

5 � j3 �
j5 �

ZN

����������

ZN j
j j

j j
� �j �5

5 5 5j j� j
5

( )j5 5j� j ( )j5 �

Step III Norton’s Equivalent Network (Fig. 3.127)

5 �10��90��A

A

B

����������

j2 �
�j� 5 �

5 �
A

B

j3 �
j5 �

IN
I2

I1

50�0� V

�

�

���������
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���������!!� Obtain the Norton’s equivalent network for Fig. 3.128.

10 � 5 �

10 �

�j� 2 �

5 �

j2 �

A B
10 �45��V

�

�

���������

Solution

Step I Calculation of I
N
 (Fig. 3.129)

Writing KVL equations in matrix form,

15 2 10 2 5

10 2 15 2 0

5 0 15 2

101

2

3

� �2

� �10

� �5 0 15

	




�
		

�




��
�



�
��

�


��
	




�
		

�




��
�



�
��

�


�� �
j j2 102

j j2 15

j

I

I

I

� ���	




�
		

�




��
�



�
��

�


��
5

0

0

By Cramer’s rule,

I2

15 2 10 45 5

10 2 0 0

5 0 15 2

15 2 10 2 5

10 2 15 2 0

�

� 2 10 �
� �10

� �5 0 15

� �2

� �10

�

j

j

j

j j2 102

j j2 15

5 055 15 2

1 41 28

�

� 1 �

j

. A

I3

15 2 10 2 10 45

10 2 15 2 0

5 0 0

15 2 10 2 5

10 2 15

�

� �2 10 �
� �10

�

� �2

� �10 �

j j2 102

j j2 15

j j2 102

j jj

j

2 0

5 0 15 2

0 49 37 41

� �5 0 15

� 0 49 �49 3749 A

I I IN �I � � � � � �3 2I� 0 49 3� 7 41 1� 41 28 0 51 13549 3� 7 .28 0 A

Step II Calculation of Z
N
 (Fig. 3.130)

10 � 5 �

10 �

�j� 2 �

5 �

j2 �

A B
ZN

5 � 10 � j2 �

� j2 �10 � 5 �

A B

(a) (b)

����������

10 � 5 �

10 �

�j� 2 �

5 �

j2 �

A B
10 �45��V

�

�

I2

I3
IN

I1

����������
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ZN
j j

� � �5

5 1� 0 2j	
5

5 1� 0 2j�
6 72

( )j10 2j	 ( )j10 2j� 


Step III Norton’s Equivalent Network (Fig. 3.131)

A

B

0.51��135� A 6.72 �

����������

���������!"� Find the current through the 8 � resistor in the Network of Fig. 3.132.

j4 �

10 �
8 �

20 �0� V 5 �0� A

5 �

�

�

����������

Solution

Step I Calculation of I
N
 (Fig. 3.133)

j4 �

10 �

5 �

A

B

IN 5 �0� A20 �0��V
�

�

����������

When a short circuit is placed across the ( ) �  impedance, it gets shorted as shown in Fig. 3.134.

5 �

A

B

IN 5 �0� A20 �0��V
�

�

����������



3.6�Norton’s Theorem�����

By source transformation, the network is redrawn as shown in Fig. 3.135.

5 �

A

B

IN 5�0��A4�0� A

���������


IN � �� � � � �4 0� 5 0� 9 0�  A

Step II Calculation of Z
N
 (Fig. 3.136)

j4 �

10 �

5 �

A

B

ZN

����������

ZN
j

� � �5

5 1� 0 4j�
3 47 6� 87

( )j10 4j�
.47 6� �

Step III Calculation of I
L
 (Fig. 3.137)

IL � � �
� ��

� � �9 0�
3 47� 87 8

0 79 2�� 08
.47 6�

.79 2� A

���������!#� Obtain Norton’s equivalent network across the terminals A and B in Fig. 3.138.

A

B

10 �0�V j 10j �

−j− 5 �

5I

100 �

�

�

I

���������

9 �0�A 3.47 �6.87 �

A

B

8 �

IL

����������
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Solution

Step I Calculation of V
Th

 (Fig. 3.139)

A

B

10�0�V j10�� VTh

I −j− 5 �

5I

100 �

�

� � �

�

�

�

�

����������

I �
�

�
� ��

10 0

100 10
0 1 5 71

�
�

j
�1 5 A

Writing V
Th

equation,

10 0 0

10 0 100 1 5

�0

� �0 ��

� �� �

1 5�� 100

Vj

( .00 . )71�71 ( )5j ( )5 ( .0

)(5 ) ThV

1 511 0

3 5 85 1

� �

� �3 5

. )71

.5 85�5 V�

V

V

ThV

ThVV

Step II Calculation of I
N
 (Fig. 3.140)

A

B

10�0��V j10 �

I

IN

−j− 5 �

5I

100��

�

� �

�

����������

By source transformation, the network is redrawn as shown in Fig. 3.141.

A

B

10�0�V j10 �

I

IN

−j− 5�� −j− 25 I
100��

�

� �

� I2I1

����������

From Fig. 3.141,

I � I
1

…(i)
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�

Applying KVL to Mesh 1,

10 0 100 10 0

10 10 0

1 0

210

� �0 �

� �10

�

�

I 101 1010

I I1010

j

j j1I �1

( )1 2�1I I

( )100 10� j10j1010 …(ii)

Applying KVL to Mesh 2,

�

� �

j j� j

j j j j

j j

10 5 2j 5 0�

10 10 5 25 0�

35

2

1j 0 1jj 5

2j5

( )� 2� j 5

I Ij� 10j� 10 2j� 52j� 5

I Ij5j� 5 �� 0

…(iii)Writing Eqs (ii) and (iii) in matrix form,

100 10 10

35 5

10 0

0
1

2

��

��
��

��

	


�
		





�

��
��

��

	


�
		




�

��

��
��

��

	


�
		





j j10 �10

j j35 �
I

I

�

By Cramer’s rule,

I2

100 10 10 0

35 0

100 10 10

35 5

0 6 30 96�

� �10 10

�
� �0 6

j

j

j j10 �10

j j35 �

�

�.6 30�6 A

I IN �I �2 0 6 30 96.�6 30 � �

Step III Calculation of Z
N

Z
V

I
N

N

� �
�

�
�ThVV 3 5 85 1

0 6 30 96
5 83 5� 4 14

.�5 85

.�6 30
.83 5� 4

�

�
� 

Step IV Norton’s Equivalent Network (Fig. 3.142)

A

B

0.6�30.96� A 5.83�54.14� �

����������

���$�����,��
��)�-�������.�������

This theorem is used to determine the value of load impedance for which 

the source will transfer maximum power.

Consider a simple network as shown in Fig. 3.143.

There are three possible cases for load impedance Z
L
.

+

−
ZL

Vs

Zs

����������
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Case (i) When the load impedance is variable resistance (Fig. 3.144)

I

I

L
L

� �

�

V V

V

s

L

s

The power delivered to the load is

P
s L

s

�
V

2

For power to be maximum,

dP

dRL

s

0

2

2
V

{(

s

R

R L
2

0

0	 �

R X 2�

Hence, load resistance R
L
 should be equal to the magnitude of the source impedance for maximum 

power transfer.

Case (ii)  When the load impedance is a complex impedance with 

variable resistance and variable reactance (Fig. 3.145)

I

I

L
s

L
s

�

�
�

V

V

The power delivered to the load is

P RL L
S L

2
V

For maximum value of P
L
, denominator of the equation should be small, ie. .

P
S L

�
V

2

2( )

+

L

L = RL

ZS = RS + jXS

Vs

��������������	
���	����	�
���

+

−

S = RS + jXS

L = RL + jXLVs

���������
������
	�����	����	�
���
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�

Differentiating the above equation w.r.t. R
L
 and equating to zero,

dP R

L
s

L

�
	�

�

�

�
�

	

V
2

2

2
0

2

Rs L�

( )

(

R 	

�

2 2 0

0

Hence, load resistance R
L
 should be equal to source resistance R

L
 and load reactance X

L

should be equal to negative value of source reactance for maximum power transfer.

ss�


i.e. load impedance should be a complex conjugate of the source impedance.

Case (iii)  When the load impedance is a complex impedance with variable resistance and fixed reactance 

(Fig. 3.146)

I
V

I
V

L
s

L
s

The power delivered to the load is

P
s L

�
V

2

For maximum power,

dP

R

L

s

	

0

22
V

Rs L�

{( �
0

2 0

�
�

	

� �R

R 2

0

0

�

R

X L

2�

�

�

�

� �

( )

L

L

+

S = RS + jXS

ZL = RL + jXLVs

���������������
	�����	����	�
���
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Hence, load resistance R
L
 should be equal to the magnitude of the impedance s LjX L� , i.e.

Zs LjX L�  for maximum power transfer.

���������!$� For maximum power transfer, find the value of Z
L

in the network of Fig. 3.147 if 

(i) Z
L

is an impedance, and (ii) Z
L

is pure resistance.

Vs ZL

6 � �j� 8 �



�

����������

Solution   Zs � ( )jj	 �

(i) If Z
L

is an impedance

For maximum power transfer, Z ZL sZ �ZZ
* ( )jj� �

(ii) If Z
L
 is a resistance

For maximum power transfer, Z ZL SZ j�ZSZ �6 8j� j 10 �

���������!%� For the maximum power transfer, find the value of Z
L
 in the network of Fig. 3.148 

for the following cases:

(i) Z
L

is variable resistance, (ii) Z
L

is complex impedance, with variable resistance and variable reactance, 

and (iii) Z
L

is complex impedance with variable resistance and fixed reactance of j5 �.

j5 �

3 �2 �

A

B

5�0� V
10 A

���������

Solution Thevenin’s impedance can be calculated by replacing voltage source by a short circuit and current 

source by an open circuit.

j5 �

3 �

2 �

A

B

ZTh

����������
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ZTh �
�

� �3

3 2� 5
1 0

( )�2 5
( .2 . )9

j
j �

For maximum power transfer, value of Z
L

will be,

(i) Z
L

is variable resistance

Z ZL j�Z �� jTh 2 1 0 9 2 28. j� j1 0 . �

(ii) Z
L

is complex impedance with variable resistance and variable reactance

Z ZL j�Z �Th
* ( . . )1. 0. �

(iii) Z
L

is complex impedance with variable resistance and fixed reactance of j5 �

Z ZL j j j�Z �Th 5 2 1 0j 9 5j� j 6 26.0j �

���������!&��Find the impedance Z
L
 so that maximum power can be transferred to it in the net-

work of Fig. 3.150. Find maximum power.

3 � 3 �

� j3 �j3 �5�0	 V



�
ZL

��������
�

Solution

Step I Calculation of V
Th

 (Fig. 3.151)

� j3 �j3 �

3 � 3 �

5�0	�V






�

�

IT

VTh

I
A

��������
�

Z

I

T

T

j j

j j
� � � �

� � �
� �

� �

3
3

3 3 3j j� j
6 71 2� 6 57

5 0�
6 71� 6 57

0 75

( )j3 3
7 2� 6

71� 6

�

� ��� 26 57.  A

By current division rule,

� � � � �

�

0 75 2�� 6 57
3

3 3 3�
0 75 6� 3 4375 2� 6 75 6� 3

( )� 3 (

A

Th

I

VT

j

j j3�
0 700 5 3 43 24 26 5775 63 ) .2 .� �63 4363 �24.2 � �26 57  V
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Step II Calculation of Z
Th

 (Fig. 3.152)

Z
Th
� [(3 || j3) � 3] || (−j3)

� 3 �−53.12° �

� (1.8 − j2.4) �

Step III Calculation of Z
L

For maximum power transfer, the load impedance 

should be a complex conjugate of the source impedance.

Z
L
� (1.8 � j2.4) �

Step IV Calculation of P
max

 (Fig. 3.153)




�

(1.8 � j2.4) �

(1.8 
 j2.4) �2.24 ��26.57	 V

A

B

��������
�

P
RLR

maPP x W� � �| |Th | . |

.

T
2 2| |

4

2. 4

4 1 8
0 7.

���������"'��Find the value of Z
L
 for maximum power transfer in the network shown and find 

maximum power.

j10 �

�j� 20 �

5 �

7 �

100�0	 V


 � ZL

��������
�

Solution

Step I Calculation of V
Th

 (Fig. 3.155)

I

I

1

2

100 0

5 10
8 94 63 43

100 0

7 20
4 72 70 7

� � �0 � 8 94 � �63 43

� � �0 � 4 72 �

j

j

94 6394

72 7072

 A

A

� j3 �j3 �

3 � 3 �
A

B

��������
�

j10 � �j� 20 �

5 � 7 �

100�0� V
�

� �
�

I2

A B

I1

VTh

��������
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�

V V VThVV V � � �A BV V�V j j�( . . )	 ( )j ( )	 ( )j . .9. 4 6� � 3. )	 ( j �) ( 2 70 		 j� 7�) 1 7. 6 9�� 7 3.33	 V

Step II Calculation of Z
Th

 (Fig. 3.156)

j10 � �j� 20 �

5 � 7 �

A B

��������
�

ZTh � � � � �
� �

� �� �5

5 1� 0

7

7 2� 0

50 90

11 18 3

140 90

21

( )10 ( )2� 0

. .�18 63j j .. .
( . . )

19 70 7
23 0.

�� �
�� ( 23 j �

Step III  For maximum power transfer, the load impedance should be complex conjugate of the source 

impedance.

Z
L
� (10.23 � j0.18) �

Step IV Calculation of P
max

 (Fig. 3.157)

�

�

(10.23 � j0.18)��

(10.23 � j0.18)��71.76 �97.3� V

A

B

��������
�

P
RLR

maPP x  W� � �| |Th | . |
.

T
2 2| |

4

76

4 1� 0 2. 3
125 84

���������"���Find the value of load impedance Z
L
 so that maximum power can be transferred to 

it in the network of Fig. 3.158. Find maximum power.

�

�
j10 �

3 �

2 �

50�45� V ZL

��������
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Solution

Step I Calculation of V
Th

 (Fig. 3.159)

� ���

��
j10 �

3 �

2 �

50�45� V VThTT

I

AAA

BB

��������
�

I

V

� 	 

�

� � 


	�

50 5

3 2� 10
4 47 1	� 8 43

I 47

j

j jI�

. 7 1	 8

( )2 10j ( )2 10j�2 ( .4

A

ThVV 1811 45 6 0 26. )43 .6 60�) 	 
60 2660  V

Step II Calculation of Z
Th

 (Fig. 3.160)

j10 �

3 �

2 �

ZThTT
A

B

����������

ZTh � �
�3

3 2� 10
64 0�( )�2 10

( .2 . )72
j

j 

Step III Calculation of Z
L

For maximum power transfer, the load impedance should be complex conjugate of the source 

impedance.

Z
L
� (2.64 − j0.72) �

Step IV Calculation of P
max

 (Fig. 3.161)

�

�

(2.64 ��j0.72) �

(2.64 � j0.72)��45.6 �60.26� V

A

B

����������

P
RLR

maPP x W� � �| |Th | . |

.
.

T
2 2| |

4

6

4 2� 64
196 91
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���������"(��Determine the load Z
L
 required to be connected in the network of Fig. 3.162 for 

maximum power transfer. Determine the maximum power drawn.

j1 �

2 � 4 �4�0� A ZL

����������

Solution

Step I Calculation of V
Th

 (Fig. 3.163)

j1 �

2 � 4 �4�0� A

I1 I2
A

B

VTh

�

�

����������

I

V I

2

2

4 0
2

6 1
1 31 9 46

4 4I2 315 9 5 26

� 4 � � � �1 315 � �9 46

I2 �� ��

j
.3 5 9�315

( .1 . )46� .

A

ThVV 9 499 6� V

Step II Calculation of Z
Th

 (Fig. 3.164) 

ZTh �
� �

� � �
4

4 2� 1
1 47 1� 7 1 41 0�

( )�2 1
. 7 1� 7 ( .1 . )43

j
j �

Step III Calculation of Z
L

For maximum power transfer, the load impedance 

should be the complex conjugate of the source impedance.

Z
L
� (1.41 − j0.43) �

Step IV Calculation of P
max

 (Fig. 3.165)

�

	

(1.41 �
j0.43) �

(1.41 	 j0.43) �5.26 �	9.46
V

A

B

���������


P
RLR

maPP x W� � �
| |Th | . |

.

T
2 2| |

4

2. 6

4 1� 41
4 9. 1

j1 �

2 � 4 �

A

B

ZTh

����������
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������� ��"�� In the network shown in Fig. 3.166, find the value of Z
L  

for which the power 

transferred will be maximum. Also find maximum power.

5�60� � 10��30� �

10�0�V 5�90�VZL

�

�

�

�

����������

Solution

Step I Calculation of V
Th

(Fig. 3.167)

5�60� � 10��30� �

A
VTh

B

I

10�0�V 5�90�V
�

�

��

� �

����������

Applying KVL to the mesh,

10 0 60 90

26 11 18 3 4

�0

�� �11 18 �

� �� � � � � �

�����

) )) )� � �3030

. (57 �� . 8 3�18

30

3 033�)

AI � �1 2�� 3 14�

Writing V
Th

equation,

10 0 60 0

10 0 60 1 23 0

6 71

�0

�0 � � � �

�

� �� ��

� �� �

V

V

V

ThV

ThVV

ThVV

) ( . )14�

� ��� 26 56. � V

Step II Calculation of Z
Th

 (Fig. 3.168)

5�60� � 10��30� �

A
ZTh

B

���������

ZTh � � �
(

. . ( . .
5 6� 0 3

5 6� 0 3�� 0
4 47 3�� 3 4. 3 � ( 73 2 4. 6

����� �3�� 0 �

� � �
� � j )) �
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Step III Calculation of Z
L

For maximum power transfer, the load impedance should be the complex conjugate of the source 

impedance.

Z ZL j�ZTh
* ( . . )7. 3 2j� �

Step IV Calculation of P
max

 (Fig. 3.169)

A

B

�

�
6.71 � �26.56�V (3.73�j2.46) �

(3.73�j2.46) �

����������

P
RLR

maPP x

( . )
� � �

VThVV
W

2 2

4

7. 1

4
3 0. 2

� ����

���������"!� In the network shown in Fig. 3.170, find the value of Z
L

so that power transfer from 

the source is maximum. Also find maximum power.

j9 �

j9 �j9 �

ZL 8 �

10�0�V
�

�

����������

Solution

Step I Calculation of V
Th

 (Fig. 3.171)

Applying Star-delta transformation (Fig. 3.172)

Z Z Z1 2Z 3
9 9 9

3�Z2Z � �( )9 ( )9)9 (

j j j9 99
j �

V
Th
�Voltage drop across (8 + j3)� impedence

� � �( ) . .� 10 0

8 3� 3
8 5. 4 1��� 6 3. 1

j j�3

� � V

A

B

VTh

j9 �

j9 �j9 �

8 �
�

	

10
0�V

����������
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A

B

VTh
8 �

�
	

Z3

Z1

Z2
10
0�V

����������

Step II Calculation of Z
Th

 (Fig. 3.173)

j3 �

j3 �

j3 �

8 �

ZTh

����������

ZTh � � � � � �j
j j

j j�
j3

3

3 8� 3
5 51 8� 2 49 � � 72 5

( )j�8 3

)
.51 8� 2 ( .0 . )46�

Step III Calculation of Z
L

For maximum power transfer, the load impedance should be the complex conjugate of the source 

impedance.

Z ZL j�Z � �
Th ( . . )7. 2 5j� j

Step IV Calculation of P
max

 (Fig. 3.174)

A

B

�

�
8.54��16.31�V (0.72 � j5.46) �

(0.72 � j5.46) �

����������

P
RLR

maPP x

( . )

.
.� � �

VThVV
W

2 2

4

5. 4

4 0� 72
25 32
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���������""� For the network shown in Fig. 3.175, find the value of Z
L
 that will transfer maximum 

power from the source. Also find maximum power.

j10 �4 �

5Vx

Vx
ZL

100�0�V
�

�

�

�

�

�

���������


Solution

Step I Calculation of V
Th

 (Fig. 3.176)

From Fig. 3.176,

V IxV 4

Applying KVL to the mesh,

             

100 0 4 10 5 0

100 0 5 0

100 0

24 10

�0 	

�0 �

�
�



�

�

�

�

I I10	 10 V

I 5	

I

j

j

xV

( )4 10
 10j ( )4I4

3 833 5 22 6285 22 � �

Writing V
Th

 equation,

100 0 4 0

100 0 4 85 22 0

86 3 95

� 0 �

�0

� �86

�

85 22� 4

�

I V	

V

V

ThV

ThV

ThVV V

( .33 . )62�62

Step II Calculation of I
N
 (Fig. 3.177)

From Fig. 3.177,

        V IxV 4 1

Applying KVL to Mesh 1,

        
100 0 0

25
1

1

�0

�

� 

I A

Applying KVL to Mesh 2,

	

	 �

	 	 �

� �

	

j

j

j

x

N

10 5 0�x

10 0

10 5 0

50 90

2

2 5

2

2

1

I V	 x5 x2

I 52 	 5

I

I

I I�N

( )4 1I44

( )100

�A

II2 25 50 90 63 43� 	25 � �90 	� ���� ��.

Step III Calculation of Z
Th

Z
V

I
Th

ThVV
� �

�
� � 
 �

N

j
86 3 95

55 9 6�	 3 43
1 54 6� 7 38 � � 59

.9 6� 3
54 6� 7 ( .0 . )

�

�
�

j10 �

5Vx

Vx4 � �

�
VTh

A

B
I

�

�

�

�

100 � 0�V
�
�

����������

j10 �4 �

5Vx

Vx
IN

A

B
100�0�V

�
�

�

�

�

�
I2I1

����������
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Step IV Calculation of Z
L

For maximum power transfer,  Z ZL j�Z � ��
Th ( . . )5. 9 1j� j

Step V Calculation of P
max

 (Fig. 3.178)

A

B

�

�
86�3.95�V (0.59 � j1.42) 	

(0.59 � j1.42) 	

���������

P
RLR

maPP x

( )

.
.� � �

VThVV
W

2 2

4 4 0� 59
3133 9

���%������)������������

The Reciprocity theorem states that ‘In a linear, bilateral, active, single-source network, the ratio of excitation 

to response remains same when the positions of excitation and response are interchanged.’

���������"#� Find the current through the 6 � resistor and verify the reciprocity theorem.

1 �

�

�
2 �

I

�j� 1 �

j1 �
5�0�V

����������

Solution

Case I Calculation of current I when excitation and response are not interchanged (Fig. 3.180)

1 �

2 �

I

I1 I2

�j� 1 �

j1 �
�

�
5�0�V

���������

Applying KVL to Mesh 1,

5 0 1 1 0

1 5 0

1

21

� �0 �1 �

�5 �

11

I 11

j

j j1I �1

( )1 2� 2I I

( )1 1j11 …(i)
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Applying KVL to Mesh 2,

�

� �

j j

j

1j�1 2 0�

1 2 0

2 22

1 2

( )� I � 2� 2

I2� 2�
…(ii)

Writing Eqs (i) and (ii) in matrix form,

1 1 1

1 2

5 0

0
1

2�
�

��
��

��

	


�
		





�

��
��

��

	


�
		




�
�

��
��

��

	


�
		





j j1 �1

j

I

I

�

By Cramer’s rule,

I

I I

2

2

1 1 5 0

1 0

1 1 1

1 2

1 39 56 31

1 39 56 31

�

1 5

�

�

� 1 39

�I2

j

j

j j1 �1

j

�

� �

� �

39 5639

39 56

Case II Calculation of current I when excitation and response are interchanged (Fig. 3.181)

I

1 �

2 �

I1 I2

�j�1 �

j1 � �

�
5 � 0�V

���������

Applying KVL to Mesh 1,

��I

I

1

2

1 0

1 0I2I

j

j jI1I

( )1 2I I1I 21I

( )1 1j11 …(i)

Applying KVL to Mesh 2,

    
� �

� � �

j j

j

1 1j� 2 5� 0 0�

1 2 5 0�

2 22

1 2

( )� I � 2� 2

I2� 2�

�

� …(ii)

Writing Eqs (i) and (ii) in matrix form,

1 1 1

1 2

0

5 0
1

�
�

�	
��

��




��




��

�

�	
��

��




��




��
�
� �5

�

�	
��

��




��




��

j j1 �1

j

I

I2 �

By Cramer’s rule,

I

I I

1

1

0 1

5 0 2

1 1 1

1 2

1 38 123 69

1 39 56 31

�
�5

�

� �1 38 �

� 1 39

j

j j1 �1

j

�
� 

� 

.38 123�38

39 5639

Since the current I is same in both the cases, the reciprocity theorem is verified.
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���������"$� In the network of Fig. 3.182, find the voltage V
x
 and verify the reciprocity theorem.

10 �

Vx
j5 � �j�2 �

j5 �

�

�
20 � 90�A

���������

Solution

Case I Calculation of voltage V
x
 when excitation and response are interchanged. (Fig. 3.183)

10 �

Vx

Ix

j5 � �j�2 �

j5 �

�

�
20 � 90�A

���������

By current division rule,

I

V I

x

x xV I

j j
� � �( )�

( )j�

( )j� j ( )j j�
. .�

( )j

) ( j
17 77 91�� �)

( )j�
1 46 77 91 �

��� ( )� ( . . .) ( 4. 6 7� 7 9. 1 1��� 2 0. 9�� �	
�� � V

Case II Calculation of voltage V
x
 when excitation and response are interchanged (Fig. 3.184)



�

10 �

Vx

Ix

j5 �
�j� 2 �

j5 �

20�90�A

���������

Ix
j j

� � �(
( )j�

( )j� j ( )j j�
. .20 90

) ( jj
3 1. 2 3��� 8 6. 6�� ��

VxV j jx( )j ( )j ( .IIxI) ( j 1. 2 3�� 8 6. �6 4 8. 8 1�� 2 0. 9�� �V

Since the voltage V
x
 is same in both the cases, the reciprocity theorem is verified.
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���������"%� Find I and verify the reciprocity theorem for the network shown in Fig. 3.185.

�

�

1 � 2 �

4 � 3 �

j2 �4 �

2 �

I

10 � 45 V

��������


Solution

Case I Calculation of I when excitation and response are not interchanged (Fig. 3.186)

3 �

�

1 � 2 �

4 � 3 �

j2 �4 �

j �
2 31

10 � 45 V

���������

Applying KVL to Mesh 1,

            
10

5

� �45

10 …(i)

Applying KVL to Mesh 2,

�

� �

� 0

3 03

�1 � 3�

I

2

� …(ii)

Applying KVL to Mesh 3,

            
�

� 0�

� �

…(iii)

Writing Eqs (i), (ii) and (iii) in matrix form,

                  

4 0 10 45

0

0

1

2

3

�
� �

	
�

�
1

I

I

I

	

By Cramer’s rule,

                      
I3

4 10 45

1 0

0 3 0

4 0

�4

�4
� 0

j

1

�704 72

0 704 72

. � �

��
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Case II Calculation of I when excitation and response are interchanged (Fig. 3.187)

3 � 1 � 2 �

4 � 3 �

2 �j4 �

2 �

�

�2 I31 10�45 V

���������

Applying KVL to Mesh 1,

� � �
�
I �

� …(i)

Applying KVL to Mesh 2,

0

3 03

1 3

I

2

� …(ii)

Applying KVL to Mesh 3,

�
� � �

� � � 5 0

10 45

� �
…(iii)

Writing Eqs (i), (ii) and (iii) in matrix form,

4 0 0

0

10 45

1

2

3

�
� �

�
	



�

�
1

I

I

I




By Cramer’s rule,

I1

0 4 0

0 5

10 5

4 0
0 704�

�
� �45

�
� �

j j3 2 �

1

� �

30 72

0 704 30 72

. �

��

Since the current I is same in both the cases, the reciprocity theorem, is verified.

��&����������+�������

Millman’s theorem states that ‘If there are n voltage sources V
1
, V

2
. … V

n
with internal impedances Z

1
,

Z
2
, … Z

n
respectively connected in parallel then these voltage sources can be replaced by a single voltage 

source V
m

and a single series impedance Z
m
.

V
Y

Z

m

m

� � �
� �

1 1

�

�
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 2.15 Find the value of current I. 

Fig. 2.259

[0.25 A]

 2.16 Determine the value of current owing through the 10 W resistor.

Fig. 2.260

[3.84 A]

2.8 S:PE*P-S)T)-N T,E-*EM
It states that ‘In a linear network containing more than one independent sources, the 

resultant current in any element is the algebraic sum of the currents that would be 

produced by each independent source acting alone, all the other independent sources 

being represented meanwhile by their respective internal resistances.’

The independent voltage sources are represented by their internal resistances if given or 

simply with zero resistances, i.e., short circuits if internal resistances are not mentioned.

The independent current sources are represented by in�nite resistances, i.e., open circuits.

A linear network is one whose parameters are constant, i.e., they do not change with 

voltage and current.

Explanation Consider the circuit shown in Fig. 2.261. Suppose we have to �nd current 

I4 owing through R4.



 2.8 Superposition Theorem 2.117

Fig. 2.261 Superposition theorem

2.8.1 Steps to be followed in Superposition Theorem

 1. Find the current I ¢  4 owing through R4 due to independent voltage source ‘V’, 

representing independent current source with in�nite resistance, i.e., open circuit.

Fig. 2.262 Step 1

 2. Find the current I ¢¢4 owing through R4 due to independent current source ‘I ’, 

representing the independent voltage source with zero resistance or short circuit.

Fig. 2.263 Step 2

 3. Find the resultant current I4 through R4 by the superposition theorem.

 I4 = I ¢4 + I ¢¢4

Example 1 

Find the value of current �owing through the 2 W resistor.

Fig. 2.264
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Solution Step I: When the 40 V source is acting alone

Fig. 2.265

By series–parallel reduction technique,

Fig. 2.266

 I = 
40

5 +1.67
 = 6 A

From Fig. 2.265, by current-division rule,

 I ¢  = 6
10

10 + 2
¥  = 5 A (Æ)

Step II: When the 20 V source is acting alone

Fig. 2.267

By series–parallel reduction technique,

Fig. 2.268

 I = 
20

5 +1.67
 = 3 A
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From Fig. 2.267, by current-division rule,

 I ¢¢ = 3
10

10 2
¥

+
 = 2.5 A (¨) = –2.5A (Æ)

Step III: When the 10 V source is acting alone

Fig. 2.269

By series–parallel reduction technique,

Fig. 2.270

 I ¢¢¢ = 
10

3.33 + 2
 = 1.88 A (Æ)

Step IV: By superposition theorem,

 I = I ¢ + I ¢¢ + I ¢¢¢
  = 5 – 2.5 + 1.88

  = 4.38 A (Æ)

Example 2 

Find the value of current �owing through the 1 W resistor.

Fig. 2.271
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Solution Step I: When the 100 V source is acting alone

Fig. 2.272

By series–parallel reduction technique

Fig. 2.273

 I = 
100

4 + 0.67
= 21.41 A

From Fig. 2.272, by current-division rule,

 I ¢ = 21.41 ¥ 
2

1 + 2
 = 14.27 A (Ø)

Step II: When the 50 V source is acting alone

Fig. 2.274

By series–parallel reduction technique,

Fig. 2.275

 I≤ = 
50

1 +1.33
 = 21.46 A (              ≠) = –21.46 A (Ø)
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Step III: When the 40 V source is acting alone

Fig. 2.276

By series–parallel reduction technique,

Fig. 2.277

 I = 
40

0 8 2. +
 = 14.29 A

From Fig. 2.276, by current-division rule,

 I≤¢ =  14 29
4

4 1
. ¥

+
 = 11.43 A (  Ø)

Step IV: By superposition theorem,

 I = I ¢ + I≤ + I≤¢
   = 14.27 – 21.46 + 11.43

  = 4.24 A (Ø)

Example 3 

Find the value of current �owing through the 8 W resistor.

Fig. 2.278
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Solution Step I: When the 4 V source is acting alone

Fig. 2.279

By series–parallel reduction technique,

  
 (a) (b)

(c)

Fig. 2.280

 I = 
4

5 7 45+ .
 = 0.32 A

From Fig. 2.280(b), by current-division rule,

 I1 = 0 32
15

15 14 8
.

.
¥

+
 = 0.16 A

From Fig. 2.279, by current-division rule,

 I ¢ = 0 16
12

12 8
. ¥

+
 = 0.096 A (Ø)

Step II: When the 6 V source is acting alone

Fig. 2.281
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By series–parallel reduction technique,

  
 (a) (b)

(c)

Fig. 2.282

 I = 
6

12 5 06+ .
 = 0.35 A

From Fig. 2.282(b), by current division rule,

 I≤ = 0 35
13 75

13 75 8
.

.

.
¥

+
 = 0.22 A (Ø)

Step III: By superposition theorem,

 I = I ¢ + I≤
   = 0.096 + 0.22

  = 0.316 A (Ø)

Example 4 

Find the value of current �owing through the 4 W resistor.

Fig. 2.283
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Solution Step I: When the 40 V source is acting alone

Fig. 2.284

By series–parallel reduction technique,

  
 (a) (b)

Fig. 2.285

 I = 
40

12 2 92+ .
 = 2.68 A

From Fig. 2.285(a), by current-division rule,

 I ¢ = 2 68
5

5 7
. ¥

+
 = 1.12 A (Æ) = –1.12 A (¨)

Step II: When the 8 A source is acting alone

Fig. 2.286

By series–parallel reduction technique,

  
 (a) (b)

Fig. 2.287
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From Fig. 2.287(b), by current-division rule,

 I≤ = 8
3

7 53 3
¥

+.
 = 2.28 A (¨)

Step III: By superposition theorem

 I = I ¢ + I≤
  = –1.12 + 2.28

  = 1.16 A (¨)

Example 5 

Find the value of current �owing in the 10 W resistor.

Fig. 2.288

Solution Step I: When the 10 V source is acting alone

Fig. 2.289

By series–parallel reduction technique,

  
 (a) (b)

Fig. 2.290

 I = 
10

1 4 12+ .
 = 1.95 A
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From Fig. 2.290(a), by current-division rule,

 I¢ = 1 95
7

7 10
. ¥

+
 = 0.8 A (Ø)

Step II: When the 4 A source is acting alone

Fig. 2.291

By series–parallel reduction technique,

  
 (a) (b)

Fig. 2.292

 I = 4
5

2 91 5
¥

+.
 = 2.53 A

From Fig. 2.291, by current-division rule,

 I≤ = 2 53
1

1 10
. ¥

+
 = 0.23 A (Ø)

Step III: By superposition theorem,

 I = I ¢ + I≤
  = 0.8 + 0.23

  = 1.03 A (Ø)

Example 6 

Find the value of current �owing through the 8 W resistor.

Fig. 2.293
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Solution Step I: When the 5A source is acting alone

Fig. 2.294

By current-division rule,

 I¢  = 5
12

12 8 30
¥

+ +
 = 1.2 A (Æ)

Step II: When the 25 A source is acting alone

Fig. 2.295

By current-division rule,

 I≤  = 25
30

30 12 8
¥

+ +
 = 15 A (Æ)

Step III: By superposition theorem,

 I = I ¢ + I≤
  = 1.2 + 15

  = 16.2 A (Æ)

Example 7 

Find the value of current �owing through the 4 W resistor.

Fig. 2.296
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Solution Step I: When the 5 A source is acting alone

Fig. 2.297

By series–parallel reduction technique,

  

 (a) (b)

Fig. 2.298

From Fig. 2.298(b), by current-division rule,

 I¢ = 5
8 73

8 73 4
¥

+
.

.
 = 3.43 A (Ø)

Step II: When the 20 V source is acting alone

Fig. 2.299

By series–parallel reduction technique.

  
 (a) (b)

Fig. 2.300
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 I = 
20

5 3 75+ .
 = 2.29 A 

From Fig. 2.300(a), by current-division rule,

 I  = 2 29
6

6 10
. ¥

+
 = 0.86 A (Ø) 

Step III: By superposition theorem

 I = I ¢ + I≤
   = 3.43 + 0.86

  = 4.29 A (Ø)

Example 8 

Find the value of current �owing through the 3 W resistor.

Fig. 2.301

Solution Step I: When the 5 A source is acting alone

Fig. 2.302

By series–parallel reduction technique,

Fig. 2.303
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By current-division rule,

 I¢ = 5
15

15 2 3
¥

+ +
 = 3.75 A (Ø) 

Step II: When the 20 V source is acting alone

Fig. 2.304

By series–parallel reduction technique,

  
 (a)  (b)

Fig. 2.305

 I = 
20

3 33.
 = 6 A

From Fig. 2.305(a), by current-division rule,

 I≤ = 6
4

20 4
¥

+
 = 1 A (            ≠) = –1 A (Ø)

Step III: By superposition theorem,

 I = I ¢ + I≤
  = 3.75 – 1

  = 2.75 A (Ø)

Example 9 

Find the value of current �owing in the 1 W resistor.

Fig. 2.306
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Solution Step I: When the 4 V source is acting alone

Fig. 2.307

By current-division rule,

 I ¢ = 
4

2 1+
 = 1.33 A (Ø)

Step II: When the 3 A source is acting alone

Fig. 2.308

By current-division rule,

 I ¢¢ = 3 ¥ 
2

1 2+
 = 2 A (Ø)

Step III: When the 1 A source is acting alone

Fig. 2.309

Redrawing the circuit,

Fig. 2.310

By current-division rule,

 I ¢¢¢ = 1 ¥ 
2

2 1+
 = 0.66 A (Ø)
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Step IV: By superposition theorem,

 I = I ¢ + I ¢¢ + I ¢¢¢
  = 1.33 + 2 + 0.66

  = 4 A (Ø)

Example 10 

Find the voltage VAB.

 .ig. 2.311 [De� 2014]

Solution Step I: When the 6 V source is acting alone

Fig. 2.312

 VAB¢ = 6 V

Step II: When the 10 V source is acting alone

Fig. 2.313

Since the resistor of 5 W is shorted, the voltage across it is zero.

 VAB¢¢ = 10 V

Step III: When the 5 A source is acting alone

Fig. 2.314
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Due to short circuit in both the parts,

 VAB¢¢¢ = 0 V

Step IV: By superposition theorem,

 VAB = VAB¢ + VAB¢¢ + VAB¢¢¢
  = 6 + 10 + 0

  = 16 V

Example 11 

Find the voltage across 4 kW.

10 mA
3 kW4 kW

1 kW

25 V

15 V

 .ig. 2.315 [May 2016]

Solution Step I:  When the 10 mA source is acting alone

Fig. 2.316

Since 3 kW resistor is connected in parallel with short circuit, it gets shorted.

Fig. 2.317



2.134 Basic Electrical Engineering

By current division rule,

1
10 2 mA( )

1 4

k
I m

k k
= ¥ = Ø¢

+

Step II: When the 25 V source is acting alone

Fig. 2.318

Since 3 kW resistor is connected in parallel with 25 V source, it becomes redundant.

25
5 ( )

4 1
I mA

k k
= = Ø¢¢

+

Step III:  When the 15 V source is acting alone

Fig. 2.319

Since series combination of 4 kW and 1 kW resistor is connected across a short circuit, it 

gets shorted.

I≤¢ = 0

Step IV:  By superposition theorem,

2 5 0

7 ( )

I I I I

mA mA

mA

= + +¢ ¢¢ ¢¢¢
= + +

= Ø
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Example 12 

Find the current through the 5 W resistor. 

Fig. 2.320

Solution Step I: When the 24 V source is acting alone

Fig. 2.321

By series–parallel reduction technique,

Fig. 2.322

 I ¢ = 
24

5 6 67+ .
 = 2.06 A (Æ) = – 2.06 A (¨)

Step II: When the 2 A source is acting alone

By series-parallel reduction technique,

 (a) (b)

Fig. 2.323



2.136 Basic Electrical Engineering

From Fig. 2.323(b), by current-division rule,

 I ≤ = 2 ¥ 
6 67

5 6 67

.

.+
 = 1.14 A (¨)

Step III: When the 36 V source is acting alone

By series-parallel reduction technique,

    

 (a) (b)

Fig. 2.324

 I  = 
36

10 4+
 = 2.57 A

From Fig. 2.324(a), by current-division rule, 

 I ≤¢ = 2.57 ¥ 
20

20 5+
 = 2.06 A (¨)

Step IV: By superposition theorem,

 I = I ¢ + I≤ + I≤¢

  = – 2.06 + 1.14 + 2.06

  = 1.14 A (¨)

Example 13 

Find the value of current �owing through 30 W resistor.

 .ig. 2.325 [De� 2015]
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Solution Step I:  When the 10 V source is acting alone

10 V

10 W

20 W

30 W

2 W 20 W

I ¢

Fig. 2.326

By series-parallel reduction technique,

10 V

10 W

20 W

30 W

1.82 W

I ¢

(a)

Fig. 2.327

 I = 
10

0.45 A
10 12.28

=
+

From Fig. 2.327(b), by current-division rule,

 I¢ = 
20

0.45 0.17 A ( )
20 31.82

¥ = Æ
+

 = – 0.17 A (¨)

Step II:  When the 2A source is acting alone

10 W 2A 20 W 2 W 20 W

I ¢¢ 30 W

Fig. 2.328
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By series-parallel reduction technique,

2 A 6.67 W

I ¢¢ 30 W

1.82 W

(a)

2 A 6.67 W

I ¢¢

31.82 W

(b)

Fig. 2.329

By current-division rule,

 I¢¢ = 
6.67

2 0.35A ( )
6.67 31.82

¥ = ¨
+

Step-III:  When the 100 V source is acting alone

Fig. 2.330

By series-parallel reduction technique,

 (a) (b)
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Fig. 2.331

 I = 
100

6.69 A
12.94 2

=
+

By current-division rule,

 I ≤¢ = 
20

6.69 2.36 A ( )
20 36.67

¥ = ¨
+

Step IV:  By superposition theorem,

        

0.17 0.35 2.36

2.54 A ( )

I I I I= + +¢ ¢¢ ¢¢¢
= - + +
= ¨

Example 14 

Find the value of current �owing through the 5 W resistor.

5 W

24 V

10 W

2 A 10 V10 W

 .ig. 2.332 [May 2015]

Solution Step I:  When the 24 V source is acting alone

5 W

24 V

10 W

10 W 5 W

I¢

24 V

5 W
I¢

(a) (b)

Fig. 2.333
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24
2.4 A ( ) 2.4 A ( )

5 5
I = = Æ = - ¨¢

+

Step II When the 2 A source is acting alone

  

 (a) (b)

Fig. 2.334

     

5
2 1 A( )

5 5
I = ¥ = ¨¢¢

+

Step III When the 10 V source is acting alone

  

 (a)  (b)

Fig. 2.335

     

10
0.75 A

10 3.33
I = =

+
By current-division rule,

     

10
0.75 0.5 A( )

10 5
I = ¥ = ¨¢¢¢

+

Step IV By superposition theorem,

     I = I¢ + I¢¢ +I¢¢¢ 
      = – 2.4 + 1 + 0.5

      = –0.9 A (¨)

     I = 0.9 A (Æ)
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Example 15 

Find the value of current �owing through the 4 W resistor.

Fig. 2.336

Solution Step I: When the 5 A source is acting alone

Fig. 2.337

By current-division rule,

 I ¢ = 5 ¥ 
2

2 4+
 = 1.67 A (Ø)

Step II: When the 2 A source is acting alone

Fig. 2.338

By current-division rule,

 I ¢¢ = 2 ¥ 
2

2 4+
 = 0.67 A (Ø)

Step III: When the 6 V source is acting alone

Fig. 2.339
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Applying KVL to the mesh,

 –2I ¢¢¢ – 6 – 4I ¢¢¢ = 0

 I ¢¢¢ = –1 A (Ø)

Step IV: By superposition theorem,

 I = I ¢ + I ¢¢ + I ¢¢¢
  = 1.67 + 0.67 – 1

  = 1.34 A (Ø)

Example 16 

Find the value of current �owing through the 5 W resistor.

3 W 6 W

B

5 A

2 W 10 V 4 W

6 W

3 W10 W5 W

2 A

A

 .ig. 2.340 [De� 2014]

Solution Step I:  When the 5 A source is acting alone
3 W 6 W 6 W

5 W 10 W 3 W

2 W 4 W

I1 I2 I3

5 A

I¢

B

A

Fig. 2.341

    Writing equations in matrix form,

     

1

2

3

1 0 0 5

5 23 10 0

0 10 23 0

I

I

I

È ˘ È ˘ È ˘
Í ˙ Í ˙ Í ˙- - =Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙-Î ˚ Î ˚Î ˚

              I1 = 5

             I2 = 1.34 A
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     I3 = 0.58 A

     I¢ = I1 – I2 = 5 – 1.34 = 3.66 A (Ø)

Step II: When the 10 V source is acting alone

6 W6 W

10 W

2 W 4 W

I1 I2

5 W 3 W

10 V

I¢¢

B

A

Fig. 2.342

Writing KVL equations in matrix form,

     

1

2

23 10 10

10 23 0

I

I

- È ˘È ˘ È ˘
=Í ˙Í ˙ Í ˙-Î ˚ Î ˚Î ˚

            I1 = 0.54 A

            I2 = 0.23 A

            I¢¢ = –I1 = –0.54 A (Ø)

Step III: When the 2 A source is acting alone

6 W

6 W

10 W

2 W 4 W

I1 I2

2 A

I3

5 W

I¢¢

3 W

A

B

Fig. 2.343

Writing equations in matrix form,

     

1

2

3

23 10 0 0

10 23 6 0

0 0 1 2

I

I

I

-È ˘ È ˘ È ˘
Í ˙ Í ˙ Í ˙- - =Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙-Î ˚ Î ˚Î ˚
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                I1 = – 0.28 A

                I2 = – 0.64 A

                I3 = –2 A

                I ¢¢¢ = – I1 = – 0.28 A (Ø)

Step IV: By superposition theorem,

               I = I ¢ + I ¢¢ + I ¢¢¢
                = 3.66 – 0.54 + 0.28

                = 3.4 A

Example 16 

Find the value of current �owing through the 3 W resistor.

9 W

15 A

5 W

5 A

3 W2W

4 V

7W

 .ig. 2.344 [De� 2012]

Solution Step I:  When the 4 V source is acting alone

Fig. 2.345

Writing KVL equation in matrix form,

              

21 12

12 17

0

4

1

2

-
-

È

Î
Í

˘

˚
˙
È

Î
Í

˘

˚
˙ =

È

Î
Í

˘

˚
˙

I

I

     I ¢ = I2 = 0.39 A (Ø)
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Step II When the 15 A source is acting alone

Fig. 2.346

Writing the current equation for the supermesh,

     I2 – I1 = 15 (1)

Writing the voltage equation for the supermesh,

     – 9I1 – 5 (I2 – I3) – 7 (I1 – I3) = 0

     – 16 I1 – 5 I2 + 12 I3 = 0 (2)

Applying KVL to Mesh 3,

     –2I3 – 7 (I3 – I1) – 5 (I3 – I2) – 3I3 = 0

     –7I1 – 5I2 + 17I3 = 0 (3)

Solving Eqs (1), (2) and (3),

     I≤ = I3 = 3.17 A (Ø)

Sep III When the 5 A source is acting alone

Fig. 2.347

Applying KVL to Mesh 1,

     – 9I1 – 5(I1 – I3) – 7(I1 – I2) = 0

     21I1 – 7I2 – 5I3 = 0 (1)
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Writing the current equation for the supermesh,

     I2 – I3 = 5 (2)

Writing the voltage equation for the supermesh,

     – 2I2 – 7 (I2 – I1) – 5 (I3 – I1) – 3I3 = 0

     12I1 – 9I2 – 8I3 = 0 (3)

Solving Eqs (1), (2) and (3),

    I ≤¢ = I3 = – 2.46 A (Ø)

Step IV By superposition theorem,

     I = I ¢ + I ≤ + I≤¢= 0.39 + 3.17 – 2.46 = 1.1 A

     V3 W = 3I = 3(1.1) = 3.3 V

Example 17

Determine the value of current � owing through RL = 2 W in the circuit shown in Fig. 2.348.

2 W

5 A

1 W 1 W

4 A6 V

+

–
RL = 2 W

 .ig. 2.348 [May 2013]

Solution Step I: When the 6 V source is acting alone

I ¢

RL = 2 W
6 V

1 W 1 W

2 W

1 W

RL = 2 W6 V

I ¢

(a) (b)

 Fig. 2.349
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  I ¢ = 
6

1 2+
 = 2 A (Ø)

Step II When the 4 A source is acting alone

Fig. 2.350

Applying KVL to Mesh 1,

     4 I1 – I2 – I3 = 0 (1)

Writing the current equation for the supermesh,

     I2 – I3 = 4 (2)

Writing the voltage equation for the supermesh,

     –1(I2 – I1) – 1(I3 – I1) – 2I3 = 0

     2I1 – I2 – 3I3 = 0 (3)

Solving Eqs (1), (2) and (3),

   I≤ = I3 = –0.67 A (Ø)

Step III When the 5 A source is acting alone

RL = 

Fig. 2.351
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Simplifying the circuit,

1 W

1 W

1 WI

5 A

1 W

2 WI

5 A

(a)
(b)

Fig. 2.352

     I = 5 ¥ 
1

1 2+
 = 1.67 A (≠)

     I ¢≤ = – 1.67 ¥ 
1

2
 = –  0.84 A (Ø)

Step IV By superposition theorem,

     I = I ¢ + I≤ + I ≤¢ = 2 – 0.67 – 0.84 = – 0.49 A (Ø)

Example 18

Determine the value of current � owing in the 1 W resistor.

 .ig. 2.353 [De� 2013]
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Solution Step I: When the 5 A source is acting alone

Fig. 2.354

Simplifying the network,

Fig. 2.355

By current-division rule,

     I ¢ = 
1.2

5 1.875 A ( )
1.2 1 1

¥ = Ø
+ +

Step II When the 3 V source is acting alone

2 W

3 W

2 W

2 W

3 V

I2

I1

I3

I¢¢

1 W

Fig. 2.356
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Applying KVL to Mesh 1,

     –2I1 – 3 – 3 (I1 –I3) = 0

     5I1 – 3I3 = –3 (1)

Applying KVL to Mesh 2,

     3 – 2I2 – 2(I2 – I3) = 0

     4I2 – 2 I3 = 3 (2)

Applying KVL to Mesh 3,

     –3(I3 – I1) – 2 (I3 – I2) – I3 = 0

     –3I1 – 2I2 + 6I3 = 0 (3)

Solving Eqs (1), (2) and (3),

     I 1 = –0.66 A

     I 2 = 0.7 A

     I 3 = –0.09 A

     I ’’ = –I3 = 0.09 A

Step III By superposition theorem,

     I = I ¢ + I ≤ = 1.875 + 0.09 = 1.965 A (Ø)

Example 19

Find the value of current � owing through the 6 W resistor.

10 V 2 W

5 W 6 W3 A
10 W4 A

 .ig. 2.357 [May 2014]

Solution Step I: When the 4 A source is acting alone

Fig. 2.358
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Writing equations in matrix form,

     

1

2

3

1 0 0 4

10 17 5 0

0 5 11 0

I

I

I

È ˘ È ˘ È ˘
Í ˙ Í ˙ Í ˙- - =Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙-Î ˚ Î ˚Î ˚

     I ¢ = I3 = 1.23 A (Ø)

Step II When the 10 V source is acting alone

2 W

6 W

I¢¢

I2

5 W

I1

10 W

10 V

Fig. 2.359

Writing KVL equation in matrix form,

      
1

2

17 5 10

5 11 0

I

I

- -È ˘È ˘ È ˘
=Í ˙Í ˙ Í ˙-Î ˚ Î ˚Î ˚

     I ¢¢ = I2 =  – 0.31 A (Ø)

Step III When the 3 A source is acting alone

Fig. 2.360

By series-parallel reduction technique,

Fig. 2.361
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By current-division rule,

          I¢¢¢ = 
3.86

3 1.17 A ( )
3.86 6

¥ = Ø
+

Step IV By superposition theorem,

     I = I ¢ + I ≤ + I¢¢¢ = 1.23 – 0.31 + 1.17 = 2.09 A (Ø)

Exercise 2.6

 2.1 Find the value of current owing through the 1 W resistor.

Fig. 2.362

[0.95 A]

 2.2 Find the value of current owing through the 10 W resistor.

Fig. 2.363

[0.37 A]

 2.3 Calculate the value of current owing through the 10 W resistor.

Fig. 2.364

[1.62 A]



 2.9 Thevenin’s Theorem 2.153

 2.4 Find the value of current owing in the 2 W resistor. Also, �nd voltage across the 

current source.

Fig. 2.365

[3 A, 9 V]

 2.5 Find the current Ix.

Fig. 2.366

[–0.93 A]

2.9 T,E<EN)N’S T,E-*EM

It states that ‘Any two terminals of a network can be replaced by an equivalent voltage 

source and an equivalent series resistance. The voltage source is the voltage across the 

two terminals with load, if any, removed. The series resistance is the resistance of the 

network measured between two terminals with load removed and constant voltage source 

being replaced by its internal resistance (or if it is not given with zero resistance, i.e., short 

circuit) and constant current source replaced by innite resistance, i.e., open circuit.’

A

B

Fig. 2.367 Thevenin’s theorem

Explanation The above method of determining the load current through a given load 

resistance can be explained with the help of the following circuit.
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Fig. 2.368 Steps in Thevenin’s theorem

2.9.1 Steps to be followed in Thevenin’s Theorem

 1. Remove the load resistance RL.

 2. Find the open circuit voltage VTh across points A and B.

 3. Find the resistance RTh as seen from points A and B with the voltage sources and 

current sources replaced by internal resistances.

 4. Replace the network by a voltage source VTh in series with resistance RTh.

 5. Find the current through RL using Ohm’s law.

 IL = 
V

R RL

Th

Th +

Example 1 

Find the value of current �owing through the 2 W resistor.

Fig. 2.369

Solution Step I : Calculation of VTh

Removing the 2 W resistor from the network,
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Fig. 2.370

Applying KVL to the mesh,

 40 – 5I – 20 – 10I = 0

 15I = 20

 I = 1.33 A

Writing VTh equation,

 10I – VTh + 10 = 0

 VTh = 10I + 10

  = 10 (1.33) + 10

  = 23.33 V

Step II: Calculation of RTh

Replacing voltage sources by short circuits,

Fig. 2.371

 RTh = 5 || 10 = 3.33 W
Step III: Calculation of IL

Fig. 2.372

 IL = 
23.33

3.33 + 2
 = 4.38 A
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Example 2 

Find the value of current �owing through the 8 W resistor.

Fig. 2.373

Solution Step I: Calculation of VTh

Removing the 8 W resistor from the network,

Fig. 2.374

 I = 
250

5 + 5
 = 25 A

Writing VTh equation,

 250 – 5I – VTh – 75 = 0

 VTh = 175 – 5I

  = 175 – 5 (25)

  = 50 V

Step II: Calculation of RTh

Replacing voltage sources by short circuits,

Fig. 2.375

 RTh = (5 || 5) + 10 = 12.5 W
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Step III: Calculation of IL

Fig. 2.376

 IL = 
50

12.5 + 8
 = 2.44 A

Example 3 

Find the value of current �owing through the 2 W resistor connected between terminals A and B.

Fig. 2.377

Solution

Step I: Calculation of VTh 

Removing the 2 W resistor connected between terminals A and B,

Fig. 2.378

Applying KVL to Mesh 1,

 2 – 2I1 – 12 (I1 – I2) = 0 

 14I1 – 12I2 = 2 (1) 

Applying KVL to Mesh 2,

 – 12 (I2 – I1) – 1I2 – 3I2 – 4 = 0 

 – 12I1 + 16I2 = – 4 (2) 

Solving Eqs (1) and (2), 

 I2 = – 0.4 A  
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Writing VTh equation,

 VTh – 3I2 – 4 = 0 

 VTh = 4 + 3I2 

   = 4 + 3 (– 0.4) 

   = 2.8 V

Step II: Calculation of RTh 

Replacing all voltage sources by short circuits,

Fig. 2.379

  RTh = [|(2|| 12) + 1] || 3 = 1.43 W

Step III: Calculation of IL

Fig. 2.380

  IL = 
40

5 +1.67
 = 0.82 A

Example 4 

Find the value of current �owing through the 8 W resistor.

12 W

24 V

10 W 4 W

12 W

12 W

8 W

32 V

A

B

 .ig. 2.381 [May 2015]

Solution Step I:  Calculation of VTh

Removing 8 W resistor connected between A and B,
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12 W

A

B
24 V

32 V

12 W
I2

+

–

VTh

10 W 4 W

12 W

I1

+ + +
+

– – –

–

+

–
+

–

Fig. 2.382

Applying KVL to Mesh 1,

     24 – 12I1 – 12 (I1 – I2) = 0

     24I1 – 12I2 = 24 (1)

Applying KVL to Mesh 2,

     –12 (I2 – I1) – 10 I2 – 4I2 – 12I2 – 32 = 0

     –12 I1 + 38 I2 = –32 (2)

Solving Eqs (1) and (2),

     I1 = 0.69 A

     I2 = –0.63 A

Writing VTh equation,

     VTh
 – 4I2 – 12I2 – 32 = 0

     VTh
 = 32 + 4 (–0.63) + 12 (–0.63)

       = 21.92 V

Step II: Calculation of RTH

Replacing all voltage sources by short circuits,

12 W

A

B
12 W RTh

10 W 4 W

12 W

(a)

A

B
6 W RTh

10 W 4 W

12 W

(b)

Fig. 2.383

     RTH = 8 W
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Step III: Calculation of IL

Fig. 2.384

     

21.92
1.37 A

8 8
LI = =

+

Example 5 

Find the value of current �owing through the 10 W resistor.

Fig. 2.385

Solution

Step I: Calculation of VTh         

Removing the 10 W resistor from the network,

Fig. 2.386

Applying KVL to Mesh 1,

  10 – 6I1 – 1(I1 – I2) = 0 

  7I1 – I2 = 10 (1) 

Applying KVL to Mesh 2, 

  – 1(I2 – I1) – 2I2 – 3I2 = 0 
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  I1 – 6I2 = 0 (2)

Solving Eqs (1) and (2), 

  I2 = 0.24 A 

Writing VTh equation, 

 3I2 – VTh – 20 = 0 

 VTh = 3I2 – 20 

   = 3 (0.24) – 20 

   = – 19.28 V 

   = 19.28 V (terminal B is positive w.r.t A) 

Step II: Calculation of RTh

Replacing voltage sources by short circuits,

Fig. 2.387

 RTh = [(6|| 1) + 2] || 3 = 1.47 W
Step III: Calculation of IL

Fig. 2.388

 IL = 6
10

10 + 2
¥  = 1.68 A (≠ )

Example 6 

Find the value of current �owing through the 10 W resistor.

Fig. 2.389
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Solution

Step I: Calculation of VTh

Removing the 10 W resistor from the network,

Fig. 2.390

For Mesh 1,

 I1 = 10 

Applying KVL to Mesh 2,

 100 – 30I2 – 20I2 = 0

 I2 = 2 A

Writing VTh equation,

 5I1 – VTh – 20I2 = 0

 VTh = 5I1 – 20I2

  = 5(10) – 20(2) 

  = 10 V

Step II: Calculation of RTh

Replacing the current source by an open circuit and the voltage source by a short circuit,

Fig. 2.391

 RTh = 5 + (20 | | 30) = 17 W
Step III: Calculation of IL

Fig. 2.392

IL = 
20

5 +1.67
 = 0.37 A
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Example 7 

Find the value of current �owing through the 40 W resistor.

Fig. 2.393

Solution

Step I: Calculation of VTh

Removing the 40 W resistor from the network,

Fig. 2.394

Since the 20 W resistor is connected across the 25 V source, the resistor becomes redundant. 

  V20 W = 25 V

Applying KVL to the mesh, 

 25 – 50I – 10I + 10 = 0

  I = 0.58 A 

Writing VTh equation, 

  VTh – 10I + 10 = 0 

  VTh = 10 (I) – 10 

   = 10 (0.58) – 10 

   = – 4.2 V 

   = 4.2 V (terminal B is positive w.r.t. A) 

Step II: Calculation of RTh 

Replacing the voltage sources by short circuits, 

 (a) (b)

Fig. 2.395
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 RTh = 50 || 10 = 8.33 W 

Step III: Calculation of I L

Fig. 2.396

 IL = 
10

3.33 + 2
 = 0.09 A ( ≠)

Example 8 

Find the values of current �owing through the 10 W resistor.

Fig. 2.397

Solution

Step I: Calculation of VTh 

Removing the 10 W resistor from the network,

Fig. 2.398

 I1 = 
50

10
 = 5 A 

 I2 = 
20

20
 = 1 A
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Writing VTh equation, 

 4I1 + 2 – VTh – 15I2 = 0 

 VTh = 4I1 + 2 – 15I2 

  = 4(5) + 2 – 15(1) 

  = 7 V 

Step II: Calculation of RTh 

Replacing voltage sources by short circuits,

Fig. 2.399

 RTh = (6 || 4) + (5 || 15) = 6.15 W

Step III: Calculation of IL

Fig. 2.400

 IL = 
50

1 +1.33
 = 0.43 A

Example 9 

Determine the value of current �owing through the 24 W resistor.

Fig. 2.401
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Solution

Step I: Calculation of VTh

Removing the 24 W resistor from the network,

Fig. 2.402

 I1 = 
220

30 50+
 = 2.75 A

 I2 = 
220

20 5+
 = 8.8 A

Writing VTh equation,

 VTh + 30I1 – 20I2 = 0

 VTh = 20I2 – 30I1

  = 20 (8.8) – 30 (2.75) 

  = 93.5 V

Step II: Calculation of RTh

Replacing the voltage source by short circuit,

Fig. 2.403

Redrawing the circuit,

Fig. 2.404

 RTh = (30 | | 50) + (20 | | 5) = 22.75 W
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Step III: Calculation of IL

Fig. 2.405

 IL = 
93 5

22 7

.

. 5 + 24
 = 2 A

Example 10 

Find the value of current �owing through the 3 W resistor.

Fig. 2.406

Solution

Step I: Calculation of VTh

Removing the 3 W resistor from the network,

Fig. 2.407
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Applying KVL to Mesh 1,

50 – 2I1 – 1(I1 – I2) – 8(I1 – I2) = 0

 11I1 – 9I2 = 50 (1)

Applying KVL to Mesh 2,

–4I2 – 5I2 – 8(I2 – I1) – 1(I2 – I1) = 0

 –9I1 + 18I2 = 0 (2)

Solving Eqs (1) and (2),

 I1 = 7.69 A

 I2 = 3.85 A

Writing VTh equation,

 VTh – 5I2 – 8(I2 – I1) = 0

 VTh = 5I2 + 8 (I2 – I1)

  = 5(3.85) + 8(3.85 – 7.69) 

  = –11.47 V

  = 11.47 V (the terminal B is positive w.r.t. A)

Step II: Calculation of RTh

Replacing the voltage source by a short circuit,

Fig. 2.408

Redrawing the network,

Fig. 2.409
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Converting the upper delta into equivalent star network,

 R1 = 
4 2

4 2 5

¥
+ +

 = 0.73 W

 R2 = 
4 5

4 2 5

¥
+ +

 = 1.82 W

 R3 = 
5 2

4 2 5

¥
+ +

 = 0.91 W

Fig. 2.411

Simplifying the network,

Fig. 2.412

 RTh = 1.82 + (1.73 | | 8.91) = 3.27 W
Step III: Calculation of IL

Fig. 2.413

Fig. 2.410
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 IL = 
40

12 2 92+ .
 = 1.83 A ( ≠)

Example 11 

Find the value of current �owing through the 20 W resistor.

Fig. 2.414

Solution

Step I: Calculation of VTh

Removing the 20 W resistor from the network,

Fig. 2.415

Applying KVL to Mesh 1,

45 – 120 – 15I1 – 5(I1 – I2) – 10(I1 – I2) = 0

 30I1 – 15I2 = –75 (1)

Applying KVL to Mesh 2,

 20 – 5I2 – 10(I2 – I1) – 5(I2 – I1) = 0

 –15I1 + 20I2 = 20 (2)

Solving Eqs (1) and (2),

 I1 = –3.2 A
 I2 = –1.4 A
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Writing VTh equation,

 45 – VTh – 10 (I1 – I2) = 0

 VTh = 45 – 10 (I1 – I2)

  = 45 – 10 [–3.2 – (–1.4)] 

  = 63 V

Step II: Calculation of RTh

Replacing voltage sources by short circuits,

Fig. 2.416

Converting the delta formed by resistors of 10 W, 5 W and 5 W 

into an equivalent star network,

 R1 = 
10 5

20

¥
 = 2.5 W

 R2 = 
10 5

20

¥
 = 2.5 W

 R3 = 
5 5

20

¥
 = 1.25 W

Fig. 2.418

Fig. 2.417
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Simplifying the network,

Fig. 2.419

 RTh = (16.25 | | 2.5) + 2.5 = 4.67 W
Step III: Calculation of IL

Fig. 2.420

 IL = 
63

4 67 20. +
 = 2.55 A

Example 12 

Find the value of current �owing through the 3 W resistor.

Fig. 2.421

Solution

Step I: Calculation of VTh

Removing the 3 W resistor from the network,

Fig. 2.422
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Writing equation for Mesh 1,

 I1 = 6 (1)

Applying KVL to Mesh 2,

 42 – 12(I2 – I1) – 6 I2 = 0

 –12 I1 + 18 I2 = 42 (2)

Solving Eqs (1) and (2),

 I2 = 6.33 A

Writing VTh equation,

 VTh = 6 I2 = 38 V

Step II: Calculation of RTh

Replacing voltage source by short circuit and current source by open circuit,

Fig. 2.423

 RTh = 6 || 12 = 4 W

Step III: Calculation of IL

Fig. 2.424

 IL = 
38

4 3+
 = 5.43 A

Example 13 

Find the value of current �owing through the 30 W resistor.

 .ig. 2.425 [May 2016]
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Solution

Step I: Calculation of VTh

Removing the 30 W resistor from the network,

Fig. 2.426

Meshes 1 and 2 form a supermesh.

Writing current equation for supermesh,

 I2 – I1 = 13 (1)

Writing voltage equation for supermesh,

 150 – 15I1 – 60I2 – 40I2 = 0

 15I1 + 100I2 = 150 (2)

Solving Eqs (1) and (2),

 I1 = –10 A

 I2 = 3 A

Writing VTh equation,

 40I2 – VTh – 50 = 0

 VTh = 40I2 – 50 

  = 40(3) – 50 

  = 70 V

Step II: Calculation of RTh

Replacing the voltage sources by short circuits and the current source by an open circuit,

Fig. 2.427

 RTh = 75 || 40 = 26.09 W
Step III: Calculation of IL

Fig. 2.428
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 IL = 
70

26 09 30. +
 = 1.25 A

Example 14 

Find the value of current �owing through the 20 W resistor.

Fig. 2.429

Solution

Step I: Calculation of VTh

Removing the 20 W resistor from the network,

Fig. 2.430

From Fig. 2.430,

 VTh = 100 V

Step II: Calculation of RTh

Replacing the voltage source by a short circuit and the current source by an open circuit,

 (a) (b)

Fig. 2.431

 RTh = 0
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Step III: Calculation of IL

Fig. 2.432

 IL = 
100

20
 = 5 A

Example 15 

Find the value of current �owing through the 20 W resistor.

Fig. 2.433

Solution

Step 1: Calculation of VTh 

Removing the 20 W resistor from the network, 

Fig. 2.434

 I1 = 
10

10 4+
 = 0.71 A

 I2 = 2 A

Writing the VTh equation, 

 4 I1 – VTh + 8 I2 = 0 

 VTh = 4 (0.71) + 8 (2) 

  = 18.84 V 
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Step II : Calculation of RTh

Replacing the voltage source by short circuit and current source by an open circuit, 

 (a) (b)

Fig. 2.435

 RTh = 10.86 W

Step III : Calculation of IL

Fig. 2.436

 IL = 
18 84

10 86 20

.

. +
 = 0.61 A

Example 16 

Find the value of current �owing through the 5 W resistor.

Fig. 2.437

Solution

Step I: Calculation of VTh

Removing the 5 W resistor from the network,
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Fig. 2.438

Applying KVL to Mesh 1, 

  100 – 10 I1 + 50 – 2 I1 – 2 (I1 – I2) = 0

 14 I2 – 2 I2 = 150 (1)

Applying KVL to Mesh 2, 

 – 2 (I2 – I1) + 50 – 3 I2 = 0 

 – 2 I1 + 5 I2 = 50 (2) 

Solving Eqs (1) and (2), 

 I1 = 12.88 A 

 I2 = 15.15 A 

Writing the VTh equation,

 100 – 10 I1 – VTh = 0 

 VTh = 100 – 10 (12.88) 

  = – 28.8 V 

  = 28.8 V (terminal B is positive w.r.t. A) 

Step II: Calculation of RTh

Replacing voltage sources by short circuits,

Fig. 2.439

 RTh = 10 || 3.2 = 2.42 W 
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Step III: Calculation of IL

Fig. 2.440

 IL = 
28 8

2 42 5

.

. +
 = 3.88 A ( ≠)

Example 17 

Find the value of current �owing through the 10 W resistor.

Fig. 2.441

Solution

Step I: Calculation of VTh

Removing the 10 W resistor from the network,

Fig. 2.442

Applying KVL to Mesh 1,

 –15 – 2I1 – 1 (I1 – I2) – 10 – 1I1 = 0

 4I1 – I2 = –25 (1)
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Applying KVL to Mesh 2,

 10 – 1(I2 – I1) – 2I2 – I2 = 0

 –I1 + 4I2 = 10 (2)

Solving Eqs (1) and (2),

 I1 = –6 A

 I2 = 1 A

Writing VTh equation,

 –VTh + 2I2 + 2I1 = 0

 VTh = 2I1 + 2I2

  = 2(–6) + 2 (1) 

  = –10 V

  = 10 V (the terminal B is positive w.r.t. A)

Step II: Calculation of RTh

Replacing voltage sources by short circuits,

Fig. 2.443

Converting the star network formed by resistors of 2 W, 2 W and 1 W into an equivalent 

delta network.

Fig. 2.444

 R1 = 2 + 2 + 
2 2

1

¥
 = 8 W

 R2 = 2 + 1 + 
2 1

2

¥
 = 4 W
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 R3 = 2 + 1 + 
2 1

2

¥
 = 4 W

(a)

 (b) (c)

Fig. 2.445

 RTh = 1.33 W

Step III: Calculation of IL

Fig. 2.446

 IL = 
10

1 33 10. +
 = 0.88 A ( ≠)

Example 18 

Find the value of current �owing through the 1 W resistor.

Fig. 2.447
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Solution

Step I: Calculation of VTh

Removing the 1 W resistor from the network,

Fig. 2.448

Writing the current equation for meshes 1 and 2,

 I1 = –3

 I2 = 1

Writing VTh equation,

 4 – 2 (I1 – I2) – VTh = 0

 VTh = 4 – 2(–3 – 1)

  = 4 – 2(–4)

  = 12 V

Step II: Calculation of RTh

Replacing the voltage source by a short circuit and the current source by an open circuit,

Fig. 2.449

 RTh = 2 W

Step III: Calculation of IL

Fig. 2.450
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 IL = 
12

2 1+
 = 4 A

Example 19 

Find the value of current �owing through the 3 W resistor.

Fig. 2.451

Solution Step I: Calculation of VTh

Removing the 3 W resistor from the network,

Fig. 2.452

By source transformation,

Fig. 2.453

Applying KVL to the mesh,

 10 – 2I – 2I – 20 = 0

 4I = –10

 I = –2.5 A

Writing VTh equation,

 10 – 2I – VTh = 0

 VTh = 10 – 2I
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  = 10 – 2(–2.5)

  = 15 V

Step II: Calculation of RTh

Replacing voltage source by a short circuit and current source by an open circuit,

Fig. 2.454

 RTh = (2 || 2) + 1 = 1 + 1 = 2 W

Step III: Calculation of IL

Fig. 2.455

 IL = 
15

2 3+
 = 3 A

Example 20 

Find the value of current �owing through the 60 W resistor.

10 W

50 W 60 W

10 W

50 W
80 V

 .ig. 2.456 [May 2014]
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Solution Step I: Calculation of VTh

Fig. 2.457

Writing KVL equation in matrix form,

      
1

2

60 0 80

0 120 0

I

I

È ˘È ˘ È ˘
=Í ˙Í ˙ Í ˙

Î ˚ Î ˚Î ˚
     I1 = 2.67 A

     I2 = 1.33 A

Writing VTh equation,

    80 – 10 (I1 – I2) – VTh – 10I2 = 0

    VTh = 80 – 10(I1 – I2) – 10I2

            = 80 – 10(2.67 – 1.33) – 10 (1.33) 

= 53.3 V

Step II Calculation of RTh

Replacing voltage source by short circuit,

 (a) (b)

Fig. 2.458

    RTh = 16.66 W

Step III Calculation of IL

Fig. 2.459
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    IL = 
53.3

0.7 A
16.66 60

=
+

Exercise 2.7

 2.1 Find the value of current owing through the 6 W resistor.

Fig. 2.460

 [2.04 A] 

 2.2 Find the value of current owing through the 2 W resistor connected between 

terminals A and B. 

Fig. 2.461

[1.26 A]

 2.3 Find the value of current owing through the 5 W resistor.

0

Fig. 2.462

 [4.67 A] 
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 2.4 Find the value of current owing through the 20 W resistor. 

Fig. 2.463

[1.54 A] 

 2.5 Calculate the value of current owing through the 10 W resistor.

Fig. 2.464

 [1.62 A] 

 2.6 Find the value of current owing through the 2 W resistor.

Fig. 2.465

[9.375 A] 

 2.7 Find the value of current owing through the 5 W resistor.

Fig. 2.466

[2 A] 
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2.10 N-*T-N’S T,E-*EM
 [De� 2013]

It states that ‘Any two terminals of a network can be replaced by an equivalent current 

source and an equivalent parallel resistance.’ The constant current is equal to the current 

which would �ow in a short circuit placed across the terminals. The parallel resistance 

is the resistance of the network when viewed from these open-circuited terminals after all 

voltage and current sources have been removed and replaced by internal resistances.

A

B

A

B

Fig. 2.467 Norton’s theorem

Explanation The method of determining the load current through a given load resistance can be 

explained with the help of the following circuit.

Fig. 2.468 Steps in Norton’s theorem

2.10.1 Steps to be followed in Norton’s Theorem

 1. Remove the load resistance RL and put a short circuit across the terminals.

 2. Find the short-circuit current Isc or IN.

 3. Find the resistance RN as seen from points A and B by replacing the voltage sources 

and current sources by internal resistances.
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 4. Replace the network by a current source IN in parallel with resistance RN.

 5. Find current through RN by current–division rule,

 IL = 
I R

R R

N N

N L+

Example 1

For the given circuit in Fig. 2.539, nd the Norton equivalent between points A and B.

 .ig. 2.469 [May 2015]

Solution

Step I: Calculation of IN

Replacing 2 W resistor by short circuit,

Fig. 2.470

Applying KVL to Mesh 1,

     10 – 1I1 – 1(I1 – I2) = 0

                        2I1 = I2 = 10 ...(1)

Applying KVL to Mesh 2,

     –1(I2 – I1) – 1I2 = 0

          –I1 + 2I2 = 0 ...(2)

Solving Eqs (1) and (2),

     I1 = 6.67 A

     I2 = IN = 3.33 A
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Step II:  Calculation of RN

Replacing voltage source by short circuit,

Fig. 2.471

     RN = 1.5 W
Step III: Norton’s equivalent network

Fig. 2.172

Example 2

Find the value of current through the 10 W resistor.

Fig. 2.473

Solution

Step I: Calculation of IN

Replacing the 10 W resistor by a short circuit,

Fig. 2.474
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Applying KVL to Mesh 1,

 2 – 1I1 = 0 (1)

 I1 = 2

Meshes 2 and 3 will form a supermesh.

Writing current equation for the supermesh,

 I3 – I2 = 4 (2)

Applying KVL to the supermesh,

 –5I2 – 15I3 = 0 (3)

Solving Eqs (1), (2) and (3),

 I1 = 2 A

 I2 = –3 A

 I3 = 1 A

 IN = I1 – I2 = 2 – (–3) = 5 A

Step II: Calculation of RN

Replacing the voltage source by a short circuit and current source by an open circuit,

Fig. 2.475

 RN = 1 || (5 + 15) = 0.95 W

Step III: Calculation of IL

Fig. 2.476

 IL = 5 ¥ 
0 95

10 0 95

.

.+
 = 0.43 A
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Example 3

Calculate the value of current �owing through the 15 W load resistor in the given circuit.

 .ig. 2.477 [May 2013]

Solution

Step I: Calculation of IN

I
1

I
2

8 W

4 A

6 W4 W

30 V IN

A

B

Fig. 2.478

Writing the current equation for the supermesh,

     I1 – I2 = 4 (1)

Writing the voltage equation for the supermesh,

     30 – 4 I1 – 6I2 = 0

     4I1 + 6I2 = 30 (2)

Solving Eqs (1) and (2),

     I1 = 5.4 A

     I2 = 1.4 A

     IN = I2 = 1.4 A
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Step II: Calculation of RN

6 W

8 W

4 W

RN

A

B

RN = 10 W

Fig. 2.479

Step III: Calculation of IL

Fig. 2.480

     IL = 1.4 ¥ 
10

10 15+
 = 0.56 A

Example 4

Find the value of current �owing through the 10 W resistor.

Fig. 2.481
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Solution

Step I: Calculation of IN

Replacing the 10 W resistor by a short circuit,

Fig. 2.482

Applying KVL to Mesh 1,

 –5I1 + 20 – 2(I1 – I2) = 0

 7I1 – 2I2 = 20 (1)

Applying KVL to Mesh 2,

 –2(I2 – I1) – 8I2 – 12 = 0

 –2I1 + 10I2 = –12 (2)

Solving Eqs. (1) and (2),

 I2 = –0.67 A

 IN = I2 = –0.67 A

Step II: Calculation of RN

Replacing voltage sources by short circuits,

A

B

Fig. 2.483

 RN = (5 | | 2) + 8 = 9.43 W
Step III: Calculation of IL

Fig. 2.484

 IL = 0.67 ¥ 
9 43

9 43 10

.

. +
 = 0.33 A ( ≠)
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Example 5

Find the value of current �owing in the 10 W resistor.

Fig. 2.485

Solution

Step I: Calculation of IN

Replacing the 10 W resistor by a short circuit,

A

B
Fig. 2.486

The resistance of 40 W becomes redundant as it is connected across the 50 V source.

A

B
Fig. 2.487

Applying KVL to Mesh 1,

 50 – 50 I1 – 20 (I1 – I2) – 10 = 0

 70 I1 – 20 I2 = 40 (1)

Applying KVL to Mesh 2,

 10 – 20 (I2 – I1) = 0

 –20 I1 + 20 I2 = 10 (2)

Solving Eqs. (1) and (2),

 I1 = 1 A

 I2 = 1.5 A

 IN = I2 = 1.5 A
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Step II: Calculation of RN

Replacing voltage sources by short circuits, resistor of 40 W gets shorted.

Fig. 2.488

 RN  = 50||20 = 14.28 W

Step III: Calculation of IL

IL = 1.5 ¥ 
14 28

14 28 10

.

. +
 = 0.88 A

Example 6

Find the value of current �owing through the 10 W resistor in Fig. 2.490.

Fig. 2.490

Solution

Step I: Calculation of IN

Replacing the 10 W resistor by a short circuit,

Fig. 2.491

Applying KVL to Mesh 1,

 10 – 6I1 – 1 (I1 – I2) = 0

 7I1 – I2 = 10 (1)

Applying KVL to Mesh 2,

 –1 (I2 – I1) – 2I2 – 3(I2 – I3) = 0

Fig. 2.489
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 –I1 + 6I2 – 3I3 = 0 (2)

Applying KVL to Mesh 3,

 –3 (I3 – I2) – 20 = 0

 3I2 – 3I3 = 20 (3)

Solving Eqs. (1), (2) and (3),

 I3 = –13.17 A

 IN = I3 = –13.17 A

Step II: Calculation of RN

Replacing voltage sources by short circuits,

 RN = [(6 || 1) + 2] || 3 = 1.46 W
Step III: Calculation of IL

Fig. 2.493

 IL = 13.17 ¥ 
1 46

1 46 10

.

. +
 = 1.68 A ( ≠)

Example 7

Find the value of current �owing through the 10 W resistor.

Fig. 2.494

Solution

Step I: Calculation of IN

Replacing the 10 W resistor by a short circuit,

Fig. 2.495

Applying KVL to Mesh 1,

 50 – 20 (I1 – I2) – 40 = 0

Fig. 2.492
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 20I1 – 20I2 = 10  (1)

Applying KVL to Mesh 2,

 40 – 20 (I2 – I1) – 20I2 – 20 (I2 – I3) = 0

 –20I1 + 60I2 – 20I3 = 40 (2)

Applying KVL to Mesh 3,

 –20 (I3 – I2) – 30I3 – 100 = 0

 –20I2 + 50I3 = –100 (3)

Solving Eqs. (1), (2) and (3),

 I1 = 0.81 A

 IN = I1 = 0.81 A

Step II: Calculation of RN

Replacing voltage sources by short circuits,

Fig. 2.496

 RN = [(20 || 30) + 20] || 20 = 12.3 W
Step III: Calculation of IL

Fig. 2.497

 IL = 0.81 ¥ 
12 3

12 3 10

.

. +
 = 0.45 A

Example 8

Obtain Norton’s equivalent network as seen by RL.

Fig. 2.498
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Solution

Step I: Calculation of IN

Replacing the resistor RL by a short circuit,

Fig. 2.499

Applying KVL to Mesh 1,

 120 – 30I1 – 60 (I1 – I2) = 0

 90I1 – 60I2 = 120 (1)

Applying KVL to Mesh 2,

 –60 (I2 – I1) + 40 – 10I2 – 30 (I2 – I3) = 0

 –60I1 + 100I2 – 30I3 = 40 (2)

Applying KVL to Mesh 3,

 –30 (I3 – I2) + 10 = 0

 30I2 – 30I3 = –10 (3)

Solving Eqs (1), (2) and (3),

 I3 = 4.67 A

 IN = I3 = 4.67 A

Step II: Calculation of RN

Replacing voltage sources by short circuits,

Fig. 2.500

 RN = [(30 || 60) + 10] || 30 = 15 W
Step III: Norton’s equivalent network

Fig. 2.501
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Example 9

Find the value of current �owing through the 8 W resistor.

Fig. 2.502

Solution

Step I: Calculation of IN

Replacing the 8 W resistor by a short circuit,

Fig. 2.503

The resistor of the 4 W gets shorted as it is in parallel with the short circuit. Simplifying 

the network by source transformation,

Fig. 2.504

Meshes 1 and 2 will form a supermesh.

Writing current equation for the supermesh,

 I2 – I1 = 2 (1)

Applying KVL to the supermesh,

 60 – 12I1 – 5 = 0

 12I1 = 55 (2)

Solving Eqs (1) and (2),

 I1 = 4.58 A

 I2 = 6.58 A

 IN = I2 = 6.58 A
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Step II: Calculation of RN

Replacing the voltage source by a short circuit and the current source by an open circuit,

Fig. 2.505

 RN = 12 || 4 = 3 W
Step III: Calculation of IL

Fig. 2.506

 IL = 6.58 ¥ 
15

2 3+
 = 1.79 A

Example 10

Find value of current �owing through the 1 W resistor.

Fig. 2.507

Solution

Step I: Calculation of IN

Replacing the 1 W resistor by a short circuit,

Fig. 2.508
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By source transformation,

Fig. 2.509

Applying KVL to Mesh 1,

 –3 – 3I1 – 2(I1 – I3) + 1 = 0

 5I1 – 2I3 = – 2 (1)

Applying KVL to Mesh 2,

 –1 – 2 (I2 – I3) – 2 I2 = 0

 4I2 – 2I3 = – 1 (2)

Applying KVL to Mesh 3,

 –2 (I3 – I1) – 2 (I3 – I2) = 0

 –2I1 – 2I2 + 4I3 = 0 (3)

Solving Eqs. (1), (2) and (3),

 I1 = –0.64 A

 I2 = – 0.55 A

 I3 = – 0.59 A

 IN = I3 = – 0.59 A

Step II: Calculation of RN

Replacing the voltage source by a short circuit and the current source by an open circuit,

Fig. 2.510

 RN = 2.2 W



 2.10 Norton’s Theorem 2.203

Step III: Calculation of IL

Fig. 2.511

 IL = 0.59 ¥ 
2 2

2 2 1

.

. +
 = 0.41 A

Exercise 2.8

 2.1 Find the value of current owing through the 10 W resistor. 

Fig. 2.512

[0.68 A] 

 2.2 Find the value of current owing through the 20 W resistor. 

Fig. 2.513

[0.61 A] 
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 2.3 Find the value of current owing through the 2 W resistor.

Fig. 2.514

[5 A]

 2.4 Find the value of current owing through the 5 W resistor. 

Fig. 2.515

[4.13 A] 

 2.5 Find the value of current owing through the 15 W resistor.

Fig. 2.516

[0.382 A] 

 2.6 Find Norton’s equivalent network. 

Fig. 2.517

[1.8 A, 1.67 W] 
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 2.7 Find Norton’s equivalent circuit for the portion of network shown in Fig. 2.518 to 

the left of ab. Hence obtain the current in the 10 W resistor. 

Fig. 2.518

[0.053 A]

2.11 MA=)M:M P-/E* T*ANS.E* T,E-*EM

 [De� 2012, 2015, May 2013, 2014]

It states that ‘the maximum power is delivered from a source to a load when the load 

resistance is equal to the source resistance.’

 I = 
V

R RS L+

Fig. 2.519 Maximum power transfer theorem

Power delivered to the load  RL = P = I2 RL = 
V R

R R

L

S L

2

2( )+

To determine the value of RL for maximum power to be transferred to the load,

 
dP

dRL

 = 0

 
dP

dRL

 = 
d

dR

V

R RL S L

2

2( )+
 RL
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  = 
V R R R R R

R R

S L L S L

S L

2 2

4

2[( ) ( )( )]

( )

+ - +
+

 (RS + RL)2 – 2 RL (RS + RL) = 0

 RS
2 + RL

2 + 2RS RL – 2RL RS – 2RL
2 = 0

 RL = RS

Hence, the maximum power will be transferred to the load when load resistance is 

equal to the source resistance.

2.11.1 Steps to be followed in Maximum Power Transfer Theorem

 1. Remove the variable load resistor RL.

 2. Find the open circuit voltage VTh across points A and B.

 3. Find the resistance RTh as seen from points A and B with voltage sources and current 

sources replaced by internal resistances.

 4. Find the resistance RL for maximum power transfer.

 RL = RTh

 5. Find the maximum power.

 IL = 
V

R R

V

RL

Th

Th

Th

Th+
=

2

 Pmax = IL
2 RL = 

V

R
R

V

R

Th
2

Th

Th
Th

Th4 42

2

¥ =

Example 1

Find the value of resistance RL for maximum power transfer calculate maximum power.

Fig. 2.521

Solution

Step I: Calculation of VTh

Removing the variable resistor RL from the network,

Fig. 2.520 Equivalent circuit
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Fig. 2.522

Applying KVL to the mesh, 

  3 – 2I – 2I – 6 = 0 

  I = – 0.75 A 

Writing VTh equation, 

  6 + 2I – VTh – 10 = 0 

  VTh = 6 + 2I – 10 

   = 6 + 2 (– 0.75) – 10 

   = – 5.5 V 

   = 5.5 V (terminal B is positive w.r.t A) 

Step II: Calculation of RTh 

Replacing voltage sources by short circuits,

Fig. 2.523

 R Th = (2 || 2) + 2 = 3 W 

Step III: Value of RL 

For maximum power transfer 

 RL = RTh = 3 W 

Step IV: Calculation of Pmax 

Fig. 2.524
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 Pmax  = 
V

R

Th

Th

2

4
 = 

( . )5 5

4 3

2

¥
 = 2.52 W

Example 2

Find the value of resistance RL for maximum power transfer and calculate maximum power.

Fig. 2.525

Solution

Step I: Calculation of VTh

Removing the variable resistor RL from the network,

Fig. 2.526

Meshes 1 and 2 will form a supermesh.

Writing current equation for the supermesh,

 I2 – I1 = 4 (1)

Applying KVL to the supermesh,

 8 – 1I1 – 5I1 – 5I2 – 10 = 0

 –6I1 – 5I2 = 2 (2)

Solving Eqs. (1) and (2),

 I1 = –2 A

 I2 = 2 A

Writing VTh equation,

 8 – 1I1 – VTh = 0

 VTh = 8 – I1

  = 8 – (–2)

  = 10 V
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Step II: Calculation of RTh

Replacing the voltage sources by short circuits and current source by an open circuit,

Fig. 2.527

 RTh = 10 || 1 = 0.91 W
Step III: Value of RL

For maximum power transfer

RL = RTh = 0.91 W
Step IV: Calculation of Pmax

 Pmax  = 
VTh

Th

2

4R
 = 

( )

.

10

4 0 91

2

¥
 = 27.47 W

Example 3

Find the value of the resistance RL for maximum power transfer and calculate the maximum 

power.

Fig. 2.529

Solution

Step I: Calculation of VTh

Removing the variable resistor RL from the network,

Fig. 2.530

Fig. 2.528
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For Mesh 1,

 I1 = 50

Applying KVL to Mesh 2,

 –5 (I2 – I1) – 2I2 – 3I2 = 0

 5I1 – 10I2 = 0

 I1 = 2I2

 I2 = 25 A

 VTh = 3I2 = 3(25) = 75 V

Step II: Calculation of RTh

Replacing the current source by an open circuit,

Fig. 2.531

 RTh = 7 | | 3 = 2.1 W
Step III: Value of RL

For maximum power transfer

 RL = RTh = 2.1 W
Step IV: Calculation of Pmax

Fig. 2.532

 Pmax = 
V

R

Th

Th

2 2

4

75

4 2 1
=

( )

.¥
 = 669.64 W

Example 4

Find the value of resistance RL for maximum power transfer and calculate maximum power.

Fig. 2.533
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Solution

Step I: Calculation of VTh

Removing the variable resistor RL from the network,

Fig. 2.534

Meshes 1 and 2 will form a supermesh.

Writing the current equation for the supermesh,

 I2 – I1 = 6 (1)

Applying KVL to the supermesh,

 10 – 5I1 – 2I2 = 0

 5I1 + 2I2 = 10 (2)

Solving Eqs (1) and (2),

 I1 = –0.29 A

 I2 = 5.71 A

Writing VTh equation,

 VTh = 2I2 = 11.42 V

Step II: Calculation of RTh

Replacing the voltage source by a short circuit and the current source by an open circuit,

Fig. 2.535

 RTh = (5 | | 2) + 3 + 4 = 8.43 W
Step III: Value of RL

For maximum power transfer

 RL = RTh = 8.43 W
Step IV: Calculation of Pmax

Fig. 2.536



2.212 Basic Electrical Engineering

 Pmax = 
V

R

Th

Th

2 2

4

11 42

4 8 43
=

( . )

.¥
 = 3.87 W

Example 5

Find the value of resistance RL for maximum power transfer and calculate the maximum power.

Fig. 2.537

Solution

Step I: Calculation of VTh

Removing the variable resistor RL from the network,

Fig. 2.538

Applying KVL to Mesh 1,

 120 – 10I1 – 5(I1 – I2) = 0

 15I1 – 5I2 = 120 (1)

Writing current equation for Mesh 2,

 I2 = –6 (2)

Solving Eqs (1) and (2),

 I1 = 6 A

Writing VTh equation,

 120 – 10I1 – VTh = 0

 VTh = 120 – 10 (6)

  = 60 V

Step II: Calculation of RTh

Replacing the voltage source by a short circuit and the current source by an open circuit,

Fig. 2.539
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 RTh = 10 | | 5 = 3.33 W

Step III: Value of RL

For maximum power transfer

 RL = RTh = 3.33 W

Step IV: Calculation of Pmax

Fig. 2.540

 Pmax = 
V

R

Th

Th

2 2

4

60

4 3 33
=

( )

.¥
 = 270.27 W

Example 6

Find the value of resistance RL for maximum power transfer and calculate the maximum power.

Fig. 2.541

Solution

Step I: Calculation of VTh

Removing the variable resistor RL from the network,

Fig. 2.542

For Mesh 1, 

 I1 = 3 (1)

Applying KVL to Mesh 2,

 –25(I2 – I1) – 10I2 – 6I2 = 0

 –25I1 + 41I2 = 0 (2)
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Solving Eqs (1) and (2),

 I2 = 1.83 A

Writing VTh equation,

 20 + VTh – 10I2 – 6I2 = 0

  VTh = –20 + 10 (1.83) + 6 (1.83)

  = 9.28 V

Step II: Calculation of RTh

Replacing the voltage source by a short circuit and the current source by an open circuit,

Fig. 2.543

 RTh = 25 | | 16 = 9.76 W
Step III: Value of RL

For maximum power transfer

 RL = RTh = 9.76 W
Step IV: Calculation of Pmax

Fig. 2.544

 Pmax = 
V

R

Th

Th

2 2

4

9 28

4 9 76
=

( . )

.¥
 = 2.21 W

Example 7

Find the value of resistance RL for maximum power transfer and calculate maximum power.

Fig. 2.545
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Solution

Step I : Calculation of VTh 

Removing the variable resistor RL from the network,

Fig. 2.546

Meshes 1 and 2 will form a supermesh.

Writing the current equation for the supermesh,

 I2 – I1 = 1  (1)

Writing the voltage equation for the supermesh, 

  5 – 1I1 – 10 (I2 – I3) = 0

  I1 + 10 I2 – 10 I3 = 5 (2) 

Applying KVL to Mesh 3,

  – 10 (I3 – I2) – 2 I3 – 3 I3 = 0 

  – 10 I2 + 15 I3 = 0 (3) 

Solving Eqs (1), (2) and (3), 

  I1 = 0.38 A

  I2 = 1.38 A

  I3 = 0.92 A

Writing VTh equation, 

  V Th = 3 I3 = 2.76 V

Step II: Calculation of RTh 

Replacing voltage source by a short circuit and current source by an open circuit,

Fig. 2.547
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 RTh = 6.48 W

Step III: Value of RL

For maximum power transfer 

 RL = RTh = 6.48 W 

Step IV: Calculation of Pmax

Fig. 2.548

 Pmax = 
V

R

Th
2

Th4
 = 

( . )

.

2 76

4 6 48

2

¥
 = 0.29 W

Example 8

For the circuit shown, nd the value of the resistance RL for maximum power transfer and 

calculate the maximum power.

Fig. 2.549

Solution

Step I: Calculation of VTh

Removing the variable resistor RL from the network,

Fig. 2.550

From Fig. 2.550,

 I2 – I1 = 2 (1)

 I2 = –3 A (2)

Solving Eqs (1) and (2),

 I1 = –5 A
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Writing VTh equation,

 8 – 2I1 – 1I2 – VTh – 6 = 0

 VTh = 8 – 2 (–5) – (–3) – 6

  = 15 V

Step II: Calculation of RTh

Replacing the voltage sources by short circuits and the current source by an open circuit,

Fig. 2.551

 RTh = 5 W
Step III: Value of RL

For maximum power transfer

 RL = RTh = 5 W
Step IV: Calculation of Pmax

Fig. 2.552

 Pmax = 
V

R

Th

Th

2 2

4

15

4 5
=

( )

¥
 = 11.25 W

Example 9

Find the value of resistance the RL for maximum power transfer and calculate the maximum 

power.

Fig. 2.553
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Solution

Step I: Calculation of VTh

Removing the variable resistor RL from the network,

Fig. 2.554

By star-delta transformation,

Fig. 2.555

 I = 
100

5 5 20 9 9+ + + +
 = 2.08 A

Writing VTh equation,

 100 – 5I – VTh – 9I = 0

 VTh = 100 – 14I

  = 100 – 14(2.08)

  = 70.88 V

Step II: Calculation of RTh

Replacing the voltage source by a short circuit,
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(d)

Fig. 2.556

 RTh = 23.92 W

Step III: Value of RL

For maximum power transfer

 RL = RTh = 23.92 W

Step IV: Calculation of Pmax

Fig. 2.557

 Pmax = 
V

R

Th

Th

2 2

4

70 88

4 23 92
=

( . )

.¥
 = 52.51 W
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Example 10

Find the value of resistance RL for maximum power transfer and calculate the maximum 

power.

Fig. 2.558

Solution

Step I: Calculation of VTh

Removing the variable resistor RL from the network,

Fig. 2.559

Applying KVL to Mesh 1,

 80 – 5I1 – 10(I1 – I2) – 20(I1 – I2) – 20 = 0

 35I1 – 30I2 = 60 (1)

Writing the current equation for Mesh 2,

 I2 = 2 (2)

Solving Eqs (1) and (2),

 I1 = 3.43 A

Writing VTh equation,

 VTh – 20 (I1 – I2) – 20 = 0

 VTh = 20(3.43 – 2) + 20

  = 48.6 V

Step II: Calculation of RTh

Replacing the voltage sources by short circuits and the current source by an open circuit,
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Fig. 2.560

 RTh = 15 | | 20 = 8.57 W
Step III: Value of RL

For maximum power transfer

 RL = RTh = 8.57 W
Step IV: Calculation of Pmax

Fig. 2.561

 Pmax = 
V

R

Th

Th

2 2

4

48 6

4 8 57
=

( . )

.¥
 = 68.9 W

Example 11

Find the value of resistance RL for maximum power transfer and calculate the maximum 

power.

Fig. 2.562

Solution

Step I: Calculation of VTh

Removing the variable resistor RL from the network,
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Fig. 2.563

 I1 = 
100

10 30+
 = 2.5 A

 I2 = 
100

20 40+
 = 1.66 A

Writing VTh equation,

 VTh + 10I1 – 20I2 = 0

 VTh = 20I2 – 10I1

  = 20(1.66) – 10(2.5)

  = 8.2 V

Step II: Calculation of RTh

Replacing the voltage source by short circuit,

Fig. 2.564

Redrawing the network,

Fig. 2.565

  RTh = (10 | | 30) + (20 | | 40) = 20.83 W
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Step III: Value of RL

For maximum power transfer

 RL = RTh = 20.83 W

Step IV: Calculation of Pmax

Fig. 2.566

 Pmax = 
V

R

Th

Th

2 2

4

8 2

4 20 83
=

( . )

.¥
 = 0.81 W

Example 12

For the given circuit nd the value of RL for maximum power transfer and calculate the maximum 

power absorbed by RL.

2 W 1 W

4 W

RL

5 W

8 W

10 V

+ –

 .ig. 2.567 [De� 2014]

Solution

Step I: Calculation of VTh

Removing the variable resistor RL from the network,

4
W 5 W

+

A

B

8
W

I1

2 W

10 V

1 W

I2

+

–

–
VTh

+–

+
–

+
–

–

+

+

–

+

–

Fig. 2.568
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Applying KVL to Mesh 1,

    10 – 2I1 – 1(I1 – I2) – 8 (I1 – I2) = 0

           11I1 – 9I2 = 10 (1)

Applying KVL to Mesh 2

    –4I2 – 5I2 – 8 (I2 – I1) – 1 (I2 – I1) = 0

               –9I1 + 18I2 = 0 (2)

Solving Eqs (1) and (2),

     I1 = 1.54 A

     I2 = 0.77 A

Writing VTh equation,

    – 1 (I2 – I1) – 4I2 – VTh = 0

    VTh = –1(I2 – I1) – 4I2

     = –1(0.77 – 1.54) – 4(0.77)

     = –2.31 V

     = 2.31 V (the terminal B is positive w.r.t. A)

Step II: Calculation of RTh

Replacing the voltage source by a short circuit,

4
W 5 WA

B
8
W

2 W
1 W

RTh

Fig. 2.569

Redrawing the network,

Fig. 2.570
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Converting the upper delta into equivalent star network,

     
1

4 2
0.73

4 2 5
R

¥
= = W

+ +

     
2

4 5
1.82

4 2 5
R

¥
= = W

+ +

     
3

5 2
0.91

4 2 5
R

¥
= = W

+ +

A

B

8
W1

W

1.82 W

0.73 W 0.91 W

Fig. 2.572

Simplifying the network,

Fig. 2.573

    RTh = 1.82 + (1.73 || 8.91) = 3.27 W

Step III: Value of RL

For maximum power transfer

     RL = RTh = 3.27 W

R 1 R
3

A

B

8
W1 W

R2

Fig. 2.571
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Step IV: Calculation of Pmax

Fig. 2.574

     

2 2
Th

max
Th

(2.31)
0.41 W

4 4 3.27

V
P

R
= = =

¥

Example 13

Determine the value of R for maximum power transfer. Also nd the magnitude of maximum 

power transferred.

 .ig. 2.575 [De� 2012]

Solution

Step I: Calculation of VTh

60 W

40 W 50 W

50 W
2 V

BA

I
1

I
2

V
Th

+ –

+

+

–

– –

–

+

+

100 V

Fig. 2.576

     I1 = 
100

40 60+
 = 1 A

     I2 = 
100

50 50+
 = 1 A
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Writing VTh equation,

     – 40 I1 + VTh – 2 + 50 I2 = 0

     – 40(1) + VTh – 2 + 50(1) = 0

     VTh = – 8 V

       = 8 V (terminal B is positive w.r.t. A)

Step II: Calculation of RTh

40 W

60 W

50 W

50 W
A B
R
Th

(a)

A B

40 W 50 W

50 W60 W

(b)

A B
24 W 25 W

(c)

A B
29 W

(d)

Fig. 2.577

  RTh = 49 W
Step III: Value of R

For maximum power transfer

    R = RTh = 49 W
Step IV: Calculation of Pmax

Fig. 2.578
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   Pmax = 
V

R

Th

Th

2

4
 = 

( )8

4 49

2

¥
 = 0.33 W

Example 14

Find the value of resistance RL for maximum power transfer and calculate the maximum 

power.

Fig. 2.579

Solution

Step I: Calculation of VTh

Removing the variable resistor RL from the network,

Fig. 2.580

Applying KVL to Mesh 1,

  72 – 6I1 – 3 (I1 – I2) = 0

 9I1 – 3I2 = 72 (1)

Applying KVL to Mesh 2,

  –3 (I2 – I1) – 2I2 – 4I2 = 0

 –3I1 + 9I2 = 0 (2)

Solving Eqs (1) and (2),

 I1 = 9 A

 I2 = 3 A

Writing VTh equation,

 VTh – 6I1 – 2I2 = 0

 VTh = 6I1 + 2I2 = 6 (9) + 2 (3) = 60 V
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Step II: Calculation of RTh

Replacing voltage source by a short circuit,

 (a) (b)

Fig. 2.581

 RTh = [(6 | | 3) + 2] | | 4 = 2 W

Step III: Value of RL

For maximum power transfer

 RL = RTh = 2 W
Step IV: Calculation of Pmax

Fig. 2.582

 Pmax = 
V

R

Th

Th

2

4
 = 

( )60

4 2

2

¥
 = 450 W

Example 15

For the circuit shown, nd the value of the resistance RL for maximum power transfer and 

calculate maximum power.

Fig. 2.583
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Solution

Step I: Calculation of VTh

Removing the variable resistor RL from the network,

Fig. 2.584

By source transformation, the current source of 25 A and the 5 W resistor is converted 

into an equivalent voltage source of 125 V and a series resistor of 5 W. Also the voltage 

source of 30 V is connected across the 10 W resistor. Hence, the 10 W resistor becomes 

redundant.

Fig. 2.585

Applying KCL at node, 

 
VTh -12

15

5
 – 10 + 

VTh - 30

2
 = 0 

 VTh = 58.81 V 

Step II: Calculation of RTh 

Replacing the voltage source by a short circuit and the current sources by open circuits, 

Fig. 2.586
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Simplifying the network,

Fig. 2.587

 RTh = 15 || 2 = 1.76 W
Step III: Value of RL 

For maximum power transfer

 RL = RTh = 1.76 W
Step IV: Calculation of Pmax 

Fig. 2.588

 Pmax = 
V

R

Th

Th

2

4
 = 

( . )

.

58 81

4 1 76

2

¥
 = 491.28 W

Example 16

Find the value of RL for maximum power transfer and calculate maximum power.

 .ig. 2.589 [De� 2015]
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Solution

Step I: Calculation of VTh

Removing the variable resistor RL from the network,

Fig. 2.590

By source transformation, the current source of 5 A and parallel resistor of 2 W is converted 

into an equivalent voltage source of 10 V and series resistor of 2 W. Similarly, the other 

current source of 5 A and parallel resistor of 1 W is converted into an equivalent voltage 

source of 5 V and series resistor of 1 W.

Fig. 2.591

Applying KVL to Mesh 1,

 –2I1 + 10 – 10 – 2(I1 – I2) = 0

 4I1 – 2I2 = 0 (1)

Applying KVL to Mesh 2,

 –2(I2 – I1) + 10 + 5 – 1I2 – 2I2 – 5 = 0

 –2I1 + 5I2 = 10 (2)

Solving Eqs (1) and (2),

 I1 = 1.25 A

 I2 = 2.5 A

Writing VTh equation,

 5 + 2I2 – VTh = 0

 VTh = 5 + 2I2

  = 5 + 2 (2.5)

  = 10 V
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Step II:  Calculation of RTh

Replacing the voltage sources by short circuits and current sources by open circuits,

Fig. 2.592

By series-parallel reduction technique,

  

 (a) (b)

(c)

Fig. 2.593

 RTh = 1 W

Step III: Value of RL 

For maximum power transfer

 RL = RTh = 1 W

Step IV:  Calculation of Pmax

Fig. 2.594
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2 2
Th

max
Th

(10)
25 W

4 4 1

V
P

R
= = =

¥

Example 17

For the given circuit, nd the value of ‘RL’ so that maximum power is dissipated in it. Also, nd 

Pmax.

2 W

1 W

3 W2 W

8 W
12 V

RL

10 V

8 V

 .ig. 2.595 [De� 2013]

Solution

Step I: Calculation of VTh

Removing the resistor RL from the network,

Fig. 2.596

Applying KVL to Mesh 1,

     8 – 2I1 – 1I1 – 2(I1 – I2) = 0

     5I1 – 2I2 = 8 (1)

Applying KVL to Mesh 2,

     –2(I2 – I1) – 3I2 – 8I2 + 12 = 0
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     –2I1 + 13I2 = 12 (2)

Solving Eqs. (1)  and (2),

     I1 = 2.1 A

     I2 = 1.25 A

Writing VTh equation,

     1I1 + 10 – VTh + 3I2 = 0

     VTh = 1I1 + 10 + 3I2

      = 1(2.1) + 10 + 3(1.25)

      = 15.85 V

Step II: Calculation of RTh

Replacing the voltage sources by short circuits,

Fig. 2.597

Converting the delta network formed by resistors of 2 W, 1 W and 2 W into equivalent star 

network,

     R1 = 
2 1

0.4
2 1 2

¥
= W

+ +

     R2 = 
2 1

0.4
2 1 2

¥
= W

+ +

     R3 = 
2 2

0.8
2 1 2

¥
= W

+ +

A

B

RTh

0.8 W
0.4 W

0.4 W

3 W

8 W

Fig. 2.598
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Simplifying the network,

A

B

RTh

0.4 W

3.4 W

8.8 W
(a)

2.45 0.4 W
A

B

RTh

(b)

Fig. 2.599

   RTh = 2.85 W
Step III: Value of RL

For maximum power transfer

    RL = RTh = 2.85 W
Step IV: Calculation of Pmax

A

B

2.85 W

2.85 W15.85 V

Fig. 2.600

   Pmax = 

2 2
Th

Th

(15.85)
22.04 W

4 4 2.85

V

R
= =

¥
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Example 18

For the circuit shown, nd the value of the resistance RL for maximum power transfer and 

calculate maximum power.

Fig. 2.601

Solution

Step I: Calculation of VTh

Removing the variable resistor RL from the network, 

Fig. 2.602

Applying KVL to the outer path, 

 10 – 2I – 12 – 5I – 8 = 0 

 I = – 
10

7
 = – 1.43 A 

Writing VTh equation, 

 8 + 5I + 6 – VTh = 0 

 VTh = 8 + 6 + 5I 

  = 8 + 6 + 5 (– 1.43)

  = 6.85 V 

Step II: Calculation of RTh

Replacing voltage sources by short circuits and current source by an open circuit,

Fig. 2.603
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 RTh  = (2 || 5) + 2 

  = 3.43 W 

Step III: Value of RL

For maximum power transfer 

 RL = RTh = 3.43 W 

Step IV: Calculation of Pmax

Fig. 2.604

 Pmax  = 
V

R

Th

Th

2

4
 = 

( . )

.

6 85

4 3 43

2

¥
 = 3.42 W

Exercise 2.9

 2.1 Find the value of the resistance RL for maximum power transfer and calculate 

maximum power.

Fig. 2.605

[1.75 W, 1.29 W] 

 2.2 Find the value of the resistance RL for maximum power transfer and calculate the 

maximum power.

Fig. 2.606

[4.51 W, 4.95 W] 
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K
K

v(t) = Ri(t)

v(t) i(t)

linear dependent source

or sum

linear circuit

K
K

The Superposition Principle
superposition.

ia ib forc-
ing functions

response functions, responses

. v − . v = ia

− . v + . v = ib

x
iax ibx

v x v x

. v x − . v x = iax

− . v x + . v x = ibx

y iay

iby v y v y

. v y − . v y = iay

− . v y + . v y = iby

ia

v v

ib7

7

7

■ A circuit with two independent current
sources.

a v + a v + · · · + aNvN = b

ai

± vi b

b K
Kv , Kv , . . . , KvN

The dependent voltage source vs� 0.6i1� 14v2 is

linear, but vs� 0.6i1
2 and vs� 0.6i1v2 are not.
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add superpose

( . v x + . v y)− ( . v x + . v y) = iax + iay

v − v ( ia

−( . v x + . v y)+ ( . v x + . v y) = ibx + iby

− v + v ( ib

iax iay ia ibx iby

ib v v v x

v y v x v y

x y

a
b superposition

theorem

N N

dependent

group

i

i

a

vv

b

■ (a) A voltage source set to zero acts
like a short circuit. (b) A current source set to zero acts
like an open circuit.
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For the circuit of Fig. 5.3a, use superposition to determine the
unknown branch current ix.

EXAMPLE

■ (a) An example circuit with two independent sources for which the branch current
ix is desired; (b) same circuit with current source open-circuited; (c) original circuit with voltage
source short-circuited.

ix

vs is

7

7

a

7

7

ix

b

'

7

7

ix"

c

b ix
i �x

a
c i ��x

ix
ix

ix = ix | + ix | = i �x + i ��x

ix = +
+
r

+

s
= . + . = .

ix N However, the contribution of the 3 V
source to ix does not depend on the contribution of the 2 A source, and vice
versa

ix N

ix
. + . = .
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PRACTICE 
●

ix

■

7

7

7

7

ix

EXAMPLE

Referring to the circuit of Fig. 5.5a, determine the maximum positive
current to which the source Ix can be set before any resistor exceeds
its power rating and overheats.

D Identify the goal of the problem.

(Continued on next page)

Ix

7

7

a

7

7

i 7

i 7

b

Ix

7

7

c

i 7

i 7

■ (a) A circuit with two resistors each rated at W. (b) Circuit
with only the 6 V source active. (c) Circuit with the source Ix active.
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Ix

D Collect the known information.
N

R
P

R
=
R
. =

N

D Devise a plan.

D Construct an appropriate set of equations.
b

i � N = +
= .

N N i � N =
.

c i �� N
add i � N i �� N opposite i � N

IX . − . = . N

− (− . ) = . N

N Ix

Ix < ( . × − )

r
+

s

N

Ix < ( . × − )

r + s

D Attempt a solution.
N Ix Ix <

N Ix Ix < .

Ix

N

N

D Verify the solution. Is it reasonable or expected?

N

N

Ix

Ix opposes
N adds

N

N Ix
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In the circuit of Fig. 5.6a, use the superposition principle to deter-
mine the value of ix.

EXAMPLE

ix

7 7

ix
v

a

7 7

ix
ix

b

'
' v

7 7

ix

ix

c

"
" "

■ (a) An example circuit with two independent sources and one
dependent source for which the branch current ix is desired. (b) Circuit with the 3 A
source open-circuited. (c) Original circuit with the 10 V source short-circuited.

7

7

7 i

v v

i

■

b

− + i �x + i �x + i �x =

i �x =
c

v�� + v
�� − i ��x =

v��

v�� = (−i ��x )

i ��x = − .

ix = i �x + i ��x = + (− . ) = .

PRACTICE 
●

v | = . v | = − . v | = . v | = − .
v = v = − .



Summary of Basic Superposition Procedure

Select one of the independent sources. Set all other indepen-
dent sources to zero.

Relabel voltages and currents using suitable notation
v� i ��

Analyze the simplified circuit to find the desired currents
and/or voltages.
Repeat steps 1 through 3 until each independent source has
been considered.
Add the partial currents and/or voltages obtained from the
separate analyses.

Do not add power quantities.

. + . =
+ =

CHAPTER 5 HANDY CIRCUIT ANALYSIS TECHNIQUES

COMPUTER-AIDED ANALYSIS

dc parameter sweep

New
Simulation Profile PSpice,
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■ The circuit from Example 5.2. 

■ DC Sweep dialog box shown with Ix selected as the sweep variable.

Analysis Type, DC Sweep
Current Source,

Name Linear,
Logarithmic, Value List.

Linear Start Value
End Value Increment.

Add Trace Trace
I(R1), Trace Expression

I(R1)
N

(Continued on next page)



N

a
Trace Expression

Add Trace Trace
N does

=

N

decreases

Trace, Cursor,
Display b

N

CHAPTER 5 HANDY CIRCUIT ANALYSIS TECHNIQUES

■ (a) Probe output with text labels identifying the power absorbed by the two
resistors individually. A horizontal line indicating 250 mW has also been included, as well as text
labels to improve clarity. (b) Cursor dialog box.

a

b



SECTION 5.2 SOURCE TRANSFORMATIONS

We must constantly be aware of the limitations of superposition

N

5.2 • SOURCE TRANSFORMATIONS

Practical Voltage Sources
ideal

N

N

N

N

V = = RI =
What happens in the realworld when we do this type of experiment?

∼

a

/ ( N

practical voltage source b

a

7

b

■ (a) An ideal 12 V dc voltage source
used to model a car battery. (b) A more accurate
model that accounts for the observed reduction in
terminal voltage at large currents.



a
RL

RL VL b
VL IL

a
IL VL

= . IL + VL

VL = − . IL +
IL VL b

RL

RL = . N

RL = ∞

VL = RL =

IL = In practice, such an experiment would
probably result in the destruction of the short circuit, the battery, and any
measuring instruments incorporated in the circuit!

VL IL

VL IL

VL IL

b VL IL

ideal

general
a vs Rs

internal resistance output resistance,

vL iL

vL = vs − RsiL

CHAPTER 5 HANDY CIRCUIT ANALYSIS TECHNIQUES

VL

IL7

a

RL

b

IL 

V L
 

■ (a) A practical source, which
approximates the behavior of a certain 12 V
automobile battery, is shown connected to a load
resistor RL. (b) The relationship between IL and VL

is linear.

vL

iLRs

vs

a

RL

vL vs
vL

b

iL
vs Rs

iL

■ (a) A general practical voltage
source connected to a load resistor RL. (b) The terminal
voltage of a practical voltage source decreases as iL
increases and RL( vL /iL decreases. The terminal
voltage of an ideal voltage source (also plotted)
remains the same for any current delivered to a load.
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b (RL = ∞
iL =

vL = vs

(RL = vL =

iL = vs

Rs

b

Practical Current Sources

Rp a
iL vL RL

iL = is −
vL

Rp

vL = Rpis

iL = is

RL b

RL

RL = Rp iL

RL Rp

Equivalent Practical Sources

b b
but the graphs are

indistinguishable!

can be
RL

iL

Rp

a

RLis vL

vL Rpis
vL

b

iL is

iL

■ (a) A general practical current
source connected to a load resistor RL. (b) The load
current provided by the practical current source is
shown as a function of the load voltage.



vL iL

RL a
RL

b RL

a

vL = vs
RL

Rs + RL

RL

b

vL =
r

is
Rp

Rp + RL

s
· RL

Rs = Rp

vs = Rpis = Rsis

Rs

a
N

N

=
b

N

N

not
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vs

Rs

RLvL

iL

a

RLRpis vL

iL

b

■ (a) A given practical
voltage source connected to a load RL.
(b) The equivalent practical current source
connected to the same load.

7

a

7

b

■ (a) A given practical
current source. (b) The equivalent practical
voltage source.

Compute the current through the 4.7 k7 resistor in Fig. 5.17a after
transforming the 9 mA source into an equivalent voltage source.

N

N

�
b

� � I � I� I � �

I �

a

EXAMPLE
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I

7

7

7

a

I

77 7

b

■ (a) A circuit with both a voltage source and a current source. (b) The circuit
after the 9 mA source is transformed into an equivalent voltage source. 

7

7IX

■

Calculate the current through the 2 7 resistor in Fig. 5.19a by
making use of source transformations to first simplify the circuit.

b
N

N

N N

N N

/ c
N

N /

d
I

− . + . I − Vx + I + =

Vx = I

I = .

EXAMPLE

µ

PRACTICE 
●

IX N

(Continued on next page)
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I

Vx

7 7 7

7

7

7
Vx

a

I

Vx

7

7

7

777

Vx

b

I

Vx

77

7

7
Vx

c

I

Vx7

7

7

Vx

d

■ (a) A circuit with two independent current sources and one
dependent source. (b) The circuit after each source is transformed into a voltage
source. (c) The circuit after further combinations. (d ) The final circuit.

■

V

7

7

7

7
�

�

PRACTICE 
●

V N
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Several Key Points

in series

N

N

in parallel.
a

N

b
c

7

7

7 i

i

■ An example circuit to illustrate how to determine if a source
transformation can be performed.

7 7

7

a

7 7

7

b

7

7

7

c

■ (a) A circuit with a current source to be transformed to a voltage source. (b) Circuit
redrawn so as to avoid errors. (c) Transformed source/resistor combination.



a
R

R , VR = Ix R

we may simply omit resistor R

b
R

R R
R

R

CHAPTER 5 HANDY CIRCUIT ANALYSIS TECHNIQUES

Vx R RIx

R

RVR

a b

■ (a) Circuit with a resistor R1 in series with a current
source. (b) A voltage source in parallel with two resistors.

Summary of Source Transformation

A common goal in source transformation is to end up with
either all current sources or all voltage sources in the circuit.

Repeated source transformations can be used to simplify a
circuit by allowing resistors and sources to eventually be
combined.
The resistor value does not change during a source transfor-
mation, but it is not the same resistor.

If the voltage or current associated with a particular resistor is
used as a controlling variable for a dependent source, it should
not be included in any source transformation.

If the voltage or current associated with a particular element is
of interest, that element should not be included in any source
transformation.

In a source transformation, the head of the current source
arrow corresponds to the “+” terminal of the voltage source.
A source transformation on a current source and resistor
requires that the two elements be in parallel.
A source transformation on a voltage source and resistor
requires that the two elements be in series.
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5.3 • THÉVENIN AND NORTON EQUIVALENT CIRCUITS

a

b at the load resistor

c

RL

a

RTH

VTH RL

b

IN RLRN

c

■ (a) A complex network including a load resistor RL. (b) A Thé venin equivalent
network connected to the load resistor RL. (c) A Norton equivalent network connected to the load
resistor RL.

Consider the circuit shown in Fig. 5.25a. Determine the Thévenin
equivalent of network A, and compute the power delivered to the
load resistor RL.

A B
B RL

A

EXAMPLE

(Continued on next page)
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RL

7

A
e

A B

7 7

7 RL

a

7 7 RL

7

A
b

7 RL

7

A
c

RL

7 7

A
d

■ (a) A circuit separated into two networks. (b)–(d ) Intermediate steps to simplifying
network A. (e) The Thé venin equivalent circuit.

7 7

7

RL

■

N

N b
N c

d
e

From the viewpoint of the load resistor RL , A
A

PL =
r

+ RL

s
RL

RL

RL = ∞ A

/ RL =

PRACTICE 
●

N
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Thé venin’s Theorem

A Statement of Thévenin’s Theorem

Given any linear circuit, rearrange it in the form of two
networks, A and B, connected by two wires. A

B

Disconnect network B. v

A

Turn off or “zero out” every independent source in network A
to form an inactive network.

Connect an independent voltage source with value voc in series
with the inactive network.

Connect network B to the terminals of the new network A.
B

its control
variable must be in the same network

RL

Use Thévenin’s theorem to determine the Thévenin equivalent for
that part of the circuit in Fig. 5.25a to the left of RL.

RL

N a
V N

N

V =
r

+

s
=

EXAMPLE
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Voc7

7 7

a

77

7

b

RTH

■ (a) The circuit of Fig. 5.25a with network B (the resistor
RL) disconnected and the voltage across the connecting terminals labeled
as Voc. (b) The independent source in Fig. 5.25a has been killed, and we
look into the terminals where network B was connected to determine the
effective resistance of network A.

7 7

7

7

7

I 7

■

A
N

N N

b
N

Thévenin equivalent resistance A
V N

PRACTICE 
●

N

Hint: N B

VTH = . RTH = . N I N = .

A Few Key Points

B B
A

B B
A

A B

A B
dependent A A

B

A B

A
RTH ,
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A

Norton’s Theorem

A Statement of Norton’s Theorem

Given any linear circuit, rearrange it in the form of two
networks, A and B, connected by two wires. A

B
its controlling

variable must be in the same network

Disconnect network B, and short the terminals of A.
i

A

Turn off or “zero out” every independent source in network 
A to form an inactive network.

Connect an independent current source with value isc in
parallel with the inactive network.

Connect network B to the terminals of the new network A.
B

i RTH

v , i , RTH

v = RTH i

RTH
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■ (a) A given circuit in which the 1 kN resistor is identified as network B.
(b) Network A with all independent sources killed. (c) The Thé venin equivalent is shown for
network A. (d) The Norton equivalent is shown for network A. (e) Circuit for determining Isc.

a

7

77

7

7

RTH

b

7 7

I

e

c

7

7

d

77

B N

A
A

N

B
| �

| � � � � �

RTH b
RTH � N � N � N

B c

�
N d

Check: a
N A

EXAMPLE

Find the Thévenin and Norton equivalent circuits for the network
faced by the 1 k7 resistor in Fig. 5.29a.
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■

7 7

7

I e

I = I | + I | =
+
+ ( )

+
= . + . = .

PRACTICE 
●

− − N

When Dependent Sources Are Present
B

is B

B
A

A

B
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EXAMPLE

Determine the Thévenin equivalent of the circuit in Fig. 5.31a.

vx
vx

a

7 7

vx
vx

b

7 7

c

7

■ (a) A given network whose Thé venin equivalent is desired. (b) A possible,
but rather useless, form of the Thé venin equivalent. (c) The best form of the Thé venin
equivalent for this linear resistive network.

7V V

■

V vx = V
N

N

− + ×
p
− vx

q
+ × ( )+ vx =

vx = = V

A
b

A RTH

RTH

I a
Vx =

I = /( × ) = .

RTH =
V

I
=
. × − = N

c

PRACTICE 
●

Hint:

− − N
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Find the Thévenin equivalent of the circuit shown in Fig. 5.33a.

i =
v =

RTH

v i
v i

v

RTH = v / b
i = −

v − . (− )
+
v
=

v = .

RTH = . N

c

EXAMPLE

a

7

7i

i

v

b

7

7i

i

7

c

■ (a) A network with no independent sources. (b) A hypothetical measurement to
obtain RT H. (c) The Thé venin equivalent to the original circuit.

A Quick Recap of Procedures

RTH

V RTH

I V I



V
I RTH

RTH v = × RTH

i = /RTH

as long as all independent
sources are set to zero first

B vs

i A i
vs = ai + b a = RTH b = v

N

common
terminal

R

N V
ND N = . N

V = .

PRACTICAL APPLICATION
The Digital Multimeter

■ A handheld digital multimeter.

7

7

7

■ A DMM connected to measure voltage.

7 RDMMV

7

■ DMM in Fig. 5.35 shown as its Thé venin equivalent
resistance, RDMM. 



7 7

7i

i

■ See Practice
Problem 5.9.

is v

is = cv − d c = /RTH d = i

B A

PRACTICE 
●

Hint:

I = RTH = N

R

− + I + R I + I =

R N ∞
R N

I

7

7

I

■ A DMM connected to measure current. V INRDMMR

■ DMM in resistance measurement configuration replaced by
its Norton equivalent, showing RDMM in parallel with the unknown resistor R
to be measured.

R
R

RDR
R = N R = N R = . N

R = N R = N

programmed R



5.4 • MAXIMUM POWER TRANSFER

RL

pL = iL RL =
vs RL

(Rs + RL)

RL

RL

dpL

d RL
= (Rs + RL) vs − vs RL( )(Rs + RL)

(Rs + RL)

RL(Rs + RL) = (Rs + RL)

Rs = RL

RL = RL = ∞ (pL = )

maximum power transfer theorem:

Rs

Rs

RL RL = Rs

RL RL

N

N

drawing
source delivering load

Any change to the load resistance will reduce the power delivered
to the load

we deliver zero
power p = i R,

R =

RL = Rs = RTH

p | = vs

Rs
= vTH

RTH

CHAPTER 5 HANDY CIRCUIT ANALYSIS TECHNIQUES

vs

Rs

RLvL

iL

■ A practical voltage source connected
to a load resistor RL.
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vTH RTH

The circuit shown in Fig. 5.41 is a model for the common-emitter
bipolar junction transistor amplifier. Choose a load resistance so
that maximum power is transferred to it from the amplifier, and
calculate the actual power absorbed.

EXAMPLE

v�

7

77 7 RLt v�

■ A small-signal model of the common-emitter amplifier, with the load resistance
unspecified.

v� v

7

77 7t v�

RTHv�

7

77 7v�

(a)

(b)

■ (a) Circuit with RL removed and independent source short-circuited. (b) Circuit
for determining vT H.

RL

a

(Continued on next page)



5.5 • DELTA-WYE CONVERSION

�-Y (delta-wye)

a b c d

CHAPTER 5 HANDY CIRCUIT ANALYSIS TECHNIQUES

R7

7

■

vπ =
RTH ( N

N vπ

RTH

RL

RTH = N

vTH b
RL

v = − . vπ ( ) = − vπ

vπ

vπ = ( . × − t)

r

+

s

− t
N

p = vTH

RTH
= . t µ

PRACTICE 
●

a R ( N

b R

c R

N N



Superposition
If a circuit has two or more independent sources, one way to determine
the value of a specific variable (voltage or current) is to use nodal or
mesh analysis as in Chapter 3. Another way is to determine the con-
tribution of each independent source to the variable and then add them
up. The latter approach is known as the superposition.

The idea of superposition rests on the linearity property.

4.3

130 Chapter 4 Circuit Theorems

Example 4.2

Assume that and use linearity to calculate the actual value
of in the circuit of Fig. 4.5.

Answer: 16 V.

Vo

Vo � 1 VPractice Problem 4.2

Io

I4 I2

I3

V2
6 Ω 2 Ω2

5 Ω7 Ω

I1

V1
3 Ω1

4 ΩIs = 15 A

Figure 4.4
For Example 4.2.

Solution:
If A, then and Applying
KCL at node 1 gives

Applying KCL at node 2 gives

Therefore, This shows that assuming gives 
the actual source current of 15 A will give as the actual value.Io � 3 A

Is � 5 A,Io � 1Is � 5 A.

I4 � I3 � I2 � 5 A

V2 � V1 � 2I2 � 8 � 6 � 14 V,  I3 �
V2

7
� 2 A

I2 � I1 � Io � 3 A

I1 � V1Z4 � 2 A.V1 � (3 � 5)Io � 8 VIo � 1

Assume A and use linearity to find the actual value of in the
circuit of Fig. 4.4.

IoIo � 1

40 V

12 Ω

8 Ω5 Ω+
−

+

−
Vo

Figure 4.5
For Practice Prob. 4.2.

The superposition principle states that the voltage across (or current
through) an element in a linear circuit is the algebraic sum of the volt-
ages across (or currents through) that element due to each independ-
ent source acting alone.

Superposition is not limited to circuit
analysis but is applicable in many
fields where cause and effect bear a
linear relationship to one another.



The principle of superposition helps us to analyze a linear circuit with
more than one independent source by calculating the contribution of
each independent source separately. However, to apply the superposi-
tion principle, we must keep two things in mind:

1. We consider one independent source at a time while all other inde-
pendent sources are turned off. This implies that we replace every
voltage source by 0 V (or a short circuit), and every current source
by 0 A (or an open circuit). This way we obtain a simpler and more
manageable circuit.

2. Dependent sources are left intact because they are controlled by
circuit variables.

With these in mind, we apply the superposition principle in three
steps:

4.3 Superposition 131

Other terms such as killed, made inac-
tive, deadened, or set equal to zero
are often used to convey the same
idea.

Steps to Apply Superposition Principle:

1. Turn off all independent sources except one source. Find the
output (voltage or current) due to that active source using
the techniques covered in Chapters 2 and 3.

2. Repeat step 1 for each of the other independent sources.
3. Find the total contribution by adding algebraically all the

contributions due to the independent sources.

Analyzing a circuit using superposition has one major disadvan-
tage: It may very likely involve more work. If the circuit has three
independent sources, we may have to analyze three simpler circuits
each providing the contribution due to the respective individual source.
However, superposition does help reduce a complex circuit to simpler
circuits through replacement of voltage sources by short circuits and
of current sources by open circuits.

Keep in mind that superposition is based on linearity. For this
reason, it is not applicable to the effect on power due to each source,
because the power absorbed by a resistor depends on the square of
the voltage or current. If the power value is needed, the current
through (or voltage across) the element must be calculated first using
superposition.

Example 4.3

6 V v 3 A

8 Ω

4 Ω+
−

+

−

Figure 4.6
For Example 4.3.

Use the superposition theorem to find v in the circuit of Fig. 4.6.

Solution:
Since there are two sources, let

where and are the contributions due to the 6-V voltage source
and the 3-A current source, respectively. To obtain we set the current
source to zero, as shown in Fig. 4.7(a). Applying KVL to the loop in
Fig. 4.7(a) gives

12i1 � 6 � 0  1   i1 � 0.5 A

v1,
v2v1

v � v1 � v2



Thus,

We may also use voltage division to get by writing

To get we set the voltage source to zero, as in Fig. 4.7(b). Using
current division,

Hence,

And we find

v � v1 � v2 � 2 � 8 � 10 V

v2 � 4i3 � 8 V

i3 �
8

4 � 8
 (3) � 2 A

v2,

v1 �
4

4 � 8
 (6) � 2 V

v1

v1 � 4i1 � 2 V
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+
−6 V i1

8 Ω

v14 Ω

(a)

+

−

3 A

8 Ω

v2

i2

i3

4 Ω

(b)

+

−

Figure 4.7
For Example 4.3: (a) calculating 
(b) calculating v2.

v1,

Practice Problem 4.3
3 Ω 5 Ω

2 Ω 5 A 12 V+
−

+

−
vo

Figure 4.8
For Practice Prob. 4.3.

Find in the circuit of Fig. 4.9 using superposition.

Solution:
The circuit in Fig. 4.9 involves a dependent source, which must be left
intact. We let

(4.4.1)

where and are due to the 4-A current source and 20-V voltage
source respectively. To obtain we turn off the 20-V source so that
we have the circuit in Fig. 4.10(a). We apply mesh analysis in order to
obtain For loop 1,

(4.4.2)

For loop 2,

(4.4.3)�3i1 � 6i2 � 1i3 � 5i¿o � 0

i1 � 4 A

i¿o.

i¿o,
i–oi¿o

io � i¿o � i–o

ioExample 4.4

4 A

20 V

3 Ω

5 Ω

1 Ω

2 Ω

4 Ω

+ −

5io

io

+ −

Figure 4.9
For Example 4.4.

Using the superposition theorem, find in the circuit of Fig. 4.8.

Answer: 7.4 V.

vo



For loop 3,

(4.4.4)

But at node 0,

(4.4.5)

Substituting Eqs. (4.4.2) and (4.4.5) into Eqs. (4.4.3) and (4.4.4) gives
two simultaneous equations

(4.4.6)

(4.4.7)

which can be solved to get

(4.4.8)

To obtain we turn off the 4-A current source so that the circuit
becomes that shown in Fig. 4.10(b). For loop 4, KVL gives

(4.4.9)

and for loop 5,

(4.4.10)

But Substituting this in Eqs. (4.4.9) and (4.4.10) gives

(4.4.11)

(4.4.12)

which we solve to get

(4.4.13)

Now substituting Eqs. (4.4.8) and (4.4.13) into Eq. (4.4.1) gives

io � �
8

17
� �0.4706 A

i–o � �
60

17
 A

i4 � 5i–o � �20

6i4 � 4i–o � 0

i5 � �i–o.

�i4 � 10i5 � 20 � 5i–o � 0

6i4 � i5 � 5i–o � 0

i–o,

i¿o �
52

17
 A

i2 � 5i¿o � 20

3i2 � 2i¿o � 8

i3 � i1 � i¿o � 4 � i¿o

�5i1 � 1i2 � 10i3 � 5i¿o � 0
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4 A

3 Ω

5 Ω

1 Ω

2 Ω

4 Ω

+ −

i1 i3io

5io

0

(a)

3 Ω

5 Ω

1 Ω

2 Ω

4 Ω

+ −
io

5io

(b)

20 V

+ −

i1

i2

i3
i5

i4

Figure 4.10
For Example 4.4: Applying superposition to (a) obtain (b) obtain i–o.i¿o,
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Use superposition to find in the circuit of Fig. 4.11.

Answer: V.vx � 31.25

vxPractice Problem 4.4

vx20 Ω

0.1vx4 Ω25 V 5 A+
−

Figure 4.11
For Practice Prob. 4.4.

For the circuit in Fig. 4.12, use the superposition theorem to find i.

Solution:
In this case, we have three sources. Let

where , and are due to the 12-V, 24-V, and 3-A sources respec-
tively. To get , consider the circuit in Fig. 4.13(a). Combining 
(on the right-hand side) in series with gives . The in
parallel with gives . Thus,

To get , consider the circuit in Fig. 4.13(b). Applying mesh analysis
gives

(4.5.1)

(4.5.2)

Substituting Eq. (4.5.2) into Eq. (4.5.1) gives

To get , consider the circuit in Fig. 4.13(c). Using nodal analysis gives

(4.5.3)

(4.5.4)

Substituting Eq. (4.5.4) into Eq. (4.5.3) leads to and

Thus,

i � i1 � i2 � i3 � 2 � 1 � 1 � 2 A

i3 �
v1

3
� 1 A

v1 � 3

v2 � v1

4
�
v1

4
�
v1

3
  1  v2 �

10

3
 v1

3 �
v2

8
�
v2 � v1

4
  1   24 � 3v2 � 2v1

i3

i2 � ib � �1

7ib � 4ia � 0  1   ia �
7

4
ib

16ia � 4ib � 24 � 0  1   4ia � ib � �6

i2

i1 �
12
6

� 2 A

12 � 4Z16 � 3 74 7
12 712 78 7

4 7i1

i3i1, i2

i � i1 � i2 � i3

Example 4.5

+ −

+
−

24 V 8 Ω

4 Ω

3 Ω 3 A12 V

4 Ω

i

Figure 4.12
For Example 4.5.



Answer: 375 mA.
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8 Ω

4 Ω 4 Ω

3 Ω12 V +
−

3 Ω

3 Ω12 V +
−

(a)

8 Ω24 V

4 Ω 4 Ω

3 Ω

(b)

+ −

ib

ia

8 Ω

4 Ω 4 Ω

3 Ω 3 A

v1
v2

(c)

i1

i2 i3

i1

Figure 4.13
For Example 4.5.

Find I in the circuit of Fig. 4.14 using the superposition principle. Practice Problem 4.5

8 V

8 Ω
2 Ω

2 A

6 Ω

+
− 6 V+

−

I

Figure 4.14
For Practice Prob. 4.5.

Source Transformation
We have noticed that series-parallel combination and wye-delta trans-
formation help simplify circuits. Source transformation is another tool
for simplifying circuits. Basic to these tools is the concept of equiva-
lence. We recall that an equivalent circuit is one whose v-i character-
istics are identical with the original circuit.

In Section 3.6, we saw that node-voltage (or mesh-current) equa-
tions can be obtained by mere inspection of a circuit when the sources
are all independent current (or all independent voltage) sources. It is
therefore expedient in circuit analysis to be able to substitute a voltage
source in series with a resistor for a current source in parallel with a

4.4



resistor, or vice versa, as shown in Fig. 4.15. Either substitution is
known as a source transformation.

136 Chapter 4 Circuit Theorems

A source transformation is the process of replacing a voltage source
vs in series with a resistor R by a current source is in parallel with a resis-
tor R, or vice versa.

+
−vs

R
a

b

is R

a

b

Figure 4.15
Transformation of independent sources.

The two circuits in Fig. 4.15 are equivalent—provided they have the
same voltage-current relation at terminals It is easy to show that
they are indeed equivalent. If the sources are turned off, the equivalent
resistance at terminals a-b in both circuits is R. Also, when terminals

are short-circuited, the short-circuit current flowing from a to b is
in the circuit on the left-hand side and for the circuit

on the right-hand side. Thus, in order for the two circuits to
be equivalent. Hence, source transformation requires that

(4.5)

Source transformation also applies to dependent sources, provided
we carefully handle the dependent variable. As shown in Fig. 4.16, a
dependent voltage source in series with a resistor can be transformed
to a dependent current source in parallel with the resistor or vice versa
where we make sure that Eq. (4.5) is satisfied.

vs � isR  or  is �
vs

R

vsZR � is

isc � isisc � vsZR
a-b

a-b.

vs

R
a

b

is R

a

b

+
−

Figure 4.16
Transformation of dependent sources.

Like the wye-delta transformation we studied in Chapter 2, a
source transformation does not affect the remaining part of the circuit.
When applicable, source transformation is a powerful tool that allows
circuit manipulations to ease circuit analysis. However, we should keep
the following points in mind when dealing with source transformation.

1. Note from Fig. 4.15 (or Fig. 4.16) that the arrow of the current source
is directed toward the positive terminal of the voltage source.

2. Note from Eq. (4.5) that source transformation is not possible when
, which is the case with an ideal voltage source. However, for

a practical, nonideal voltage source, . Similarly, an ideal cur-
rent source with cannot be replaced by a finite voltage source.
More will be said on ideal and nonideal sources in Section 4.10.1.

R � A
R q 0

R � 0
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Use source transformation to find in the circuit of Fig. 4.17.

Solution:
We first transform the current and voltage sources to obtain the circuit
in Fig. 4.18(a). Combining the and resistors in series and
transforming the 12-V voltage source gives us Fig. 4.18(b). We now
combine the and resistors in parallel to get . We also
combine the 2-A and 4-A current sources to get a 2-A source. Thus,
by repeatedly applying source transformations, we obtain the circuit in
Fig. 4.18(c).

2-76-73-7

2-74-7

vo Example 4.6

4 Ω 2 Ω

4 A8 Ω 3 Ω12 V +
−

(a)

+

−
vo

4 A8 Ω6 Ω 3 Ω2 A

(b)

2 A8 Ω 2 Ω

(c)

i
+

−
vo

+

−
vo

2 Ω 3 Ω

12 V8 Ω4 Ω 3 A +
−

+

−
vo

Figure 4.17
For Example 4.6.

Figure 4.18
For Example 4.6.

Find in the circuit of Fig. 4.19 using source transformation.io Practice Problem 4.6

4 Ω5 A

5 V

7 Ω 3 A3 Ω

1 Ω

6 Ω

− +
io

Answer: 1.78 A.

Figure 4.19
For Practice Prob. 4.6.

We use current division in Fig. 4.18(c) to get

and

Alternatively, since the and resistors in Fig. 4.18(c) are
in parallel, they have the same voltage across them. Hence,

vo � (8 J  2)(2 A) �
8 � 2

10
 (2) � 3.2 V

vo

2-78-7

vo � 8i � 8(0.4) � 3.2 V

i �
2

2 � 8
 (2) � 0.4 A



Applying KVL to the loop containing only the 3-V voltage source, the
resistor, and yields

(4.7.2)

Substituting this into Eq. (4.7.1), we obtain

Alternatively, we may apply KVL to the loop containing , the 4-
resistor, the voltage-controlled dependent voltage source, and the 18-V
voltage source in Fig. 4.21(b). We obtain

Thus, V.vx � 3 � i � 7.5

�vx � 4i � vx � 18 � 0  1   i � �4.5 A

7vx

15 � 5i � 3 � i � 0  1   i � �4.5 A

�3 � 1i � vx � 0  1   vx � 3 � i

vx1-7
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Find in Fig. 4.20 using source transformation.

Solution:
The circuit in Fig. 4.20 involves a voltage-controlled dependent current
source. We transform this dependent current source as well as the 6-V
independent voltage source as shown in Fig. 4.21(a). The 18-V voltage
source is not transformed because it is not connected in series with any
resistor. The two resistors in parallel combine to give a 
resistor, which is in parallel with the 3-A current source. The current
source is transformed to a voltage source as shown in Fig. 4.21(b).
Notice that the terminals for are intact. Applying KVL around the
loop in Fig. 4.21(b) gives

(4.7.1)�3 � 5i � vx � 18 � 0

vx

1-72-7

vxExample 4.7
4 Ω

2 Ω
0.25vx

2 Ω6 V 18 V+
−

+
−vx

+

−

Figure 4.20
For Example 4.7.

18 V3 A

4 Ω

2 Ω2 Ω

+ −

+
−

(a)

18 V3 V

4 Ω1 Ω

vx

vxvx

+

−

+ −

+
−

+
−

(b)

i

+

−
vx

Figure 4.21
For Example 4.7: Applying source transformation to the circuit in Fig. 4.20.

Use source transformation to find in the circuit shown in Fig. 4.22.

Answer: 7.059 mA.

ixPractice Problem 4.7

2ix

5 Ω

24 mA 10 Ω
–
+

ix

Figure 4.22
For Practice Prob. 4.7.



Thevenin’s Theorem
It often occurs in practice that a particular element in a circuit is vari-
able (usually called the load) while other elements are fixed. As a typ-
ical example, a household outlet terminal may be connected to different
appliances constituting a variable load. Each time the variable element
is changed, the entire circuit has to be analyzed all over again. To avoid
this problem, Thevenin’s theorem provides a technique by which the
fixed part of the circuit is replaced by an equivalent circuit.

According to Thevenin’s theorem, the linear circuit in Fig. 4.23(a)
can be replaced by that in Fig. 4.23(b). (The load in Fig. 4.23 may be
a single resistor or another circuit.) The circuit to the left of the ter-
minals in Fig. 4.23(b) is known as the Thevenin equivalent circuit;
it was developed in 1883 by M. Leon Thevenin (1857–1926), a French
telegraph engineer.

a-b

4.5
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Linear 
two-terminal
circuit

Load

I a

b

V

+

−

(a)

Load

I a

b

V

+

−

(b)

+
−VTh

RTh

Figure 4.23
Replacing a linear two-terminal circuit
by its Thevenin equivalent: (a) original
circuit, (b) the Thevenin equivalent
circuit.

Thevenin’s theorem states that a linear two-terminal circuit can be
replaced by an equivalent circuit consisting of a voltage source VTh in
series with a resistor RTh, where VTh is the open-circuit voltage at the
terminals and RTh is the input or equivalent resistance at the terminals
when the independent sources are turned off.

The proof of the theorem will be given later, in Section 4.7. Our
major concern right now is how to find the Thevenin equivalent volt-
age and resistance . To do so, suppose the two circuits in
Fig. 4.23 are equivalent. Two circuits are said to be equivalent if they
have the same voltage-current relation at their terminals. Let us find
out what will make the two circuits in Fig. 4.23 equivalent. If the ter-
minals are made open-circuited (by removing the load), no current
flows, so that the open-circuit voltage across the terminals in
Fig. 4.23(a) must be equal to the voltage source in Fig. 4.23(b),
since the two circuits are equivalent. Thus is the open-circuit volt-
age across the terminals as shown in Fig. 4.24(a); that is,

(4.6)VTh � voc

VTh

VTh

a-b
a-b

RThVTh

Linear 
two-terminal
circuit

a

b

voc

+

−

(a)

VTh = voc

Linear circuit with
all independent
sources set equal
to zero

a

b

R in

(b)

RTh =  R in

Figure 4.24
Finding and .RThVTh

Again, with the load disconnected and terminals open-
circuited, we turn off all independent sources. The input resistance
(or equivalent resistance) of the dead circuit at the terminals in 
Fig. 4.23(a) must be equal to in Fig. 4.23(b) because the two circuits
are equivalent. Thus, is the input resistance at the terminals when the
independent sources are turned off, as shown in Fig. 4.24(b); that is,

(4.7)RTh � Rin

RTh

RTh

a-b

a-b



To apply this idea in finding the Thevenin resistance , we need
to consider two cases.

■ CASE 1 If the network has no dependent sources, we turn off all
independent sources. is the input resistance of the network look-
ing between terminals a and b, as shown in Fig. 4.24(b). 

■ CASE 2 If the network has dependent sources, we turn off all
independent sources. As with superposition, dependent sources are not
to be turned off because they are controlled by circuit variables. We
apply a voltage source at terminals a and b and determine the result-
ing current . Then , as shown in Fig. 4.25(a). Alterna-
tively, we may insert a current source at terminals a-b as shown in
Fig. 4.25(b) and find the terminal voltage . Again . Either
of the two approaches will give the same result. In either approach we
may assume any value of and . For example, we may use 
or A, or even use unspecified values of or .

It often occurs that takes a negative value. In this case, the
negative resistance ( ) implies that the circuit is supplying
power. This is possible in a circuit with dependent sources; Example 4.10
will illustrate this.

Thevenin’s theorem is very important in circuit analysis. It helps
simplify a circuit. A large circuit may be replaced by a single indepen-
dent voltage source and a single resistor. This replacement technique
is a powerful tool in circuit design.

As mentioned earlier, a linear circuit with a variable load can be
replaced by the Thevenin equivalent, exclusive of the load. The equiv-
alent network behaves the same way externally as the original circuit.
Consider a linear circuit terminated by a load , as shown in Fig. 4.26(a).
The current through the load and the voltage across the load are
easily determined once the Thevenin equivalent of the circuit at the
load’s terminals is obtained, as shown in Fig. 4.26(b). From Fig. 4.26(b),
we obtain

(4.8a)

(4.8b)

Note from Fig. 4.26(b) that the Thevenin equivalent is a simple volt-
age divider, yielding by mere inspection.VL

VL � RLIL �
RL

RTh � RL
 VTh

IL �
VTh

RTh � RL

VLIL

RL

v � �iR
RTh

iovoio � 1
vo � 1 Viovo

RTh � voZiovo

io

RTh � voZioio

vo

RTh

RTh
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vo

Circuit with
all independent
sources set equal
to zero

a

b

(a)

RTh = 

+
−

vo
io

io

iovo

Circuit with
all independent
sources set equal
to zero

a

b

(b)

RTh = 
vo
io

+

−

Find the Thevenin equivalent circuit of the circuit shown in Fig. 4.27, to
the left of the terminals Then find the current through 
and 

Solution:
We find by turning off the 32-V voltage source (replacing it
with a short circuit) and the 2-A current source (replacing it with an

RTh

36 7.
RL � 6, 16,a-b.

Example 4.8

Figure 4.25
Finding when circuit has dependent
sources.

RTh

Later we will see that an alternative way
of finding RTh is RTh � vocZisc.

Linear 
circuit

a

b

(a)

RL

IL

a

b
(b)

RL

IL

+
−VTh

RTh

Figure 4.26
A circuit with a load: (a) original circuit,
(b) Thevenin equivalent.

Figure 4.27
For Example 4.8.

RL32 V 2 A

4 Ω 1 Ω

12 Ω+
−

a

b
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32 V 2 A

4 Ω 1 Ω

12 Ω+
− VTh

VTh

+

−

(b)

4 Ω 1 Ω

12 Ω

(a)

RTh i1 i2

a

b

a

b

Figure 4.28
For Example 4.8: (a) finding , (b) finding .VThRTh

To find consider the circuit in Fig. 4.28(b). Applying mesh
analysis to the two loops, we obtain

Solving for , we get Thus,

Alternatively, it is even easier to use nodal analysis. We ignore the
resistor since no current flows through it. At the top node, KCL

gives

or

as obtained before. We could also use source transformation to find
The Thevenin equivalent circuit is shown in Fig. 4.29. The current

through is

When 

When 

When 

IL �
30
40

� 0.75 A

RL � 36,

IL �
30

20
� 1.5 A

RL � 16,

IL �
30

10
� 3 A

RL � 6,

IL �
VTh

RTh � RL
�

30

4 � RL

RL

VTh.

96 � 3VTh � 24 � VTh  1   VTh � 30 V

32 � VTh

4
� 2 �

VTh

12

1-7

VTh � 12(i1 � i2) � 12(0.5 � 2.0) � 30 V

i1 � 0.5 A.i1

�32 � 4i1 � 12(i1 � i2) � 0,  i2 � �2 A

VTh,

RL30 V

4 Ω

+
−

a

b

IL

Figure 4.29
The Thevenin equivalent circuit for
Example 4.8.

open circuit). The circuit becomes what is shown in Fig. 4.28(a).
Thus,

RTh � 4 J 12 � 1 �
4 � 12

16
� 1 � 4 7
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Using Thevenin’s theorem, find the equivalent circuit to the left of the
terminals in the circuit of Fig. 4.30. Then find I.

Answer: RTh � 3 7, I � 1.5 A.VTh � 6 V,

Practice Problem 4.8

12 V 2 A

6 Ω 6 Ω

4 Ω 1 Ω+
−

a

b

I

Figure 4.30
For Practice Prob. 4.8.

Example 4.9

5 A

2 Ω

2vx

2 Ω

6 Ω4 Ω

a

b

− +

+

−
vx

Figure 4.31
For Example 4.9.

2 Ω

2vx

2 Ω

6 Ω4 Ω

a

b

− +

+
− vo = 1 V

io

(a)

i1

i2

(b)

5 A

2 Ω

2vx

2 Ω

6 Ω4 Ω

a

b

− +

voc

+

−

i3

i1 i2i3

+

−
vx

+

−
vx

Figure 4.32
Finding and for Example 4.9.VThRTh

Applying mesh analysis to loop 1 in the circuit of Fig. 4.32(a)
results in

But ; hence,

(4.9.1)

For loops 2 and 3, applying KVL produces

(4.9.2)

(4.9.3)6(i3 � i2) � 2i3 � 1 � 0

4i2 � 2(i2 � i1) � 6(i2 � i3) � 0

i1 � �3i2

�4i2 � vx � i1 � i2

�2vx � 2(i1 � i2) � 0  or  vx � i1 � i2

Find the Thevenin equivalent of the circuit in Fig. 4.31 at terminals a-b.

Solution:
This circuit contains a dependent source, unlike the circuit in the
previous example. To find we set the independent source equal to
zero but leave the dependent source alone. Because of the presence of
the dependent source, however, we excite the network with a voltage
source connected to the terminals as indicated in Fig. 4.32(a). We
may set to ease calculation, since the circuit is linear. Our
goal is to find the current through the terminals, and then obtain

(Alternatively, we may insert a 1-A current source, find the
corresponding voltage and obtain )RTh � voZ1.vo,
RTh � 1Zio.

io

vo � 1 V
vo

RTh,



Solving these equations gives

But Hence,

To get , we find in the circuit of Fig. 4.32(b). Applying
mesh analysis, we get

(4.9.4)

(4.9.5)

or

(4.9.6)

But Solving these equations leads to 
Hence,

The Thevenin equivalent is as shown in Fig. 4.33.

VTh � voc � 6i2 � 20 V

i2 � 10Z3.4(i1 � i2) � vx.

12i2 � 4i1 � 2i3 � 0

4(i2 � i1) � 2(i2 � i3) � 6i2 � 0

�2vx � 2(i3 � i2) � 0  1   vx � i3 � i2

i1 � 5

vocVTh

RTh �
1 V

io
� 6 7

io � �i3 � 1Z6 A.

i3 � �
1

6
 A
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20 V

6 Ω
a

b

+
−

Figure 4.33
The Thevenin equivalent of the circuit in
Fig. 4.31.

Practice Problem 4.9

6 V

3 Ω5 Ω

4 Ω

a

b

1.5Ix
+
−

Ix

Figure 4.34
For Practice Prob. 4.9.

Example 4.10

Find the Thevenin equivalent circuit of the circuit in Fig. 4.34 to the
left of the terminals.

Answer: RTh � 444.4 m7.VTh � 5.333 V,

Determine the Thevenin equivalent of the circuit in Fig. 4.35(a) at
terminals a-b.

Solution:

1. Define. The problem is clearly defined; we are to determine the
Thevenin equivalent of the circuit shown in Fig. 4.35(a).

2. Present. The circuit contains a resistor in parallel with a
resistor. These are, in turn, in parallel with a dependent

current source. It is important to note that there are no
independent sources.

3. Alternative. The first thing to consider is that, since we have no
independent sources in this circuit, we must excite the circuit
externally. In addition, when you have no independent
sources you will not have a value for you will only have
to find RTh.

VTh;

4-7
2-7



The simplest approach is to excite the circuit with either a
1-V voltage source or a 1-A current source. Since we will end
up with an equivalent resistance (either positive or negative), I
prefer to use the current source and nodal analysis which will
yield a voltage at the output terminals equal to the resistance
(with 1 A flowing in, is equal to 1 times the equivalent
resistance).

As an alternative, the circuit could also be excited by a 1-V
voltage source and mesh analysis could be used to find the
equivalent resistance.

4. Attempt. We start by writing the nodal equation at a in Fig. 4.35(b)
assuming 

(4.10.1)

Since we have two unknowns and only one equation, we will
need a constraint equation.

(4.10.2)

Substituting Eq. (4.10.2) into Eq. (4.10.1) yields

Since 
The negative value of the resistance tells us that, according

to the passive sign convention, the circuit in Fig. 4.35(a) is
supplying power. Of course, the resistors in Fig. 4.35(a) cannot
supply power (they absorb power); it is the dependent source
that supplies the power. This is an example of how a
dependent source and resistors could be used to simulate
negative resistance.

5. Evaluate. First of all, we note that the answer has a negative
value. We know this is not possible in a passive circuit, but in
this circuit we do have an active device (the dependent current
source). Thus, the equivalent circuit is essentially an active
circuit that can supply power.

Now we must evaluate the solution. The best way to do this
is to perform a check, using a different approach, and see if we
obtain the same solution. Let us try connecting a resistor in
series with a 10-V voltage source across the output terminals of
the original circuit and then the Thevenin equivalent. To make
the circuit easier to solve, we can take and change the parallel
current source and resistor to a series voltage source and

resistor by using source transformation. This, with the new
load, gives us the circuit shown in Fig. 4.35(c).

We can now write two mesh equations.

Note, we only have two equations but have 3 unknowns, so we
need a constraint equation. We can use

ix � i2 � i1

2(i2 � i1) � 9i2 � 10 � 0

8ix � 4i1 � 2(i1 � i2) � 0

4-7
4-7

9-7

vo � 1 �  RTh, then RTh �  voZ1 � �4 7.

� (�1 � 1
4 � 1

2)vo � 1  or  vo � �4 V

2(�voZ2) � (vo � 0)Z4 � (vo � 0)Z2 � (�1) � 0

ix � (0 � vo)Z2 � �voZ2 

2ix � (vo � 0)Z4 � (vo � 0)Z2 � (�1) � 0

io � 1 A.

vo
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2ix 4 Ω 2 Ω

a

b

ix

vo

(a)

2ix io4 Ω 2 Ω

a

b

ix

(b)

Figure 4.35
For Example 4.10.

8ix

b

a

ix
−
+ 2 Ω

4 Ω 9 Ω

i2 +
− 10 Vi1

(c)

b

a− 4 Ω 9 Ω

+
− 10 Vi
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This leads to a new equation for loop 1. Simplifying leads to

or

Substituting the first equation into the second gives

Using the Thevenin equivalent is quite easy since we have only
one loop, as shown in Fig. 4.35(d).

6. Satisfactory? Clearly we have found the value of the equivalent
circuit as required by the problem statement. Checking does
validate that solution (we compared the answer we obtained by
using the equivalent circuit with one obtained by using the load
with the original circuit). We can present all this as a solution to
the problem.

�4i � 9i � 10 � 0  or  i � �10Z5 � �2 A

�6i2 � 11i2 � �10  or  i2 � �10Z5 � �2 A

�2i1 � 11i2 � �10

�2i1 � 6i2 � 0  or  i1 � 3i2

(4 � 2 � 8)i1 � (�2 � 8)i2 � 0
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Obtain the Thevenin equivalent of the circuit in Fig. 4.36.

Answer: VTh � 0 V, RTh � �7.5 7.

Practice Problem 4.10

5 Ω 15 Ω

a

b

10 Ω
4vx

+ −
+

−
vx

Figure 4.36
For Practice Prob. 4.10.

Norton’s Theorem
In 1926, about 43 years after Thevenin published his theorem, E. L.
Norton, an American engineer at Bell Telephone Laboratories, pro-
posed a similar theorem.

4.6

Norton’s theorem states that a linear two-terminal circuit can be
replaced by an equivalent circuit consisting of a current source IN in
parallel with a resistor RN, where IN is the short-circuit current through
the terminals and RN is the input or equivalent resistance at the termi-
nals when the independent sources are turned off.

Thus, the circuit in Fig. 4.37(a) can be replaced by the one in Fig. 4.37(b).
The proof of Norton’s theorem will be given in the next section.

For now, we are mainly concerned with how to get and We find
in the same way we find In fact, from what we know about

source transformation, the Thevenin and Norton resistances are equal;
that is,

(4.9)

To find the Norton current we determine the short-circuit current
flowing from terminal a to b in both circuits in Fig. 4.37. It is evident

IN,

RN � RTh

RTh.RN

IN.RN

Linear 
two-terminal
circuit

a

b

(a)

(b)

RN

a

b

IN

Figure 4.37
(a) Original circuit, (b) Norton equivalent
circuit.



that the short-circuit current in Fig. 4.37(b) is This must be the same
short-circuit current from terminal a to b in Fig. 4.37(a), since the two
circuits are equivalent. Thus,

(4.10)

shown in Fig. 4.38. Dependent and independent sources are treated the
same way as in Thevenin’s theorem.

Observe the close relationship between Norton’s and Thevenin’s
theorems: as in Eq. (4.9), and

(4.11)

This is essentially source transformation. For this reason, source trans-
formation is often called Thevenin-Norton transformation.

Since and are related according to Eq. (4.11), to deter-
mine the Thevenin or Norton equivalent circuit requires that we find:

• The open-circuit voltage across terminals a and b.
• The short-circuit current at terminals a and b.
• The equivalent or input resistance at terminals a and b when

all independent sources are turned off.

We can calculate any two of the three using the method that takes the
least effort and use them to get the third using Ohm’s law. Example 4.11
will illustrate this. Also, since

(4.12a)

(4.12b)

(4.12c)

the open-circuit and short-circuit tests are sufficient to find any Thevenin
or Norton equivalent, of a circuit which contains at least one inde-
pendent source.

RTh �
voc

isc
� RN

IN � isc

VTh � voc

Rin

isc

voc

RThIN,VTh,

IN �
VTh

RTh

RN � RTh

IN � isc

IN.
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Linear 
two-terminal
circuit

a

b

isc = IN

Figure 4.38
Finding Norton current IN.

Example 4.11

2 A

8 Ω

8 Ω

5 Ω
4 Ω

12 V

a

b

+
−

The Thevenin and Norton equivalent
circuits are related by a source 
transformation.

Figure 4.39
For Example 4.11.

Find the Norton equivalent circuit of the circuit in Fig. 4.39 at 
terminals a-b.

Solution:
We find in the same way we find in the Thevenin equivalent
circuit. Set the independent sources equal to zero. This leads to the
circuit in Fig. 4.40(a), from which we find Thus,

To find we short-circuit terminals a and b, as shown in Fig. 4.40(b).
We ignore the resistor because it has been short-circuited.
Applying mesh analysis, we obtain

From these equations, we obtain

i2 � 1 A � isc � IN

i1 � 2 A,  20i2 � 4i1 � 12 � 0

5-7
IN,

RN � 5 J (8 � 4 � 8) � 5 J 20 �
20 � 5

25
� 4 7

RN.

RThRN



Alternatively, we may determine from We obtain 
as the open-circuit voltage across terminals a and b in Fig. 4.40(c).
Using mesh analysis, we obtain

and

Hence,

as obtained previously. This also serves to confirm Eq. (4.12c) that
Thus, the Norton equivalent circuit is as

shown in Fig. 4.41.
RTh � voc Zisc � 4 Z1 � 4 7.

IN �
VTh

RTh
�

4
4

� 1 A

voc � VTh � 5i4 � 4 V

25i4 � 4i3 � 12 � 0  1   i4 � 0.8 A

i3 � 2 A

VThVThZRTh.IN

4.6 Norton’s Theorem 147

2 A
5 Ω

4 Ω

12 V

a

b

+
−

isc = IN

(b)

2 A 5 Ω

4 Ω

12 V

a

b

+
−

(c)

8 Ω

5 Ω

a

b

4 Ω

(a)

RN

VTh = voc

+

−

i1

i3
i4

i2

8 Ω 8 Ω

8 Ω

8 Ω

8 Ω

Figure 4.40
For Example 4.11; finding: (a) (b) (c) VTh � voc.IN � isc,RN,

1 A 4 Ω

a

b

Figure 4.41
Norton equivalent of the circuit in Fig. 4.39.

Practice Problem 4.11

4 A15 V 6 Ω

a

b

3 Ω

+
−

3 Ω

Figure 4.42
For Practice Prob. 4.11.

Find the Norton equivalent circuit for the circuit in Fig. 4.42, at
terminals a-b.

Answer: RN � 3 7, IN � 4.5 A.
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Example 4.12

5 Ω

2 ix

 ix

10 V4 Ω

a

b

+
−

Figure 4.43
For Example 4.12.

Practice Problem 4.12

10 A

2vx

6 Ω 2 Ω

a

b

−+
+

−
vx

5 Ω

2ix

vo = 1 V

io
4 Ω

a

b

+
−

(a)

5 Ω

2ix

isc = IN4 Ω

a

b

(b)

10 V+
−

ix ix

Figure 4.44
For Example 4.12: (a) finding (b) finding IN.RN,

Figure 4.45
For Practice Prob. 4.12.

Find the Norton equivalent circuit of the circuit in Fig. 4.45 at 
terminals a-b.

Answer: RN � 1 7, IN � 10 A.

Using Norton’s theorem, find and of the circuit in Fig. 4.43 at
terminals a-b.

Solution:
To find we set the independent voltage source equal to zero and
connect a voltage source of (or any unspecified voltage )
to the terminals. We obtain the circuit in Fig. 4.44(a). We ignore the

resistor because it is short-circuited. Also due to the short circuit,
the resistor, the voltage source, and the dependent current source
are all in parallel. Hence, At node a, and

To find we short-circuit terminals a and b and find the current
as indicated in Fig. 4.44(b). Note from this figure that the 

resistor, the 10-V voltage source, the resistor, and the dependent
current source are all in parallel. Hence,

At node a, KCL gives

Thus,

IN � 7 A

isc �
10

5
� 2ix � 2 � 2(2.5) � 7 A

ix �
10

4
� 2.5 A

5-7
4-7isc,

IN,

RN �
vo

io
�

1
0.2

� 5 7

 io � 1v
57 � 0.2 A,ix � 0.

5-7
4-7

vovo � 1 V
RN,

INRN



Derivations of Thevenin’s and
Norton’s Theorems

In this section, we will prove Thevenin’s and Norton’s theorems using
the superposition principle.

Consider the linear circuit in Fig. 4.46(a). It is assumed that the
circuit contains resistors and dependent and independent sources. We
have access to the circuit via terminals a and b, through which current
from an external source is applied. Our objective is to ensure that the
voltage-current relation at terminals a and b is identical to that of the
Thevenin equivalent in Fig. 4.46(b). For the sake of simplicity, sup-
pose the linear circuit in Fig. 4.46(a) contains two independent voltage
sources and and two independent current sources and We
may obtain any circuit variable, such as the terminal voltage v, by
applying superposition. That is, we consider the contribution due to
each independent source including the external source i. By superpo-
sition, the terminal voltage v is

(4.13)

where and are constants. Each term on the right-hand
side of Eq. (4.13) is the contribution of the related independent source;
that is, is the contribution to v due to the external current source i,

is the contribution due to the voltage source and so on. We
may collect terms for the internal independent sources together as 
so that Eq. (4.13) becomes

(4.14)

where We now want to evalu-
ate the values of constants and When the terminals a and b are
open-circuited, and Thus, is the open-circuit voltage

which is the same as so

(4.15)

When all the internal sources are turned off, The circuit can
then be replaced by an equivalent resistance which is the same as

and Eq. (4.14) becomes

(4.16)

Substituting the values of and in Eq. (4.14) gives

(4.17)

which expresses the voltage-current relation at terminals a and b of the
circuit in Fig. 4.46(b). Thus, the two circuits in Fig. 4.46(a) and 4.46(b)
are equivalent.

When the same linear circuit is driven by a voltage source v as
shown in Fig. 4.47(a), the current flowing into the circuit can be
obtained by superposition as

(4.18)

where is the contribution to i due to the external voltage source v
and contains the contributions to i due to all internal independent
sources. When the terminals a-b are short-circuited, so thatv � 0

D0

C0 
v

i � C0 
v � D0

v � RThi � VTh

B0 A0

v � A0i � RThi  1  A0 � RTh

RTh,
Req,

B0 � 0.

B0 � VTh

VTh,voc,
B0v � B0.i � 0

B0.A0

B0 � A1vs1 � A2vs2 � A3is1 � A4is2.

v � A0i � B0

B0,
vs1,A1vs1

A0i

A4A0, A1, A2, A3,

v � A0i � A1vs1 � A2vs2 � A3is1 � A4is2

is2.is1vs2vs1

4.7
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i
Linear
circuit

a

b

(a)

i

a

b

(b)

v
+

−

v

+

−

VTh
+
−

RTh

Figure 4.46
Derivation of Thevenin equivalent: (a) a
current-driven circuit, (b) its Thevenin
equivalent.

v
Linear
circuit

a

b

(a)

v

a

b

(b)

INRN
+
−

+
−

i

i

Figure 4.47
Derivation of Norton equivalent: (a) a
voltage-driven circuit, (b) its Norton
equivalent.



where is the short-circuit current flowing out of ter-
minal a, which is the same as the Norton current i.e.,

(4.19)

When all the internal independent sources are turned off, and
the circuit can be replaced by an equivalent resistance (or an equiv-
alent conductance ), which is the same as or Thus
Eq. (4.19) becomes

(4.20)

This expresses the voltage-current relation at terminals a-b of the cir-
cuit in Fig. 4.47(b), confirming that the two circuits in Fig. 4.47(a) and
4.47(b) are equivalent.

Maximum Power Transfer
In many practical situations, a circuit is designed to provide power to
a load. There are applications in areas such as communications where
it is desirable to maximize the power delivered to a load. We now
address the problem of delivering the maximum power to a load when
given a system with known internal losses. It should be noted that this
will result in significant internal losses greater than or equal to the
power delivered to the load.

The Thevenin equivalent is useful in finding the maximum power
a linear circuit can deliver to a load. We assume that we can adjust the
load resistance If the entire circuit is replaced by its Thevenin
equivalent except for the load, as shown in Fig. 4.48, the power deliv-
ered to the load is

(4.21)

For a given circuit, and are fixed. By varying the load resist-
ance the power delivered to the load varies as sketched in Fig. 4.49.
We notice from Fig. 4.49 that the power is small for small or large val-
ues of but maximum for some value of between 0 and We
now want to show that this maximum power occurs when is equal
to This is known as the maximum power theorem.RTh.

RL

A.RLRL

RL,
RThVTh

p � i2RL � a VTh

RTh � RL
b

2 

RL

RL.

4.8

i �
v

RTh
� IN

RN.RThGeq � 1ZReq

Req

D0 � 0

D0 � �IN

IN,
isci � D0 � �isc,
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RLVTh

RTh

+
−

a

b

i

Figure 4.48
The circuit used for maximum power
transfer.

p

RLRTh0

pmax

Figure 4.49
Power delivered to the load as a function
of RL.

Maximum power is transferred to the load when the load resistance
equals the Thevenin resistance as seen from the load (RL � RTh).

To prove the maximum power transfer theorem, we differentiate p
in Eq. (4.21) with respect to and set the result equal to zero. We
obtain

 � V 
2
Th c

(RTh � RL � 2RL)

(RTh � RL)3 d � 0

 
dp

dRL
� V 

2
Th c

(RTh � RL)2 � 2RL(RTh � RL)

(RTh � RL)4 d

RL



This implies that

(4.22)

which yields

(4.23)

showing that the maximum power transfer takes place when the load
resistance equals the Thevenin resistance We can readily confirm
that Eq. (4.23) gives the maximum power by showing that 

The maximum power transferred is obtained by substituting
Eq. (4.23) into Eq. (4.21), for

(4.24)

Equation (4.24) applies only when When we
compute the power delivered to the load using Eq. (4.21).

RL q RTh,RL � RTh.

pmax �
V 

2
Th

4RTh

d2p ZdR 
2
L 6 0.

RTh.RL

RL � RTh

0 � (RTh � RL � 2RL) � (RTh � RL)
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The source and load are said to be
matched when RL � RTh.

Example 4.13Find the value of for maximum power transfer in the circuit of 
Fig. 4.50. Find the maximum power.

RL

12 V 2 A

6 Ω 3 Ω 2 Ω

12 Ω RL
+
−

a

b

Figure 4.50
For Example 4.13.

Solution:
We need to find the Thevenin resistance and the Thevenin voltage

across the terminals a-b. To get we use the circuit in Fig. 4.51(a)
and obtain

RTh � 2 � 3 � 6 J 12 � 5 �
6 � 12

18
� 9 7

RTh,VTh

RTh

6 Ω 3 Ω 2 Ω

12 Ω
RTh

12 V 2 A

6 Ω 3 Ω 2 Ω

12 Ω+
− VTh

+

−

(a) (b)

i1 i2

Figure 4.51
For Example 4.13: (a) finding (b) finding VTh.RTh,



To get we consider the circuit in Fig. 4.51(b). Applying mesh
analysis gives

Solving for we get Applying KVL around the outer loop
to get across terminals a-b, we obtain

For maximum power transfer,

and the maximum power is

pmax �
VTh

2

4RL
�

222

4 � 9
� 13.44 W

RL � RTh � 9 7

�12 � 6i1 � 3i2 � 2(0) � VTh � 0  1   VTh � 22 V

VTh

i1 � �2Z3.i1,

�12 � 18i1 � 12i2 � 0,  i2 � �2 A

VTh,
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Practice Problem 4.13

9 V

4 Ω2 Ω

RL

1 Ω

3vx

+
−

+
−

+ −vx

Figure 4.52
For Practice Prob. 4.13.

Verifying Circuit Theorems with PSpice
In this section, we learn how to use PSpice to verify the theorems cov-
ered in this chapter. Specifically, we will consider using DC Sweep analy-
sis to find the Thevenin or Norton equivalent at any pair of nodes in a
circuit and the maximum power transfer to a load. The reader is advised
to read Section D.3 of Appendix D in preparation for this section.

To find the Thevenin equivalent of a circuit at a pair of open ter-
minals using PSpice, we use the schematic editor to draw the circuit
and insert an independent probing current source, say, Ip, at the termi-
nals. The probing current source must have a part name ISRC. We then
perform a DC Sweep on Ip, as discussed in Section D.3. Typically, we
may let the current through Ip vary from 0 to 1 A in 0.1-A increments.
After saving and simulating the circuit, we use Probe to display a plot
of the voltage across Ip versus the current through Ip. The zero inter-
cept of the plot gives us the Thevenin equivalent voltage, while the
slope of the plot is equal to the Thevenin resistance.

To find the Norton equivalent involves similar steps except that we
insert a probing independent voltage source (with a part name VSRC),
say, Vp, at the terminals. We perform a DC Sweep on Vp and let Vp
vary from 0 to 1 V in 0.1-V increments. A plot of the current through
Vp versus the voltage across Vp is obtained using the Probe menu after
simulation. The zero intercept is equal to the Norton current, while the
slope of the plot is equal to the Norton conductance.

To find the maximum power transfer to a load using PSpice
involves performing a DC parametric Sweep on the component value
of in Fig. 4.48 and plotting the power delivered to the load as a
function of According to Fig. 4.49, the maximum power occursRL.

RL

4.9

Determine the value of that will draw the maximum power from
the rest of the circuit in Fig. 4.52. Calculate the maximum power.

Answer: 2.901 W.4.222 7,

RL
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Applying KCL at Node 2,

V V V V

V V V

V V

2 1 2 3

1 2 3

1

0 5 2
14

1

0 5

1

0 5

1

2

1

2
14

2 2 5

�
�

�
�

� � ��
��

�
�	

� �

� �

.

. .

. 22 30 5 14� �. V …(ii)

Nodes 3 and 4 will form a supernode,

Writing voltage equation for the supernode,

   

V V V V V

V V V

y3 4 4 1

1 3 4

0 2 0 2

0 2 1 2 0

� � � �

� � �

. . ( )

. . …(iii)

Applying KCL to the supernode,

V V
V

V V V

V V
V V V

V V

x
3 2 4 4 1

3 2
2 1 4

4 1

2
0 5

1 2 5
0

2
0 5

2 5
0

�
� � �

�
�

�
� � � �

�
�

.
.

. ( )
.

0 5
1

2 5

1

2
0 5

1

2
1

1

2 5
0

0 1

1 2 3 4.
.

.
.

.

��
��

�
�	

� ��
��

�
�	

� � ��
��

�
�	

�V V V V

V11 2 3 30 5 1 4 0� � � �V V V. . …(iv)

Solving Eqs (i), (ii), (iii) and (iv),

V

V

V

V

1

2

3

4

12

4

0

2

� �
� �
�
� �

 V

 V

 V

���'����$�
$���	����	���
��

It states that ‘in a linear network containing more than one independent source and dependent source, 

the resultant current in any element is the algebraic sum of the currents that would be produced by each 

independent source acting alone, all the other independent sources being represented meanwhile by their 

respective internal resistances.’

The independent voltage sources are represented by their internal resistances if given or simply with zero 

resistances, i.e., short circuits if internal resistances are not mentioned. The independent current sources are 

represented by infinite resistances, i.e., open circuits.

The dependent sources are not sources but dissipative components—hence they are active at all times. A 

dependent source has zero value only when its control voltage or current is zero.

A linear network is one whose parameters are constant, i.e., they do not change with voltage and current.
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Explanation Consider the network shown in Fig. 2.61. Suppose we have to find current I
4
 through 

resistor R
4
.

R1 R3

R2 R4V I

��������������������������������!�!�������������

The current flowing through resistor R
4
 due to constant voltage source V is found to be say I

4
 (with proper 

direction), representing constant current source with infinite resistance, i.e., open circuit.

The current flowing through resistor R
4
 due to constant current source I is found to be say I

4
 (with proper 

direction), representing the constant voltage source with zero resistance or short circuit.

R1 R3

R2
R4

I4�

V

����������"����������������#���������������

R1 R3

R2 R4
I

I4��

��������	�"����������������$���������������

The resultant current I
4
 through resistor R

4
 is found by superposition theorem.

I I I4 4 4� �� �

Steps to be followed in Superposition Theorem

1. Find the current through the resistance when only one independent source is acting, replacing all 

other independent sources by respective internal resistances.

2. Find the current through the resistance for each of the independent sources.

3. Find the resultant current through the resistance by the superposition theorem considering magnitude 

and direction of each current.
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������ !���"%� Find the current through the 4 � resistor in Fig. 2.64.

20 V

5 A

4 �

6 �
5 �

6 �

2 �

��������


Solution

Step I When the 5 A source is acting alone (Fig. 2.65)

5 A

4 �

6 �
5 �

6 �

2 �

���������

By series-parallel reduction technique (Fig. 2.66),

5 A 4 �

6 �

2.73 �

2 �

5 A

(b)(a)

2 �

8.73 � 4 �

I �

���������

� � �
�

� �I 5
8 73

8 73 4
3 43

.

.
. ( )A



2.7���!�!����������������
�

Step II When the 20 V source is acting alone (Fig. 2.67)

20 V

4 �

6 �
5 �

6 �

2 �

I ��I

��������

By series-parallel reduction technique (Fig. 2.68),

(a)

20 V

5 �

6 � 10 �

I

(b)

20 V

5 �

3.75 �

II ��

���������

I �
�

�
20

5 3 75
2 29

.
. A

From Fig. 2.68(a), by current-division rule,

�� � �
�

� �I 2 29
6

6 10
0 86. . ( )A

Step III By superposition theorem,

I I I� � � �� � � � �3 43 0 86 4 29. . . ( )A

������ !���"&� Find the current through the 3 � resistor in Fig. 2.69.

5 A

5 �

10 �

2 �

3 �

4 � 20 V

���������
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Solution

Step I When the 5 A source is acting alone (Fig. 2.70)

5 A

5 �

10 �

2 �

3 �

4 �

��������

By series-parallel reduction technique (Fig. 2.71),

� � �
� �

� �I 5
15

15 2 3
3 75. ( )A

Step II When the 20 V source is acting alone (Fig. 2.72)

5 �

10 �

2 �

3 �

4 � 20 V

I �� I

��������

By series-parallel reduction technique (Fig. 2.73),

(a) (b)

20 V4 �20 �

I �� I

20 V3.33 �

I

�������	

I � �
20

3 33
6

.
A

From Fig. 2.73(a), by current-division rule,

�� � �
�

� � � � �I 6
4

20 4
1 1A A( ) ( )

Step III By superposition theorem,

I I I� � � �� � � � �3 75 1 2 75. . A ( )

5 A 3 �15 �

2 �I �

��������
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������ !���"'� Find the current in the 1 � resistors in Fig. 2.74.

4 V 3 A

1 A

3 �

1 �

2 �

�������


Solution

Step I When the 4 V source is acting alone (Fig. 2.75)

� �
�

� �I
4

2 1
1 33. A( )

Step II When the 3 A source is acting alone (Fig. 2.76)

By current-division rule,

�� � �
�

� �I 3
2

1 2
2 A ( )

Step III When the 1 A source is acting alone (Fig. 2.77)

1 A

3 �

1 �

2 �

�������

Redrawing the network (Fig. 2.78),

By current-division rule,

��� � �
�

� �I 1
2

2 1
0 66. A( )

Step IV By superposition theorem,

I I I I� � � �� � ��� � � � � �1 33 2 0 66 4. . ( )A

4 V

3 �

1 �

2 �

I �

��������

3 �

3 A1 �

2 �

I ��

��������

1 A

1 �2 �
3 �

I ���

��������
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������ !���"(� Find the voltage V
AB

 in Fig. 2.79.

6 V

5 A 10 V

A

B

5 �

VAB

�

�

��������

Solution

Step I When the 6 V source is acting alone (Fig. 2.80)

VAB� � 6 V

6 V

A

VAB

B

5 �

�

�

�

���������

Step II When the 10 V source is acting alone (Fig. 2.81)

Since the resistor of 5 � is shorted, the voltage across it is zero.

VAB� � 10 V

Step III When the 5 A source is acting alone (Fig. 2.82)

Due to short circuit in both the parts,

VAB�� � 0

Step IV By superposition theorem,

V V V VAB AB AB AB� � � � � � �� � �� 6 10 0 16 V

�#��$������	����$�����	���
���

������ !���")� Find the current through the 6 � resistor in Fig. 2.83.

15 V 10 V3I

6 � 8 �I

��������	

10 V

A

VAB

B

5 �

�

�

��

���������

A

VAB

B

5 �

5 A

�

�

���

���������
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Solution

Step I When the 15 V source is acting alone (Fig. 2.84)

From Fig. 2.84,

� �I I1 …(i)

Meshes 1 and 2 will form a supermesh. 

Writing current equation for the supermesh,

I I I I2 1 13 3� � � �

4 01 2I I� � …(ii)

Applying KVL to the outer path of the supermesh,

15 6 8 01 2� � �I I

6 8 151 2I I� � …(iii)

Solving Eqs (ii) and (iii),

I1 0 39� . A

I2 1 57� . A

� � � �I I1 0 39. ( )A

Step II When the 10 V source is acting alone (Fig. 2.85)

From Fig. 2.85,

�� �I I1 ...(i)

Meshes 1 and 2 will form a supermesh.

Writing current equation for the supermesh,

I I I I2 1 13 3� � �� �

4 01 2I I� � …(ii)

Applying KVL to the outer path of the supermesh,

� � � �6 8 10 01 2I I

6 8 101 2I I� � …..(iii)

Solving Eqs (ii) and (iii),

I

I

I I

1

2

1

0 26

1 05

0 26

�

�

�� � � �

.

.

. ( )

A

A

A

Step III By superposition theorem,

I I I� � � � � �� � 0 39 0 26 0 65. . . ( )A

������ !���%*� Find the current I
x
 in Fig. 2.86.

20 V 30 A

5 � 1 �Ix

4Ix
�
�

���������

15 V 3I �

6 � 8 �I �

I1 I2

��������


10 V3I ��

6 � 8 �I ��

I1 I2

���������
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Solution

Step I When the 30 A source is acting alone (Fig. 2.87)

From Fig. 2.87,

I Ix� � 1 …(i)

Meshes 1 and 2 will form a supermesh.

Writing current equation for the supermesh,

I I1 2 30� � …(ii)

Applying KVL to the outer path of the supermesh,

� � � �

� � � �

5 1 4 0

5 4 0
1 2

1 2 1

I I I

I I I
x�

9 01 2I I� � …(iii)

Solving Eqs (ii) and (iii),
I

I

I Ix

1

2

1

3

27

3

�

� �

� � �

A

A

A� ( )

Step II When the 20 V source is acting alone (Fig. 2.88)

Applying KVL to the mesh,

20 5 1 4 0

2

� � � �

� �

I I I

I
x x x

x

� � �

� A( )

Step III By superposition theorem,

I I Ix x x� �� � � � �� �	� 
 �� 

������ !���%�� Find the current I
1
. in Fig. 2.89.

2 �
10 �

5 V

2 A

Vx

I1

4Vx
����

���������

Solution

Step I When the 5 V source is acting alone (Fig. 2.90)

From Fig. 2.90,

V
x
 = 5 – 10I

1


Applying KVL to the mesh,

5 – 10I
1
 – 4V

x
– 2I

1
 = 0

30 A

5 � 1 �Ix

4Ix
�
�I1 I2

�

�

��������

20 V

5 � 1 �Ix��

4Ix
���

�

���������

2 �
10 �

5 V

Vx

I1�

4Vx����

���������
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5 – 10I
1
 – 4 (5 – 10I

1
) – 2I

1
 = 0

5 – 10I
1
 – 20 + 40I

1
 – 2I

1
 = 0

I1

15

28
0 54� � � �. ( )A

Step II When the 2 A source is acting alone (Fig. 2.91)

From Fig. 2.91,

V Ix � 	10 1� …(i)

Meshes 1 and 2 will form a supermesh.

Writing current equation for the supermesh,

I I2 1 2	 �� …(ii)

Applying KVL to the outer path of the supermesh,

	 	 	 �
	 	 	 	 �

10 4 2 0

10 4 10 2 0

1 2

1 1 2

I V I

I I I

x�
� �( )

30 2 01 2I I� 	 � …(iii)

Solving Eqs (ii) and (iii),

I

I

1

2

0 14

2 14

� �
�

. ( )

.

A

A

Step III By superposition theorem,

I I I1 1 1 0 54 0 14 0 68� 
 � 
 � �� � . . . ( )A

������ !���%�� Determine the current through the 10 �  resistor in Fig. 2.92.

Vx

10Vx����

100 V 10 A

10 �

5 �

�

�

���������

Solution

Step I When the 100 V source is acting alone (Fig. 2.93)

From Fig. 2.93,

V
x
 = 5I

Applying KVL to the mesh,

100 – 10I���10V
x

– 5I = 0

100 – 10I + 10(5I) – 5I = 0

2 �10 � 2 A

Vx

I1�

4Vx���

I1� I2

���������

Vx

10Vx����

100 V

10 �

5 �
�

�

I �

��������	



����������������������������������������������������

� � � �I 2 86. ( )A

Step II When the 10 A source is acting alone (Fig. 2.94)

From Fig. 2.94,

V I Ix � �5 1 2( ) …(i)

Applying KVL to Mesh 1,

� � � � �

� � � � � �

10 10 5 0

10 10 5 5 0

1 1 2

1 1 2 1 2

I V I I

I I I I I

x ( )

{ ( )} ( )

35 45 01 2I I� � …(ii)

For Mesh 2,

I2 10� � …(iii)

Solving Eqs (ii) and (iii),

I

I

1

2

12 86

10

� �

� �

. A

A

�� � � � �I I1 12 86. ( )A

Step III By superposition theorem,

I I I� � � �� � � � � � �2 86 12 86 15 72. . . ( )A

������ !���%�� Find the current I in the network of Fig. 2.95.

17 V

1 A

3 �

5Vx
�
�

Vx2 �
4 ��

�

I

���������

Solution

Step I When the 17 V source is acting alone (Fig. 2.96)

From Fig. 2.96,

V
x
 = –2I

Applying KVL to the mesh,

–2I – 17 – 3I – 5V
x

= 0

–2I – 17 – 3I – 5(–2I) = 0

I =3.4 A (�)

Step II When the 1 A source is acting alone (Fig. 2.97)

From Fig. 2.97,

V Ix � �2 1 …(i)

Meshes 1 and 2 will form a supermesh.

Writing current equation for the supermesh,

I I2 1 1� � …(ii)

Vx

10Vx����

10 A

10 �

5 �

�

�

I1 I2

I ��

��������


17 V 3 �

5Vx
�
�

Vx2 �
�

�

I �

���������

1 A

3 �

5Vx
�
�

Vx2 �
4 ��

�

I ��

I1 I2

��������
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Applying KVL to the outer path of the supermesh,

� � � �
� � � � �

2 3 5 0

2 3 5 2 0

1 2

1 2 1

I I V

I I I

x

( )

8 3 01 2I I� � …(iii)

Solving Eqs (ii) and (iii),

I

I

I I

1

2

2

0 6

1 6

1 6

�
�

�� � � �

.

.

. ( )

A

A

A

Step III By superposition theorem,

I = I + I = 3.4 + 1.6 = 5 A (�)

������ !���%"� Find the voltage V
1
 in Fig. 2.98.

20 V5 A4I

1 � 4 �I

�
�

V1

�

�

���������

Solution

Step I When the 5 A source is acting alone (Fig. 2.99)

From Fig. 2.99,

I
V

�
�1

4

Applying KCL at Node 1,

��
�

�
�

V I V1 14

1 4
5

��
��

��
	

�
�

�
�V

V V
1

1 1
4

4 4
5

V
1
 = 20 V

Step II When the 20 V source is acting alone (Fig. 2.100)

Applying KVL to the mesh,

4I – I – 4I – 20 = 0

I = –20 A

V
1
 = 4I – 1(I) = 3I = 3 (–20) = –60 V

Step III By superposition theorem,

V
1
 = V

1
 + V

1
�= 20 – 60 = –40 V

5 A4I

1 � 4 �I

�
�

V1
�

���������

4I

1 � 4 �I

�
�

V1

20 V

��

����������



���
������������������������������������������������

������ !���%%� Find the current in the 6 � resistor in Fig. 2.101.

Vx

2Vx����

18 V

1 �

6 �

�� I

3 A

����������

Solution

Step I When the 18 V source is acting alone (Fig. 2.102)

From Fig. 2.102,

V
x
 = –I

Applying KVL to the mesh,

18 – I + 2V
x

– 6I = 0

18 – I – 2I – 6I = 0

I = 2 A (�)

Step II When the 3 A source is acting alone (Fig. 2.103)

From Fig. 2.103,

V I Ix � � � �1 1 1 …(i)

Meshes 1 and 2 will form a supermesh.

Writing current equation for the supermesh,

I I2 1 3� � …(ii)

Applying KVL to the outerpath of the supermesh,

� � � �

� � � � �

1 2 6 0

2 6 0

1 2

1 1 2

I V I

I I I

x

( )

3 6 01 2I I� � …(iii)

Solving Eqs (ii) and (iii),

I

I

1

2

2

1

� �

�

A

A

�� � � �I I2 1 A ( )

Step III By superposition theorem,

I
6 � = I + I = 2 + 1 = 3 A (�)

������ !���%&� Find the current I
y
 in Fig. 2.104.

40 V120 V 12 A

4 � 8 �Iy 10Iy
���	

���������


Vx

2Vx����

18 V

1 �

6 �

�� I �

����������

Vx

2Vx����
1 �

6 �

�� I ��

3 A

I1 I2

���������	
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Solution

Step I When the 120 V source is acting alone (Fig. 2.105)

Applying KVL to the mesh,

120 – 4I
y
 – 10I

y
 – 8I

y
 = 0

I
y
 = 5.45 A (�)

Step II When the 12 A source is acting alone (Fig. 2.106)

From Fig. 2.106,
I Iy
 � 1 …(i)

Meshes 1 and 2 will form a supermesh.

Writing current equation for the supermesh,

I I2 1 12� � ...(ii)

Applying KVL to the outer path of the supermesh,

� � � �

� � � �

4 10 8 0

4 10 8 0

1 2

1 1 2

I I I

I I I

y


14 8 01 2I I� � …(iii)

Solving Eqs (ii) and (iii),

I

I

1

2

4 36

7 64

� �

�

.

.

A

A

Iy I
 � � � �1 4 36. A ( )

Step III When the 40 V source is acting alone (Fig. 2.107)

Applying KVL to the mesh,

–4 I
y
 – 10I

y
 – 8I

y
 – 40 = 0

I y 
� � �
40

22
= –1.82 A (�)

Step IV By superposition theorem,

I
y
 = I

y
 + I

y
 + I

y
 = 5.45 

– 4.36 – 1.82 = –0.73 A (�)

������ !���%'� Find the voltage V
x
 in Fig. 2.108.

36 V18 V

5 A

3 � 6 �

24 �

3Vx
����

Vx� �

����������

120 V

4 � 8 �Iy� 10I y�

����

����������

8 �
����

4 � 12 A

10Iy��Iy��

I1 I2

����������

8 �
����

4 � 40 V

10Iy���Iy���

���������
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Solution

Step I When the 18 V source is acting alone (Fig. 2.109)

From Fig. 2.109,

V
x
 = 3I

Applying KVL to the mesh,

18 – 3I – 6I – 3V
x
 = 0

18 – 3I – 6I – 3 (3I) = 0

I = 1 A

V
x
 = 3 V

Step II When the 5 A source is acting alone (Fig. 2.110)

From Fig. 2.110,

V
x
 = –3I

1
…(i)

Meshes 1 and 2 will form a supermesh.

Writing current equation for the supermesh,

I I2 1 5� � ...(ii)

Applying KVL to the outer path of the supermesh,

� � � �
� � � �

3 6 3 0

3 6 3 3 0

1 2

1 2 1

I I V

I I I

x�
( )

12 6 01 2I I	 � …(iii)

Solving Eqs (ii) and (iii),
I

I

1

2

1 67

3 33

� �
�

.

.

A

A

V Ix� � � � � �3 3 1 67 51 ( . ) V

Step III When the 36 V source is acting alone (Fig. 2.111)

From Fig. 2.111,

V
x
 = –3I

Applying KVL to the mesh,

36 + 3V
x
 – 6I – 3I = 0

36 3 6
3

3
3

0

36 3 2

	 


� 


�

�
�
��
�

� 


�
�

�
��
�

	 


 	 


 	

V
V V

V V

x
x x

x x VV

V

x

x

�
 �



 � �

0

6 V

Step IV By superposition theorem,

V
x
 = V

x
 + V

x
 + V

x
 = 3 – 5 – 6 = –8 V

18 V

3 � 6 � 3Vx
�

����
Vx� �

I

����������

5 A

3Vx �

3 � 6 �

24 �

I1
I2

�
�

Vx� �

����������

36 V

3 � 6 � 3Vx
���

����
Vx

���� �

I

����������
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������ !���%(� Find the voltage V in the network of Fig. 2.112.

10 V 8 V�5 A

8 � 5 �15 �

12 � �
�

V� �

����������

Solution

Step I When the 10 V source is acting alone 

(Fig. 2.113)

From Fig. 2.113,

V I� � �8 1 ...(i)

Applying KVL to Mesh 1,

� � � � � �10 8 15 12 01 1 1 2I I I I( )

35 12 101 2I I� � � ...(ii)

Applying KVL to Mesh 2,

� � � � �
� � � � � �

12 5 8 0

12 12 5 8 8 0

2 1 2

2 1 2 1

( )

( )

I I I V

I I I I

�

76 17 01 2I I� � ...(iii)

Solving Eqs (ii) and (iii),

I

I

V I

1

2

1

0 54

2 4

8 8 0 54 4 32

�
�
� � � � � �

.

.

( . ) .

A

A

V�

Step II When the –5 A source is acting alone (Fig. 2.114)

8 V ��

8 � 5 �15 �

12 � �
�

V ��� �

I1 I3I2

�5 A

���������


From Fig. 2.114,

V I� � �8 1 ...(i)

Meshes 1 and 2 will form a supermesh.

Writing current equation for the supermesh,

I I1 2 5� � � ...(ii)

10 V 8 V �

8 � 5 �15 �

12 � �
�

V �� �

I1 I2

���������	
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Applying KVL to the outer path of the supermesh,

� � � � �8 15 12 01 2 2 3I I I I( )

� � � �8 27 12 01 2 3I I I ...(iii)

Applying KVL to Mesh 3,

� � � � �

� � � � � �

12 5 8 0

12 12 5 8 8 0

3 2 3

3 2 3 1

( )

( )

I I I V

I I I I

�

64 12 17 01 2 3I I I� � � ...(iv)

Solving Eqs (ii), (iii) and (iv),

I

I

I

V I

1

2

3

1

4 97

9 97

25 74

8 8 4 97 39 76

�

�

�

� � � � � � �

.

.

.

( . ) .

A

A

A

V�

Step III By superposition theorem,

V V V� � � � � � �� � 4 32 39 76 44 08. . . V

������ !���%)� For the network shown in Fig. 2.115, find the voltage V
0
.

25 V1 A

50 � 200 �

40 �

V0
V1

0.5V1

�

�

�

� �
�

����������

Solution

Step I When the 1 A source is acting alone (Fig. 2.116)

From Fig. 2.116,

V I1 2200� ...(i)

For Mesh 1,

I1 1� ...(ii)

Applying KVL to Mesh 2,

0 5 40 200 0

0 5 200 40 40 200 0

1 2 1 2

2 2 1 2

. ( )

. ( )

V I I I

I I I I

� � � �

� � � �

40 140 01 2I I� � ...(iii)

Solving Eqs (ii) and (iii),

I

I

V I I

V

V

1

2

0 1 2

0

0

1

0 29

50 200 0

50 1 200 0 29 0

�

�

� � �

� � �

A

A

V

.

( ) ( . )

�

�

� � ���

50 � 200 �

40 �

1 A V1

0.5V1

�

�

�

�

�
�

V0
�

I2I1

����������
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Step II When the 25 V source is acting alone (Fig. 2.117)

From Fig. 2.117,

V I1 200 25 0� � �

V I1 200 25� � ...(i)

Applying KVL to Mesh 1,

0 5 40 200 25 0

0 5 200 25 40 200 25 0

0 09

1.

. ( )

.

V I I

I I I

I

� � � �

� � � � �

� � A

V V I0 1 200 25 200 0 09 25 7� � � � � � � �( . ) V

Step III By superposition theorem,

V V V0 0 0� � � � � ��� � 	 � ��
V

������ !���&*� For the network shown in Fig. 2.118, find the voltage V
x
.

10 A

4 �

6 �

2 �
�

�

VxVx
2

20 V

����������

Solution

Step I When the 20 V source is acting alone

(Fig. 2.119)

From Fig. 2.119,

V I Ix� � �6 1 2( ) ...(i)

Applying KVL to Mesh 1,

20 2 6 01 1 2� � � �I I I( )

8 6 201 2I I� � ...(ii)

For Mesh 2,

I
V I I

I I
x

2
1 2

1 2
2

6

2
3 3� �

�
� �

� ( )

3 4 01 2I I� � ...(iii)

Solving Eqs (ii) and (iii),

I

I

V I Ix

1

2

1 2

5 71

4 29

6 6 5 71 4 29 8 52

�

�

� � � � �

.

.

( ) ( . . ) .

A

A

V�

25 V

50 � 200 �

40 �

V1

0.5V1

�

�

�
�

V0
��

I

���������

20 V Vx

Vx

2 �

6 �

�

�

4 �

I1 I2

2�
�

����������
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Step II When the 10 A source is acting alone (Fig. 2.120)

From Fig. 2.120,

Vx� � ��I I1 2� ) ...(i)

Applying KVL to Mesh 1,

� � � � �2 6 01 3 1 2( ) ( )I I I I

8 6 2 01 2 3I I I� � � ...(ii)

For Mesh 2,

I
V I I

I I
x

2
1 2

1 2
2

6

2
3 3� �

�
� �

� ( )

3 4 01 2I I� � ...(iii)

For Mesh 3,

I3 10� � ...(iv)

Solving Eqs (ii), (iii) and (iv),

I

I

I

V I Ix

1

2

3

1 2

5 71

4 29

10

6 5 71 4 29 8 52

� �

� �

� �

� � � � � �

.

.

) ( . . ) .

A

A

A

V� � ��

Step III By superposition theorem,

V V Vx x x� �� � � �	
� ��	
� � 0

������ !���&�� Calculate the current I in the network shown in Fig. 2.121.

2 �

2I1

I

20 �

4 �

10 �

50 V70 V

����

����������

Solution

Step I When the 70 V source is acting alone (Fig. 2.122)

From Fig. 2.122,

I I� � 3 ...(i)

Applying KVL to Mesh 1,

� � � � �4 2 20 01 1 1 2I I I I( )

26 20 01 2I I� � ...(ii)

Applying KVL to Mesh 2,

70 20 2 02 1 2 3� � � � �( ) ( )I I I I

� � � �20 22 2 701 2 3I I I ...(iii)

10 A

4 �

6 �

2 �
�

�
I1

I3

I2

Vx

Vx
2

��
��

����������

2 �

2I1

I1

I �

20 �

4 �

10 �

70 V

����

I2

I1

I3

����������
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Applying KVL to Mesh 3,

� � � � �2 2 10 03 2 1 3( )I I I I

2 2 12 01 2 3I I I� � � ...(iv)

Solving Eqs (ii), (iii) and (iv),

I

I

I

I I

1

2

3

3

8 94

11 62

3 43

3 43

�
�
�
� � �

.

.

.

. ( )

A

A

A

A�

Step II When the 50 V source is acting alone (Fig. 2.123)

From Fig. 2.123,

�� �I I3 …(i)

Applying KVL to Mesh 1,

� � � � �4 2 20 01 1 1 2I I I I( )

26 20 01 2I I� � …(ii)

Applying KVL to Mesh 2,

� � � � �20 2 02 1 2 3( ) ( )I I I I

� � � �20 22 2 01 2 3I I I …(iii)

Applying KVL to Mesh 3,

� � � � � �2 2 50 10 03 2 1 3( )I I I I

2 2 12 501 2 3I I I� � � � …(iv)

Solving Eqs (ii), (iii), and (iv),

I

I

I

I I

1

2

3

3

1 06

1 38

4 57

4 57

�
�
�

�� � � �

.

.

.

. ( )

A

A

A

A

Step III By superposition theorem,

I I I� � � �� � � � �3 43 4 57 8. . ( )A

������ !���&�� Find the voltage V
0
 in the network of Fig. 2.124.

10 V 1 A

5 � 4 V

2 �

1 �

V0
V0

�
� 2

�

�

���������


2 �

2I1

I1

I ��

20 �

4 �

10 �

50 V

�����

I2

I1

I3

���������	
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Solution

Step I When the 10 V source is acting alone 

(Fig. 2.125)

Applying KCL at the node,

� �
�

�
�

� �
�

�

� ��
��

	

�

� �

� �

V V
V

V

V

V

0 0
0

0

0

0

10

5 2

2

1
0

1

5

1

2

1

2
2

1 67. V

Step II When the 1A current source is acting 

alone (Fig. 2.126)

Applying KCL at the node,

��
� �

��
�

���
��

V V
V

V

0 0
0

0

5
1

2

2

1

1

5

1

2

1

2
1

0 83

0

0

� ��
��

	

�

��� �

��� �

V

V . V

Step III When the 4 V source is acting alone

(Fig. 2.127)

Applying KCL at the node,

���
�

���
�

���� �
���

�

� ��
��

	

�

��� �

��� �

V V
V

V

V

V

0 0
0

0

0

0

5 2

4
2

1
0

1

5

1

2

1

2
4

33 33. V

Step IV By superposition theorem,

V V V V0 0 0 0 1 67 0 83 3 33 4 17� � � ��� ��� � � �. . . . V

���(���	��+�������	���
��

It states that ‘any two terminals of a network can be replaced by an equivalent voltage source and an 

equivalent series resistance. The voltage source is the voltage across the two terminals with load, if any, 

removed. The series resistance is the resistance of the network measured between two terminals with load 

removed and constant voltage source being replaced by its internal resistance (or if it is not given with 

zero resistance, i.e., short circuit) and constant current source replaced by infinite resistance, i.e., open 

circuit.’

5 �

2 �

1 �

V0��
� 2

�

�

V0�10 V

����������

1 A

5 �

2 �

1 �

V0��
� 2

�

�

V0�

����������

5 �

2

1 �4 V

V0���
� 2

�

�
V0��

���������
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IL IL

RL
VTh

RTh

RL
Network

(a) (b)

�������������������������������������
�������

Explanation Consider a simple network as shown in Fig. 2.129.

R1

V R2 RL

R3

A

B

�����������������

For finding load current through R
L
, first remove the load 

resistor R
L
 from the network and calculate open circuit voltage 

V
Th

across points A and B as shown in Fig. 2.130.

V
R

R R
Th V�

�
2

21

For finding series resistance R
Th

, replace the voltage source 

by a short circuit and calculate resistance between points A and 

B as shown in Fig. 2.131.

R R
R R

R R
Th � �

�3
1 2

1 2

Thevenin’s equivalent network is shown in Fig. 2.132.

I
V

R R
L

L

�
�
Th

Th

If the network contains both independent and dependent 

sources, Thevenin’s resistance R
Th

 is calculated as,

R
V

IN
Th

Th�

where I
N
 is the short-circuit current which would flow in a short 

circuit placed across the terminals A and B. Dependent sources 

are active at all times. They have zero values only when the 

control voltage or current is zero. R
Th

 may be negative in some 

R1

V R2 VTh

R3

A

B

+

−

��������	���������������	�#
��

R1

R2 RTh

R3

A

B

��������	���������������	�%
��

VTh

RTh

RL

IL

A

B

��������	��������
��&��������

������



���
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cases which indicates negative resistance region of the device, i.e., as voltage increases, current decreases in 

the region and vice-versa.

If the network contains only dependent sources then

V

IN

Th �
�

0

0

For finding R
Th

in such a network, a known voltage V is applied across the terminals A and B and current 

is calculated through the path AB.

R
V

I
Th �

or a known current source I is connected across the 

terminals A and B and voltage is calculated across the 

terminals A and B.

R
V

I
Th �

Thevenin’s equivalent network for such a network is 

shown in Fig. 2.133.

Steps to be Followed in Thevenin’s Theorem

1. Remove the load resistance R
L
.

2. Find the open circuit voltage V
Th

 across points A and B.

3. Find the resistance R
Th

 as seen from points A and B.

4. Replace the network by a voltage source V
Th

 in series with resistance R
Th

.

5. Find the current through R
L
 using Ohm’s law.

I
V

R R
L

L

�
�
Th

Th

������ !���&�� Determine the current through the 24 � resistor in Fig. 2.134.

30 �
20 �

24 �

5 �50 �

220 V

��������	


Solution

Step I Calculation of V
Th

 (Fig. 2.135)

I

I

1

220

30 50
2 75

220

20 5
8 8

�
�

�

�
�

�

.

.

A

A2

RTh

A

B

��������		�������
��&��������������

30 � 20 �

5 �50 �

220 V
�

� �

� �
�

A B
VTh

I1 I2

��������	�
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Writing the V
Th

equation,

V I I

V I I
Th

Th V

� � �
� � � � �

30 20 0

20 30 20 8 8 30 2 75 93 5
1 2

2 1 ( . ) ( . ) .

Step II Calculation of R
Th

 (Fig. 2.136)

30 � 20 �

5 �50 �

A B
RTh

��������	�

Redrawing the circuit (Fig. 2.137),

RTh � � � �( ) ( ) .30 50 20 5 22 75� �

30 �
20 �

5 �50 �

A B

��������	

Step III Calculation of I
L
 (Fig. 2.138)

IL �
�

�93 5

22 75 24
2

.

.
A

IL

A

B

22.75 �

93.5 V 24 �

��������	�

������ !���&"� Find the current through the 20 � resistor in Fig. 2.139.

45 V

20 V

120 V

20 � 15 �

5 �10 �

5 �

��������	�
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Solution

Step I Calculation of V
Th

 (Fig. 2.140)

Applying KVL to Mesh 1,

45 120 15 5 10 0

30 15 75

1 1 2 1 2

1 2

� � � � � � �
� � �

I I I I I

I I

( ) ( )
...(i)

Applying KVL to Mesh 2,

20 5 10 5 0

15 20 20

2 2 1 2 1

1 2

� � � � � �
� � �

I I I I I

I I

( ) ( )
...(ii)

Solving Eqs (i) and (ii),

I

I

1

2

3 2

1 4

� �
� �

.

.

A

A

Writing the V
Th

equation,

45 10 0

45 10 45 10 3 2 1 4 63

1 2

1 2

� � � �

� � � � � � � � �

V I I

V I I

Th

Th V

( )

( ) [ . ( . )]

Step II Calculation of R
Th

 (Fig. 2.141)

15 �

5 �10 �

5 �

A

B

RTh

��������
�

Converting the delta formed by resistors of 10 �, 5 � and 5 � into an equivalent star network (Fig. 2.142),

R

R

R

1

2

3

10 5

20
2 5

10 5

20
2 5

5 5

20
1 25

� � �

� � �

� � �

.

.

.

�

�

�

Simplifying the network (Fig. 2.143 and

Fig. 2.144),

45 V

20 V

120 V

15 �

5 �10 �

5 �

�

�

�

��

� � � �

�

�

� � �

A

B

VThI1

I2

��������
�

15 �

R3
R2

R1

B

A

15 �2.5 �

2.5 � 1.25 �

RTh

B

A

��������
� ��������
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RTh � � �( . | | . ) . .16 25 2 5 2 5 4 67 �

16.25 �

2.5 �

2.5 �

A

B

RTh

��������



Step III Calculation of I
L
 (Fig. 2.145)

IL �
�

�
63

4 67 20
2 55

.
. A

IL

A

B

4.67 �

63 V 20 �

��������
�

������ !���&%� Find the current through the 10 �  resister in Fig. 2.146.

15 V

10 V

1 �

2 �

10 �

1 �

2 �

1 �

��������
�

Solution

Step I Calculation of V
Th

 (Fig. 2.147)

Applying KVL to Mesh 1,

� � � � � � �

� � �

15 2 1 10 1 0

4 25

1 1 2 1

1 2

I I I I

I I

( )
...(i)

Applying KVL to Mesh 2,

10 1 2 1 0

4 10

2 1 2 2

1 2

� � � � �

� � �

( )I I I I

I I
...(ii)

Solving Eqs (i) and (ii),

I

I

1

2

6

1

� �

�

A

A

15 V

10 V

1 �

2 �

1 �

2 �

1 �

�
�� �

�

�

��

�

�

�

�

� �
A B
VTh

I2I1

��������
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Writing the V
Th

 equation,

� � � �

� � � � � � �

�

V I I

V I I

B

Th

Th V

V the terminal

2 2 0

2 2 2 6 2 1 10

10

2 1

1 2 ( ) ( )

( iis positive w.r.t. A)

Step II Calculation of R
Th

 (Fig. 2.148) 

1 �

2 �

1 �

2 �

1 �

A B
RTh

��������
�

Converting the star network formed by resistors of 2 2 1� � �� and  into an equivalent delta network

(Fig. 2.149),

R

R

R

1

2

3

2 2
2 2

1
8

2 1
2 1

2
4

2 1
2 1

2
4

� � � �

� � � �

� � � �

�

�

�

�

�

�

1 �

2 �

1 �

2 �

1 �

A B
RTh

��������
�

Simplifying the network (Fig. 2.150),

8 �

8 �

4 �

1 �
(a)

(b)

(c)

1 �

0.8 � 0.8 �4 �

A B
RTh A B

RTh

1.33 �
A B

RTh

����������
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RTh � 1 33. �

Step III Calculation of I
L
 (Fig. 2.151)

IL �
�

� �10

1 33 10
0 88

.
. ( )A

IL

A

B

1.33 �

10 V 10 �

����������

������ !���&&� Find the current through the 1 �  resistor in Fig. 2.152.

4 V
3 A

1 A

3 �

1 �

2 �

����������

Solution

Step I Calculation of V
Th

 (Fig. 2.153)

4 V
3 A

1 A

3 �2 � I2

�
�
� � ��

� ��

�

A

B

VTh
I1

���������	

Writing the current equations for Meshes 1 and 2,

I

I

1

2

3

1

� �
�

Writing the V
Th

 equation,

4 2 0

4 2 4 2 4 12

1 2

1 2

� � � �
� � � � � � �

( )

( ) ( )

I I V

V I I

Th

Th V

Step II Calculation of R
Th

 (Fig. 2.154) 

RTh � 2 �

Step III Calculation of I
L
 (Fig. 2.155)

IL �
�

�12

2 1
4 A

3 �2 �

A

B

RTh

���������


IL

A

B

2 �

12 V 1 �

����������
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���

������ !� ��&'� Obtain the Thevenin equivalent network for the given network of Fig. 2.156 at

terminals A and B.

2I1
4 �

8 V

I1
A

B

����������

Solution

Step I Calculation of V
Th

 (Fig. 2.157)

From Fig. 2.157,

I I

I

I

1 1

1

1

2

3 0

0

� �
�
�

Writing the V
Th

 equation,

8 0 0

8

� � �
�

V

V

Th

Th V

Step II Calculation of I
N
 (Fig. 2.158),

Meshes 1 and 2 will form a supermesh.

Writing current equation for the supermesh,

I I I2 1 12� �

3 01 2I I� � ...(i)

Applying KVL to the outer path of the supermesh,

8 4 01� �I

I1 2� ...(ii)

Solving Eqs (i) and (ii),

I

I IN

2

2

6

6

�
� �

A

A

Step III Calculation of R
Th

R
V

IN
Th

Th� � �8

6
1 33. �

Step IV Thevenin’s Equivalent Network (Fig. 2.159)

2I1
4 �

8 V

I1
A

B

�

�

VTh

���������

IN2I1
4 �

8 V

I1

I1 I2

A

B

����������

8 V

A

B

1.33 �

����������
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������ !���&(� Find Thevenin’s equivalent network of Fig. 2.160.

4 V

A

B

2 � 3 �

0.1 Vx Vx

�

�

����������

Solution

Step I Calculation of V
Th

 (Fig. 2.161)

V V

I V

x

x

�

� �
Th

1 0 1.

Writing the V
Th

equation,

4 2 0

4 2 0 1 0

4 0 8 0

5

5

1� � �

� � � �

� �

�

� �

I V

V V

V

V

V V

x

x x

x

x

x

( . )

.

V

VTh

Step II Calculation of I
N
 (Fig. 2.162)

From Fig. 2.162,

Vx � 0

The dependent source 0.1 V
x

depends on the controlling 

variable V
x
. When V

x
= 0, the dependent source vanishes, i.e., 

0.1 V
x
= 0 as shown in Fig. 2.163.

IN � �
�4

2 3
0 8. A

Step III Calculation of R
Th

R
V

IN
Th

Th� � �5

0 8
6 25

.
. �

Step IV Thevenin’s Equivalent Network (Fig. 2.164)

4 V

A

B

2 � 3 �

0.1 Vx Vx � VTh

�

�
I1

� �

����������

4 V

A

B

2 � 3 �

0.1 Vx Vx

�

�

IN

����������

4 V

A

B

2 � 3 �

IN

���������	

5 V

A

B

6.25 �

���������
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������ !���&)� Obtain the Thevenin equivalent network of Fig. 2.165 for the terminals A and B.

2 A

2 �

2 V

Vx
A

B

1 � 4Vx
����

����������

Solution

Step I Calculation of V
Th

(Fig. 2.166)

From Fig. 2.166,

2 2 0

2 2
1

1

� � �
� �

I V

V I
x

x

For Mesh 1,

I

Vx

1 2

2 2 2 6

� �
� � � �

A

V( )

Writing the V
Th

equation,

2 2 0 4 0

2 2 2 0 4 6 0

30

1� � � � �
� � � � � �

�

I V V

V

V

x Th

Th

Th V

( ) ( )

Step II Calculation of I
N
 (Fig. 2.167)

From Fig. 2.167,

V Ix � �2 2 1 …(i)

Meshes 1 and 2 will form a supermesh,

Writing current equation for the supermesh

I I2 1 2� � …(ii)

Applying KVL to the outer path of the supermesh,

2 2 1 4 0

2 2 4 2 2 0

10 10

1 2

1 2 1

1 2

� � � �
� � � � �

� �

I I V

I I I

I I

x

( ) ...(iii)

Solving Eqs (ii) and (iii),

I

I

I IN

1

2

2

0 73

2 73

2 73

�
�
� �

.

.

.

A

A

A

Step III Calculation of R
Th

R
V

IN
Th

Th� � �30

2 73
10 98

.
. �

Step IV Thevenin’s Equivalent Network (Fig. 2.168)

2 A

2 �

2 V

Vx
A

B

1 � 4Vx
��

I1�

�

VTh

�

�

����������

2 V

A

B

1 �

2 �
2 A

I1 I2

Vx 4Vx
��

IN

���������

30 V

A

B

10.98 �

����������
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������ !���'* Find the Thevenin equivalent network of Fig. 2.169 for the terminals A and B.

10 �

5 V

A

B

1 �8I1
��

10 �

I1

����������

Solution

Step I Calculation of V
Th

(Fig. 2.170)

Applying KVL to the mesh,

5 10 10 0

5

20
0 25

1 1

1

� � �

� �

I I

I . A

Writing the V
Th

 equation,

5 10 8 0 0

5 2 5 2 0 25 4 5

1 1

1

� � � � �
� � � � �

I I V

V I

Th

Th V( . ) .

Step II Calculation of I
N
 (Fig. 2.171)

Applying KVL to Mesh 1,

5 10 10 0

20 10 5

1 1 2

1 2

� � � �
� �

I I I

I I

( )
...(i)

Applying KVL to Mesh 2,

� � � � �
� �

10 8 1 0

18 11 0

2 1 1 2

1 2

( )I I I I

I I
...(ii)

Solving Eqs (i) and (ii),

I

I

I IN

1

2

2

1 375

2 25

2 25

�
�
� �

.

.

.

A

A

A

Step III Calculation of R
Th

R
V

IN
Th

Th� � � �4 5

2 25
2

.

.

Step IV Thevenin’s Equivalent Network (Fig. 2.172)

10 �

5 V

A

B

1 �8I1
��

10 � VTh

I1 �

�

���������

10 �

5 V

A

B

1 �8I1
��

10 �

IN

I1 I2

���������

4.5 V

A

B

2 �

���������
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������ !���'�� Find V
Th

 and R
Th

 between terminals A and B of the network shown in Fig. 2.173.

12 V

A

B

1 � 2 �

2Ix 1 �

Ix

��������	

Solution

Step I Calculation of V
Th

 (Fig. 2.174)

I x � 0

The dependent source 2I
x
depends on the controlling variable

I
x
. When I

x
= 0, the dependent source vanishes, i.e., 2 0I x �  as 

shown in Fig. 2.174.

Writing the V
Th

 equation,

VTh V�
�
�12

1

1 1
6�

Step II Calculation of I
N
 (Fig. 2.175)

From Fig. 2.175,

I
V

x �
1

2

Applying KCL at Node 1,

V V V
I

V V
V V

V

I
V

x

N

1 1 1

1 1
1 1

1

1

12

1 1 2
2

2
12 2

2

8

2

8

2
4

�
� � �

� � � � �
��
	

�

�

� � �

V

A

Step III Calculation of R
Th

R
V

IN
Th

Th� � � �
6

4
1 5.

������ !� ��'�� Obtain the Thevenin equivalent network of Fig. 2.176 for the given network at

terminals a and b .

12 V

A

B

1 � 2 �

1 �
VTh

�

�

��������


12 V

A

B

1 � 2 �

2Ix 1 �

IxV 1

IN

���������
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2 A

a

b

3 � 4 �

2 �

5VxVx
� �

���������

Solution

Step I Calculation of V
Th

 (Fig. 2.177)

Applying KCL at Node x,

2
2

4

�

�

V

V

x

x V

Writing the V
Th

 equation,

V V V V

a b

x x xTh = 4

V the terminal is negative w r t

� � �

� � � �

5

16 . . .

Step II Calculation of I
N
 (Fig. 2.178)

Applying KCL at Node x,

2
2

5

4

2
2 2

� �
�

� � � �

V V V

V
V

V

x x x

x
x

x

V

I
V V

V

x

N
x x

x

� �

�
�

� � �

4

5

4
4

V

A

Step III Calculation of R
Th

R
V

IN
Th

Th
� �

�
� � �

16

4
4

Step IV Thevenin’s Equivalent Network (Fig. 2.179)

������ !���'�� Obtain the Thevenin equivalent network of Fig. 2.180 for the given network.

5 A

150 V
30 � 10 �

�
�

�

�
15 �Vx Vx

1

3

����������

2 A

a

b

3 � 4 �

2 �

5VxVx
� �

VTh

�

�

��������

2 A

a

b

3 � 4 �

2 �

5VxVx
� �

IN

���������

�16 V

a

b

�4 �

���������
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Solution

Step I Calculation of V
Th

 (Fig. 2.181)

From Fig. 2.181,

V Vx � Th

Applying KCL at the node,

V V
V

V

V

x x
x

x

� �
� � �

�

�

150
1

3

10 15
5 0

75

75

V

VTh

Step II Calculation of I
N
 (Fig. 2.182)

Applying KCL at Node x,

V V
V V

V V V V

x x
x x

x x x x

30
5

15

150
1

3

10
0

30 15 10 30
15 5

� � �
� �

�

� � � � �

V

I
V

x

N
x

�

� � �

60

30

60

30
2

V

A

Step III Calculation of R
Th

R
V

IN
Th

Th� � � �75

2
37 5.

Step IV Thevenin’s Equivalent Network (Fig. 2.183)

������ !� ��'"� Find the Thevenin’s equivalent network of the network to the left of A-B in the

Fig. 2.184.

����

1 A

10 V

5 � 10 �

A

B

10 Ix

Ix

���������


Solution

Step I Calculation of V
Th

(Fig. 2.185)

From Fig. 2.185,

I I Ix � �1 2 …(i)

For Mesh 1,

I1 1� …(ii)

5 A

150 V
30 � 10 �

�
�

�

�

�

�

15 �VxVTh Vx
1

3

A

B

����������

5 A

150 V
30 � 10 �

�
�

15 �IN V x
1

3

A

B

V x

����������

75 V

A

B

37.5 �

���������	

����

1 A

10 V

5 � 10 �

A

B

10 Ix

Ix

I1 I2

�

�

�

�

VTh

����������
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Applying KVL to Mesh 2,

� � � � �5 10 10 02 1 2( )I I I Ix

� � � � � �5 10 10 02 1 1 2 2( ) ( )I I I I I

5 5 01 2I I� � …(iii)

Solving Eqs (ii) and (iii),

I

I

I I Ix

1

2

1 2

1

1

1 1 2

�
� �
� � � � � �

A

A

A( )

Writing the V
Th

 equation,

10 10 0

10 1 10

20

2I V

V

V

� � �
� � �

� �

Th

Th

Th

= 0

V

( )

Step II Calculation of I
N
 (Fig. 2.186)

From Fig. 2.186,

I I Ix � �1 2 …(i)

For Mesh 1,

I1 1� …(ii)

Applying KVL to Mesh 2,

� � � � � �5 10 10 02 1 2 3( ) ( )I I I I Ix

� � � � � � �5 10 10 02 1 1 2 2 3( ) ( ) ( )I I I I I I

� � � �5 5 10 01 2 3I I I …(iii)

Applying KVL to Mesh 3,

� � � �10 10 03 2( )I I

10 10 102 3I I� � …(iv)

Solving Eqs (ii), (iii) and (iv),

I

I

I

I IN

1

2

3

1

3

2

2

�
�
�
� �

A

A

A

A

3

Step III Calculation of R
Th

R
V

IN
Th

Th� � � � �20

2
10 �

Step IV Thevenin’s Equivalent Network (Fig. 2.187)

������ !� ��'%� Find Thevenin’s equivalent network at terminals A and B in the network of 

Fig. 2.188.

����

1 A

10 V

5 � 10 �

A

B

10 Ix

Ix

I1 I2
IN

I3

����������

�20 V

A

B

�10 �

���������



���������������������������������������������������

A

B

2 � 4 �

5 �4Vx Vx

�

�

�
�

����������

Solution

Since the network does not contain any independent source,

V

IN

Th �

�

0

0

But the R
Th

can be calculated by applying a known 

voltage source of 1 V at the terminals A and B as shown 

in Fig. 2.189.

R
V

I I
Th � �

1

From Fig. 2.189,

V I Ix � �5 1 2( ) ...(i)

Applying KVL to Mesh 1,

� � � � �

� �� �� � � �

4 2 5 0

4 5 2 5 5 0

1 1 2

1 2 1 1 2

V I I I

I I I I I

x ( )

(

� � �27 25 01 2I I …(ii)

Applying KVL to Mesh 2,

� � � � �5 4 1 02 1 2( )I I I

5 9 11 2I I� � …(iii)

Solving Eqs (ii) and (iii),

I

I

1

2

0 21

0 23

� �

� �

.

.

A

A

Hence, current supplied by voltage source of 1 V is 0.23 A.

RTh � �
1

0 23
4 35

.
. �

Hence, Thevenin’s equivalent network is shown in Fig. 2.190.

������ !���'&� Find the current in the 9 �  resistor in Fig. 2.191.

4 �
6 � 9 �

6Ix

20 V

����
Ix

����������

A

B

2 � 4 �

5 �4Vx Vx
�

�

�
�

I1 I2
1V

����������

4.35 �

A

B

����������
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Solution

Step I Calculation of V
Th

 (Fig. 2.192)

Applying KVL to the mesh,

20 4 6 6 0

5

� � � �

�

I I I

I

x x x

x A
Writing the V

Th
equation,

6 0

6 5 0

30

I V

V

V

x � �

� �

�

Th

Th

Th V

( )

Step II Calculation of I
N
 (Fig. 2.193).

From Fig. 2.193,

I x � 0

The dependent source 6I
x

depends on the controlling 

variable I
x
. When I x � 0,  the dependent source vanishes, 

i.e., 6 0Ix � as shown in Fig. 2.194.

IN � �
20

4
5 A

4 �

6Ix

20 V

����

IN
4 �

20 V

IN

(a) (b)

�

A

B

A

B

���������


Step III Calculation of R
Th

R
V

IN
Th

Th� � �30

5
6 �

Step IV Calculation of I
L
 (Fig. 2.195)

IL � �
�30

6 9
2 A

������ !���''� Determine the current in the 16 �  resistor in Fig. 2.196.

10 � 6 �

16 �40 V 0.8Ix

Ix

����������

4 �
6 �

6Ix

20 V

� ���
Ix
�

�

�

�

VTh

A

B

����������

4 �
6 �

6Ix

20 V

� ���
Ix

A

B

IN

���������	

6 �

9 �30 V

A

B

IL

����������



����������������������������������������������������

Solution

Step I Calculation of V
Th

 (Fig. 2.197)

From Fig. 2.197,

I x � 0

The dependent source 0.8I
x

depends on the controlling 

variable I
x
. When I

x
 = 0, the dependent source vanishes, as 

shown in Fig. 2.198.

i.e., 0 8 0. I x �
VTh V� 40

Step II Calculation of I
N
 (Fig. 2.199)

From Fig. 2.199,

I Ix � 2 …(i)

Meshes 1 and 2 will form a supermesh,

Writing current equation for the supermesh,

I I I I

I I

x1 2 2

1 2

0 8 0 8

1 8 0

� � �
� �

. .

.
…(ii)

Applying KVL to the outer path of the supermesh,

40 10 6 0

10 6 40

1 2

1 2

� � �
� �

I I

I I
…(iii)

Solving Eqs (ii) and (iii),

I

I

I IN

1

2

2

3

5

3

5

3

�

�

� �

A

A

A

Step III Calculation of R
Th

R
V

IN
Th

Th� � � �40

5

3

24

Step IV Calculation of I
L
 (Fig. 2.200)

IL �
�

�40

24 16
1 A

������ !���'(� Find the current in the 6 � resistor in Fig. 2.201.

1 �

6 �18 V 3 A

2Vx
����

�����������
Vx

����������

10 � 6 �

40 V 0.8Ix

A

B

VTh

�

�

���������

A

B

10 � 6 �

40 V VTh

�

�

����������

10 � 6 �

40 V 0.8Ix IN

A

B

Ix

I1 I2

����������

24 �

16 �40 V

A

B

IL

����������
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Solution

Step I Calculation of V
Th

 (Fig. 2.202)

From Fig. 2.202,

V I Ix � � � �1 1 1 …(i)

For Mesh 1,

I

Vx

1 3

3

� �
�

A

V

…(ii)

Writing the V
Th

 equation,

18 1 2 0

18 3 2 3 0

27

1� � � �
� � � �

�

I V V

V

V

x Th

Th

Th V

( )

Step II Calculation of I
N
 (Fig. 2.203)

From Fig. 2.203,

V Ix � � 1 …(i)

Meshes 1 and 2 will form a supermesh,

Writing current equation for supermesh,

I I2 1 3� � …(ii)

Applying KVL to the outer path of the supermesh,

18 1 2 0

18 2 0

6

1

1 1

1

� � �
� � � �

�

I V

I I

I

x

( )

A

…(iii)

Solving Eqs (ii) and (iii),

I

I IN

2

2

9

9

�
� �

A

A

Step III  Calculation of R
Th

R
V

IN
Th

Th� � � �27

9
3

Step IV Calculation of I
L
 (Fig. 2.204)

IL �
�

�27

3 6
3 A

������ !���')� Find the current in the 10 �  resistor.

10 �

5 �100 V 10 A

����
10Vx

�

�
Vx

����������

1 �

18 V 3 A

2Vx
����

�����������
Vx

�

�

VTh

A

B

I1

����������

1 �

18 V 3 A

2Vx

�����������
Vx

A

B

I1 I2

����

IN

���������	

3 �

6 �27 V

A

B

IL

���������
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Solution

Step I Calculation of V
Th

 (Fig. 2.206)

From Fig. 2.206,

Vx � �10 5 50	 V

Writing the V
Th

 equation,

100 10 0

100 9 0

100 9 50 0

550

� � � �
� � �

� � �
�

V V V

V V

V

V

x x

x

Th

Th

Th

Th V

( )

Step II Calculation of I
N
 (Fig. 2.207)

From Fig. 2.207,

V Ix N� �5 10( )

Applying KVL to Mesh 1, 

100 10 0

100

9

� � �

� �

V V

V

x x

x

� � �

� �

100

9
5 50

550

45

I

I

N

N A

Step III Calculation of R
Th

RTh �
�

� � �550

550

45

45

Step IV Calculation of I
L
 (Fig. 2.208)

IL �
� �

� �550

45 10

110

7
A

���)�����
	�����	���
��

It states that ‘any two terminals of a network can be replaced by an equivalent current source and an equivalent 

parallel resistance.’ The constant current is equal to the current which would flow in a short circuit placed across 

the terminals. The parallel resistance is the resistance of the network when viewed from these open-circuited 

terminals after all voltage and current sources have been removed and replaced by internal resistances.

IN
or

IN
RN RL

IL

RL

IL

Network

(a) (b)

�������������������������������������
�������

100 V 10 A

����
10VxVTh

�

�
Vx5 �

�����������

A B

����������

100 V 10 A

����
10Vx

�

�
Vx 5 �

A B

IN

���������

�45 �

10 �550 V

A

B

IL

����������
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Explanation Consider a simple network as shown in Fig. 2.210.

V RLR2

A

B

R3R1

�����������������

For finding load current through RL ,  first remove the load 

resistor RL  from the network and calculate short circuit 

current ISC or IN which would flow in a short circuit placed 

across terminals A and B as shown in Fig. 2.211.

For finding parallel resistance RN , replace the voltage 

source by a short circuit and calculate resistance between 

points A and B as shown in Fig. 2.212.

R R
R R

R R
N � �

�3
1 2

1 2

Norton’s equivalent network is shown in Fig. 2.213.

I I
R

R R
L N

N

N L

�
�

If the network contains both independent and dependent 

sources, Norton’s resistances R
N
 is calculated as

R
V

I
N

N

� Th

where V
Th

 is the open-circuit voltage across terminals A and 

B. If the network contains only dependent sources, then 

V

IN

Th �

�

0

0

To find R
Th

 in such network, a known voltage V or current 

I is applied across the terminals A and B, and the current I or 

the voltage V is calculated respectively.

R
V

I
N �

Norton’s equivalent network for such a network is shown in 

Fig. 2.214.

V INR2

A

B

R3R1

������������������������	�$
�

RNR2

A

B

R3R1

������������������������	�%
�

RL

IL

RNIN

���������	�������
��&��������������

RN

A

B

���������
�������
��&��������������
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Steps to be followed in Norton’s Theorem

1. Remove the load resistance R
L
 and put a short circuit across the terminals.

2. Find the short-circuit current I
SC

 or I
N
.

3. Find the resistance R
N
 as seen from points A and B.

4. Replace the network by a current source I
N

in parallel with resistance R
N
.

5. Find current through R
L

by current–division rule.

I
I R

R R
L

N N

N L

�
�

������ !���(*� Find the current through the 10 �  resistor in Fig. 2.215.

10 �

5 �

4 A
15 �

2 V

1 �

����������

Solution

Step I Calculation of I
N
 (Fig. 2.216)

Applying KVL to Mesh 1,

2 1 0

2

1

1

� �
�

I

I ...(i)

Meshes 2 and 3 will form a supermesh.

Writing the current equation for the supermesh,

I I3 2 4� � ...(ii)

Applying KVL to the supermesh,

� � �5 15 02 3I I ...(iii)

Solving Eqs (i), (ii) and (iii),

I

I

I

I I IN

1

2

3

1 2

2

3

1

2 3 5

�
� �
�
� � � � � �

A

A

A

A( )

Step II Calculation of R
N
 (Fig. 2.217) 

RN � � �1 5 15 0 95� ( ) . �

Step III Calculation of I
L
 (Fig. 2.218)

IL �
�

�5
0 95

0 95 10
0 43� .

.
. A

5 �

4 A
15 �

2 V

1 �

I2
IN

I3I1

A

B

����������

RN

5 �

15 �1 �
A

B

���������

IL

5 A 0.95 � 10 �

A

B

����������



2.9�������
������������

������ !���(�� Find the current through the 10 �  resistor in Fig. 2.219.

50 V 20 � 20 �

20 �10 � 30 �

40 V

100 V

����������

Solution

Step I Calculation of I
N
 (Fig. 2.220)

Applying KVL to Mesh 1,

50 20 40 0

20 20 10

1 2

1 2

� � � �
� �

( )I I

I I
...(i)

Applying KVL to Mesh 2,

40 20 20 20 0

20 60 20 40

2 1 2 2 3

1 2 3

� � � � � �
� � � �

( ) ( )I I I I I

I I I ...(ii)

Applying KVL to Mesh 3,

� � � � �
� � � �

20 30 100 0

20 50 100

3 2 3

2 3

( )I I I

I I
...(iii)

Solving Eqs (i), (ii) and (iii), 

I

I IN

1

1

0 81

0 81

�
� �

.

.

A

A

Step II Calculation of R
N
 (Fig. 2.221)

RN � � �[( ) ] .20 30 20 20 12 3� � � 20 � 20 �

20 � 30 �RN

A B

����������

Step III Calculation of I
L
 (Fig. 2.222)

IL �
�

�0 81
12 3

12 3 10
0 45.

.

.
.� A

12.3 � 10 �

IL
A

B

0.81 A

����������

50 V 20 � 20 �

20 � 30 �

40 V

100 V

I1 I2 I3

INA B

����������
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������ !���(�� Find the current through the 8 �  resistor in Fig. 2.223.

5 A
4 � 2 A

8 �12 �

5 V

���������	

Solution

Step I Calculation of I
N
 (Fig. 2.224)

5 A 4 � 2 A12 �

5 V

IN

A

B

���������


The resistor of the 4 � gets shorted as it is in parallel with the short circuit. Simplifying the network by 

source transformation (Fig. 2.225),

60 V

12 � 5 V

IN

A

B

I1 I2
2 A

����������

Meshes 1 and 2 will form a supermesh.

Writing the current equation for the supermesh,

I I2 1 2� � ...(i)

Applying KVL to the supermesh,

60 12 5 0

12 55
1

1

� � �
�

I

I ...(ii)

Solving Eqs (i) and (ii),

I

I

I IN

1

2

2

4 58

6 58

6 58

�
�
� �

.

.

.

A

A

A

Step II Calculation of R
N
 (Fig. 2.226)

RN � �12 4 3� �
Step III Calculation of I

L
(Fig. 2.227)

IL �
�

�6 58
3

3 8
1 79. .� A

4 �12 � RN

A

B

����������

3 � 8 �

IL
A

B

6.58 A

���������
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������ !���(�� Find the current through the 1 �  resistor in Fig. 2.228.

1 �
3 �

2 �

2 �1 A
1 V

2 �

����������

Solution

Step I Calculation of I
N
 (Fig. 2.229)

3 �

2 �

2 �1 A
1 V

2 �

IN

A

B

����������

By source transformation (Fig. 2.230),

I2

I1

I3

IN

A

B

3 �

2 �

2 �1 V

3 V

2 �

��������	�

Applying KVL to Mesh 1,

� � � � � �
� � �

3 3 2 1 0

5 2 2

1 1 3

1 3

I I I

I I

( )
...(i)



����������������������������������������������������

Applying KVL to Mesh 2,

� � � � �
� � �

1 2 2 0

4 2 1

2 3 2

2 3

( )I I I

I I
...(ii)

Applying KVL to Mesh 3,

� � � � �
� � � �

2 2 0

2 2 4 0

3 1 3 2

1 2 3

( ) ( )I I I I

I I I
...(iii)

Solving Eqs (i), (ii) and (iii), 

I

I

I

I IN

1

2

3

3

0 64

0 55

0 59

0 59

� �
� �
� �
� � �

.

.

.

.

A

A

A

A

Step II Calculation of R
N
 (Fig. 2.231)

RN � 2 2. �

Step III Calculation of I
L

(Fig. 2.232)

IL �
�

�0 59
2 2

2 2 1
0 41.

.

.
.� A

2.2 � 1 �

IL

A

B

0.59 A

��������	�

�#��$������	����$�����	���
���

������ !���("� Find Norton’s equivalent network across terminals A and B of Fig. 2.233.

10 �

5 V

10 � 5 �

A

B

���	
I1

10I2

3I1

I2

	
�

��������		

1.2 � 1 �

3 �

2 �

2 �

2 �3 �

2 �

2 �

2 �

A B

B

B

A

RN

A

(a)

(b)

(c)

��������	�
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Solution

Step I Calculation of V
Th

 (Fig. 2.234)

From Fig. 2.234,

I I

I I

x

x

2

1

�
� �

Applying KVL to the mesh,

5 10 5 10 0

5 10 5 10 0

2� � � �
� � � �

I I I

I I I

x x

x x x

I

I

x �
� �

0 2

0 21

.

.

 A

 A

Writing the V
Th

 equation,

5 10 3 0

5 10 0 2 3 0 2 0

2 4

1� � � �

� � � � �

�

I I V

V

V

x Th

Th

Th  V

( . ) ( . )

.

Step II Calculation of I
N
 (Fig. 2.235)

From Fig. 2.235,

I I x2 � …(i)

I I Iy x1 � � …(ii)

Applying KVL to Mesh 1,

5 10 5 10 0

5 10 5 5 10 0

2� � � � �
� � � � �

I I I I

I I I I

x x y

x x y x

( )

25 5 5I Ix y� � …(iii)

Applying KVL to Mesh 2,

10 5 3 10 0

10 5 5 3 10 0

2 1I I I I I

I I I I I I

y x y

x y x y x y

� � � � �
� � � � � �

( )

( )

12 12 0I Ix y� � …(iv)

Solving Eqs (iii) and (iv),
I

I

x

y

�
�

0 25

0 25

.

.

 A

 A

I IN y� � 0 25. A

Step III Calculation of R
N

R
V

I
N

N

� � �Th 2 4

0 25
9 6

.

.
. �

Step IV Norton’s Equivalent Network (Fig. 2.236)

10 �

5 V

10 � 5 �

A

B

���	
I1

10I2

3I1

I2

	
�

Ix

VTh

	

�

��������	


10 �

5 V

10 � 5 �

A

B

���	
I1

10I2

3I1

I2

	
�

Ix Iy

IN

��������	�

9.6 �

A

B

0.25 A

��������	�



����������������������������������������������������

������ !���(%� For the network shown in Fig. 2.237, find Norton’s equivalent network.

2 A

A

B

20 �

2 �

15 �
5 �

Vx

3Vx

�

�

��������	

Solution

Step I Calculation of V
Th

 (Fig. 2.238)

From Fig. 2.238,

V Ix � 2 2 …(i)

For Mesh 1,

I V I Ix1 2 23 3 2 6� � � � � �( ) …(ii)

For Mesh 2,

I2 2� …(iii)

I I1 26 6 2 12� � � � � �( ) A

Writing the V
Th

 equation,

V I I I I

V

V

Th

Th

� � � � � �

� � � � � � �

�

0 5 15 2 0

5 12 15 12 2 2 2 0

27

1 1 2 2( )

( ) ( ) ( )

Th 44 V

Step II Calculation of I
N
 (Fig. 2.239)

From Fig. 2.239,

V I Ix � �2 2 3( ) …(i)

For Mesh 2,

I2 2� …(ii)

Meshes 1 and 3 will form a supermesh.

Writing the current equation for the supermesh,

I I V I I I Ix3 1 2 3 2 33 3 2 6 6� � � �� � � �( )

I I I1 2 36 7 0� � � …(iii)

Applying KVL to the outer path of the supermesh,

� � � � � � �5 20 2 15 01 3 3 2 1 2I I I I I I( ) ( )

� � � �20 17 22 01 2 3I I I …(iv)

2 A

A

B

20 �

2 �

15 �

5 �

Vx

VTh

3Vx

�

�

�

�

�
�

I1

I2

�

�

��������	�

2 A

A

B

20 �

2 �

15 �

5 �

Vx

I3

IN

3Vx

�

�

I1

I2

��������	�



2.9�������
������������

Solving Eqs (ii), (iii) and (iv),

I

I

I

I IN

1  A

 A

 A

 A

� �

�

�

� �

0 16

2

1 69

1 69

2

3

3

.

.

.

Step III Calculation of R
N

R
V

I
N

N

� � �
Th 274

1 69
162 13

.
. �

Step IV Norton’s Equivalent Network (Fig. 2.240)

������ !���(&� Obtain Norton’s equivalent network across A-B in the network of Fig. 2.241.

15 V 8 � 15 �

2 �5 �

�
�

V1

I2

10I2 0.6V1

�

�

A

B

��������
�

Solution

Step I Calculation of V
Th

 (Fig. 2.242)

15 V 8 � 15 �

2 �5 �

�
�

V1

I2

10I2 0.6V1
VTh

� �

�

�

�
�

A

B

Ix Iy I2

��������
�

From Fig. 2.242,

                    V I Ix y1 8� �( ) …(i)

Applying KVL to Mesh 1,

15 5 8 0� � � �I I Ix x y( )

13 8 15I Ix y� � …(ii)

Applying KVL to Mesh 2,

� � � � �8 2 10 02( )I I I Iy x y

8 10 10 02I I Ix y� � � …(iii)

162.13 �

A

B

1.69 A

��������
�



����������������������������������������������������

For Mesh 3,

I V I Ix y2 10 6 0 6 8� � ��� ��. . ( )

4 8 4 8 02. .I I Ix y� � � …(iv)

Solving Eqs (ii), (iii) and (iv),

I

I

I

x

y

�

�

� �

3 28

3 45

0 832

.

.

.

 A

 A

 A

Writing the V
Th

 equation,

15 0

15 0 83 0

12 45

2I V

V

V

� �

� � �

� �

Th

Th

Th  V

( . )

.

Step II Calculation of I
N
 (Fig. 2.243)

From Fig. 2.243,

I2 0�

The dependent source of 10 I
2
 depends 

on the controlling variable I
2
. When 

I2 � 0,  the dependent source vanishes, 

i.e. 10 0I2 �  as shown in Fig. 2.244.

From Fig. 2.244,

V I Ix y1 8� �( ) …(i)

Applying KVL to Mesh 1,

15 5 8 0� � � �I I Ix x y( )

13 8 15I Ix y� � …(ii)

Applying KVL to Mesh 2,

� � � �8 2 0( )I I Iy x y

� � �8 10 0I Ix y …(iii)

Solving Eqs (ii) and (iii),

I

I

x

y

�

�

2 27

1 82

.

.

 A

 A

V I Ix y1 8 8 2 27 1 82 3 6� � � � �( ) ( . . ) . V

For Mesh 3, 

I VN � � �0 6 0 6 3 6 2 161. . ( . ) .  A

Step III Calculation of R
N

R
V

I
N

N

� �
�

� �Th 12 45

2 16
5 76

.

.
. 	

Step IV Norton’s Equivalent Network (Fig. 2.245)

15 V 8 � 15 �

2 �5 �

�
�

V1

I2

10I2 0.6V1
IN

�

�

A

B

��������
	

15 V 8 �

2 �5 �

V1 0.6V1
IN

�

�

A

B

Ix Iy

��������



�5.76 �

A

B

2.16 A

��������
�
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������ !���('� Find Norton’s equivalent network of Fig. 2.246.

A

B

2 �
1 �

�
�

2 V

0.5I1

I1

��������
�

Solution

Step I Calculation of V
Th

 (Fig. 2.247)

Applying KVL to the mesh,

2 2 0 5 1 0

2 2 5 0

0 8

1 1 1

1

1

� � � �
� �

�

I I I

I

I

.

.

. A

Writing the V
Th

 equation,

1 0

1 0 8 0

0 8

1I V

V

V

� �
� �

�

Th

Th

Th  V

( . )

.

Step II Calculation of I
N
 (Fig. 2.248)

When a short circuit is placed across the 1 � resistor, it gets shorted.

I1 0�
The dependent source of 0.5I

1
 depends on the controlling variable I

1
.

When I
1
� 0, the dependent source vanishes, i.e. 0.5 I

1
� 0 as shown in 

Fig. 2.249.

IN � �2

2
1 A

Step III Calculation of R
N

R
V

I
N

N

� � �Th 0 8

1
0 8

.
. �

Step IV Norton’s Equivalent Network (Fig. 2.250)

0.8 �

A

B

1 A

����������

A

B

2 �
1 �

�
�

2 V

0.5I1

I1

VTh

�

�

�

�

��������


A

B

2 �
1 �

�
�

2 V

0.5I1

I1

IN

��������
�

A

B

2 �

2 V

IN

��������
�



���
������������������������������������������������

������ !���((� Find Norton’s equivalent network at the terminals A and B of Fig. 2.251.

9 V

2 �

6 �

3 �
A

B

Ix

6Ix

����������

Solution

Step I Calculation of V
Th

 (Fig. 2.252)

From Fig. 2.252,

I Ix � 1 …(i)

Applying KVL to Mesh 1,

9 3 6 01 2 1� � � �( )I I I

9 3 91 2I I� � …(ii)

For Mesh 2,

I I Ix2 16 6� �
6 01 2I I� � …(iii)

Solving Eqs (ii) and (iii),

I

I

1  A

 A

� �
� �

1

62

Writing the V
Th

 equation,

9 3 2 0

9 3 1 6 2 6 0

18

1 2 2� � � � �
� � � � � � �

� �

( )

( ) ( )

I I I V

V

V

Th

Th

Th  V

Step II Calculation of I
N
 (Fig. 2.253)

From Fig. 2.253,

I I Ix � �1 3 …(i)

Applying KVL to Mesh 1,

9 3 6 01 2 1 3� � � � �( ) ( )I I I I

9 3 6 91 2 3I I I� � � …(ii)

For Mesh 2,

I I I Ix2 1 36 6� � �( )

6 6 01 2 3I I I� � � …(iii)

Applying KVL to Mesh 3,

� � � � �6 2 03 1 3 2( ) ( )I I I I

� � � �6 2 8 01 2 3I I I …(iv)

9 V

2 �

6 �

3 �
A

B

Ix

6Ix

� � � � �

�
I1

I2

VTh

����������

9 V

2 �

6 �

3 �
A

B

Ix

6Ix

I1

I2

IN

I3

���������	
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������������

Solving Eqs (ii), (iii) and (iv),

I

I

I

I IN

1  A

 A

 A

 A

�
�
�
� �

5

3

4 5

4 5

2

3

3

.

.

Step III Calculation of R
N

R
V

I
N

N

� �
�

� �Th 18

4 5
4

.
�

Step IV Norton’s Equivalent Network (Fig. 2.254)

������ !���()� Find Norton’s equivalent network to the left of terminal A-B in Fig. 2.255.

4 �6 �

A

I

B

0.5I

����������

Solution Since the network does not contain any 

independent source,

V

IN

Th �
�

0

0

But R
N
 can be calculated by applying a known current 

source of 1 A at the terminals A and B as shown in

Fig. 2.256.

From Fig. 2.256,

I
V

�
6

Applying KCL at the node,

V
I

V

V V V

V

6
0 5

4
1

6
0 5

6 4
1

1

6

0 5

6

1

4
1

� � �

� �
��

	

�
� �

� ��
��

	

�

�

.

.

.

V � 2

R
V

N � � �
1

2

1
2 �

Hence, Norton’s equivalent network is shown in Fig. 2.257.

�4 �

A

B

4.5 A

���������


4 �6 � 1 A

A
V

I

B

0.5I

����������

2 �

A

B

���������



����������������������������������������������������

������ !���)*� Find the current through the 2 �  resistor in the network shown in Fig. 2.258.

2 �

4 � 10 ��10 V

�2Ix

2 A

Ix

�
�

����������

Solution

Step I Calculation of V
Th

 (Fig. 2.259)

From Fig. 2.259,

I x � 0

The dependent source of �2 I
x

depends on 

the controlling variable I
x
. When I x � 0,  the 

dependent source vanishes, i.e. � �2 0I x  as 

shown in Fig. 2.260.

I1 2�

Writing the V
Th

 equation,

� � � �

� � � �

� �

10 4 0

10 4 2 0

18

1V I

V

V

Th

Th

Th  V

( )

Step II Calculation of I
N
 (Fig. 2.261)

From Fig. 2.261,

I Ix � 1 …(i)

Mesh 1 and 2 will form a supermesh.

Writing the current equation for the 

supermesh,

I I2 1 2� � …(ii)

Applying KVL to the outer path of the 

supermesh,

� � � �10 4 02 3( )I I

� � �4 4 102 3I I …(iii)

For Mesh 3,

I I I Ix x3 12 2 2� � � � �( )

2 01 3I I� � …(iv)

4 � 10 ��10 V

�2Ix

2 A

Ix

�
�

VTh

A B

� �

����������

4 � 10 ��10 V 2 A

Ix

�
�

VTh

A B

� �

I1

����������

4 � 10 ��10 V

�2Ix

2 A

IxIN

�
�

A B

I2 I3I1

����������
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Solving Eqs (ii), (iii) and (iv),

I

I

I

I IN

1

2

3

1

4 5

6 5

9

4 5

�
�
�
� �

.

.

.

 A

 A

 A

A

Step III Calculation of R
N

R
V

I
N

N

� � � � �Th 18

4 5
4

.
�

Step IV Calculation of I
L
 (Fig. 2.262)

IL � � �
� �

�4 5
4

4 2
9. A

������ !���)�� Find the current through the 2�  resistor in the network of Fig. 2.263.

1 �
2 �

5 V

Vi

4Vi
�
�

� �

���������	

Solution

Step I Calculation of V
Th

 (Fig. 2.264)

From Fig. 2.264,

5 4 0

1

� � �
� �

V V

V

i i

i  V

Writing the V
Th

 equation,

� � �
� � � � � �

4 0

4 4 1 4

V V

V V

i

i

Th

Th  V( )

Step II Calculation of I
N
 (Fig. 2.265)

From Fig. 2.265,

5 0

5

� �
� �

V

V

i

i  V

Applying KVL to the mesh,

� � �
� � � � � �

4 1 0

4 4 5 20

V I

I V

i N

N i ( )  A

IL

�4 � 2 �

A

B

4.5 A

����������

1 �

5 V

Vi

4Vi

VTh

�
�

� �
�

�

A

B

���������


1 �

5 V

Vi

4Vi

IN

�
�

� �
A

B

����������



����������������������������������������������������

Step III Calculation of R
N

R
V

I
N

N

� � �Th 4

20
0 2. �

Step IV Calculation of I
L
 (Fig. 2.266)

IL � �
�

�20
0 2

0 2 2
1 82

.

.
. A

������ !���)�� Find the current in the 2 �  resistor in the network of Fig. 2.267.

10 V

1 �

2 �3 �1 A

2IxIx

���������

Solution

Step I Calculation of V
Th

 (Fig. 2.268)

Meshes 1 and 2 will form a supermesh.

Writing current equation for the supermesh,

I I2 1 1� � …(i)

Applying KVL to the outer path of the 

supermesh,

10 1 3 01 2� � �I I

I I1 23 10� � …(ii)

Solving Eqs (i) and (ii),

I

I

1  A

 A

�
�

1 75

2 752

.

.

Writing the V
Th

 equation,

3 0

3 2 75 0

8 25

2I V

V

V

� �
� �

�

Th

Th

Th  V

( . )

.

Step II Calculation of I
N
 (Fig. 2.269)

From Fig. 2.269,

I Ix � 1 …(i)

Meshes 1 and 2 will form a supermesh.

Writing the current equation for the supermesh,

I I2 1� �1 …(ii)

Applying KVL to the outer path of the supermesh,

10 1 3 01 2 3� � � �I I I( )

0.2 � 2 �

A

B

20 A

����������

10 V

1 �

3 �1 A

2IxIx
A

B

I1 I2

VTh

��

� �

����������

10 V

1 �

3 �1 A

2Ix

I3

Ix

I1 I2

IN

����������
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I I I1 2 33 3 10� � � …(iii)

For Mesh 3,

I I Ix3 12 2� �
2 01 3I I� � …(iv)

Solving Eqs (ii), (iii) and (iv),

I

I

I

I IN

1  A

 A

 A

 A

� �
� �
� �
� � �

3 5

2 5

7

7

2

3

3

.

.

Step III Calculation of R
N

R
V

I
N

N

� �
�

� �Th 8 25

7
1 18

.
. �

Step IV Calculation of I
L
 (Fig. 2.270)

IL � � � �
� �

�7
1 18

1 18 2
10 07

.

.
. A

������ !���)�� Find the current through the 10 �  resistor for the network of Fig. 2.271.

2 �

10 V

5 � 10 �

Ix

3Ix

���	

���������

Solution

Step I Calculation of V
Th

 (Fig. 2.272)

Applying KVL to the mesh,

10 2 3 5 0

2 5

� � � �

�

I I I

I

x x x

x . A

Writing the V
Th

 equation,

5 0

5 2 5 0

12 5

I V

V

V

x � �

� �

�

Th

Th

Th  V

( . )

.

Step II Calculation of I
N
 (Fig. 2.273)

From Fig. 2.273,

I x � 0

�1.18 � 2 �

A

B

�7 A

IL

���������

2 �

10 V

5 �

Ix

3Ix

���� A

VTh

�
�

�
�
B

���������

2 �

10 V

5 �

Ix

IN

3Ix

����

��������	



�����������������������������������������������������

The dependent source of 3 I
x
 depends on the controlling variable I

x
.

When I
x
� 0, the dependent source 3 I

x
 vanishes, i.e. 3 I

x
� 0 as shown 

in Fig. 2.274.

IN � �10

2
5 A

Step III Calculation of R
N

R
V

I
N

N

� � �Th 12 5

5
2 5

.
. �

Step IV Calculation of I
L
 (Fig. 2.275)

IL � �
�

�5
2 5

2 5 10
1

.

.
 A

������ !���)"� Find the current through the 5 �  resistor in the network of Fig. 2.276.

12 V

2 � 4 �

5 � 4Ix
�
�

Ix

���������

Solution

Step I Calculation of V
Th

 (Fig. 2.277)

Applying KVL to the mesh,

12 2 4 4 0

12 10 0

1 2

� � � �
� �

�

I I I

I

I

x x x

x

x . A

Writing the V
Th

 equation,

12 2 0

12 2 1 2 0

9 6

� � �
� � �

�

I V

V

V

x Th

Th

Th  V

( . )

.

Step II Calculation of I
N
 (Fig. 2.278)

From Fig. 2.278,

I Ix � 1 …(i)

Applying KVL to Mesh 1,

12 2 01� �I

I1 6�  A …(ii)

Applying KVL to Mesh 2,

� � �4 4 0I I x2

� � �4 4 01I I2 …(iii)

Solving Eqs (ii) and (iii),

I2  A� �6

I I IN � � � � � �1 6 6 122  A( )

2 �

10 V

IN

A

B

��������


2.5 � 10 �

A

B

5 A

IL

���������

12 V

2 � 4 �

4Ix
�
�

Ix

A

B

VTh

�
� �

�

��������

12 V

2 � 4 �

4Ix
�
�

Ix

I1 I2

IN

���������
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Step III Calculation of R
N

R
V

I
N

N

� � �Th 9 6

12
0 8

.
. �

Step IV Calculation of I
L
 (Fig. 2.279)

IL � �
�

�12
0 8

0 8 5
1 66

.

.
. A

������ !���)%� Find the current through the 10 �  resistor for the network of Fig. 2.280.

4 �

5 V

5 �

10 �Vx0.5Vx

�

�

����������

Solution

Step I Calculation of V
Th

 (Fig. 2.281)

For the mesh,

I V Vx� � � �0 5 0 5. . Th

Writing the V
Th

 equation,

5 4 0 0

5 4 0 5 0

5

� � � �

� � � �

� �

I V

V V

V

Th

Th Th

Th  V

( . )

Step II Calculation of I
N
 (Fig. 2.282)

From Fig. 2.282,

Vx � 0

The dependent source of 0.5 V
x
� depends on the controlling 

variable V
x
. When V

x
� 0, the dependent source vanishes, i.e. 0.5

V
x
� 0 as shown in Fig. 2.283.

IN � �
�5

4 5

5

9
 A

Step III Calculation of R
N

R
V

I
N

N

� � � � �Th 5

5

9

9 �

Step IV Calculation of I
L
 (Fig. 2.284)

IL � � �
� �

� �5

9

9

9 10
5 A

0.8 � 5 �12 A

IL

���������

4 �

5 V

5 �

0.5Vx

A

B

I

VTh ��Vx

�

�

����������

4 �

5 V

5 �

0.5Vx

A

B

INVx

�

�

����������

4 �

5 V

5 �
A

B

IN

���������	

�9 � 10 �

A

B

5
9

IL

A

���������
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������ !���)&� Find the current through the 10 �  resistor in the network shown in Fig. 2.285.

12 V 25 � 10 �

1000 �

�
� 2Vx 5I1

�

�

Vx

I1

����������

Solution

Step I Calculation of V
Th

 (Fig. 2.286)

From Fig. 2.286,

V I Ix � � � �25 5 1251 1( ) …(i)

Applying KVL to Mesh 1,

12 1000 2 01� � �I Vx

12 1000 2 125 01 1� � � �I I( ) …(ii)

I

V Ix

1

1

0 016

125 125 0 016 2

�
� � � � � �

.

( . )

 A

 V

Writing the V
Th

 equation,

V VxTh  V� � �2

Step II Calculation of I
N
 (Fig. 2.287)

From Fig. 2.287,

Vx � 0

The dependent source of 2V
x
 depends 

on the controlling variable V
x
. When 

Vx � 0,  the dependent source vanishes, 

i.e. 2 V
x
� 0, as shown in Fig. 2.288.

I

I IN

1

1

12

1000
0 012

5 5 0 012 0 06

� �

� � � � � �

.

( . ) .

 A

 A

Step III Calculation of R
N

R
V

I
N

N

� � �
�

�Th 2

0 06
33 33

.
. �

Step IV Calculation of I
L
 (Fig. 2.289)

IL � � �
�

� �0 06
33 33

33 33 10
0 046.

.

.
. A

12 V 25 �

1000 �

�
� 2Vx 5I1

�

�

Vx

I1
A

B

VTh

�

�

����������

12 V 25 �

1000 �

�
� 2Vx 5I1

�

�

Vx IN

I1
A

B

���������

12 V

1000 �

5I1 IN

I1
A

B

����������

33.33 ��0.06 A 10 �

A

B

IL

����������
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������ !���)'� Find the current through the 5 � resistor for the network of Fig. 2.290.

2 �1 �

1 �
5 �

2 A

4 V

4Vx
�
�

Vx
� �

����������

Solution

Step I Calculation of V
Th

 (Fig. 2.291)

From Fig. 2.291,

V Ix � 2 …(i)

For the mesh,

I � 2 …(ii)

Vx � �2 2 4( )  V

Writing the V
Th

 equation,

4 2 1 4 0

4 4 2 2 2 4 0

26

V I I V

V

V

x � � � � �
� � � � �

�

Th

Th

Th  V

( ) ( )

Step II Calculation of I
N
 (Fig. 2.292)

From Fig. 2.292,

V I Ix � �2 1 2( ) …(i)

For Mesh 1,

I1 2� …(ii)

Applying KVL to Mesh 2,

4 2 1 4 0

4 2 2 2 4 0

2 1 2 1

1 2 2 1 2 1

V I I I I

I I I I I I

x � � � � � �
� � � � � � �

( ) ( )

[ ( )]

11 11 41 2I I� � � …(iii)

Solving Eqs (ii) and (iii),
I

I

I IN

1

2

2

2

2 36

2 36

�
�
� �

 A

 A

 A

.

.

Step III Calculation of R
N

R
V

I
N

N

� � �Th 26

2 36
11 02

.
. �

Step IV Calculation of I
L
 (Fig. 2.293)

IL � �
�

�2 36
11 02

11 02 5
1 62.

.

.
. A

2 �1 �

1 �

2 A

4 V

4Vx
�
�

Vx
� �

A

B

VTh

�

�

I

����������

2 �1 �

1 �

2 A

4 V

4Vx
�
�

Vx
� �

A

B

IN

I2

I1

����������

11.02 �2.36 A 5 �

A

B

IL

���������	



����
������������������������������������������������

������ !���)(� Find the current through the 1 �  resistor in the network of Fig. 2.294.

12 V

6 �

1 �3 �3Ix

Ix

���������


Solution

Step I Calculation of V
Th

 (Fig. 2.295)

From Fig. 2.295,

I Ix � 1 …(i)

Meshes 1 and 2 will form a supermesh.

Writing the current equation for the supermesh,

I I I Ix2 1 13 3� � �

4 01 2I I� � …(ii)

Applying KVL to the outer path of the supermesh,

12 6 3 01 2� � �I I

6 3 121 2I I� � …(iii)

Solving Eqs (ii) and (iii),

I

I

1  A

 A

�
�

0 67

2 672

.

.

Writing the V
Th

 equation,

3 0

3 2 67 0

8

2I V

V

V

� �
� �

�

Th

Th

Th  V

( . )

Step II Calculation of I
N
 (Fig. 2.296)

When a short circuit is placed across a 3 � resistor, it 

gets shorted as shown in Fig. 2.297.

From Fig. 2.297,

I Ix � 1 …(i)

Meshes 1 and 2 will form a supermesh.

Writing the current equation for the supermesh,

I I I Ix2 13 3� � �1

4 01 2I I� � …(ii)

Applying KVL to the outer path of the supermesh,

12 6 01� �I

I1 2� …(iii)

12 V

6 �

3 �3Ix

Ix

VTh

��

�
�

I1 I2

����������

12 V

6 �

3 �3Ix

Ix

IN

A

B

����������

12 V

6 �

3Ix

Ix

IN

A

B

I1 I2

���������
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Solving Eqs (ii) and (iii),

I

I

I IN

1  A

 A

 A

�
�
� �

2

8

8

2

2

Step III Calculation of R
N

R
V

I
N

N

� � �Th 8

8
1 �

Step IV Calculation of I
L
 (Fig. 2.298)

IL � �
�

�8
1

1 1
4 A

������ !���))� Find the current through the 1.6 �  resistor in the network of Fig. 2.299.

1 � 6 � 1.6 �10 A

3Ix

Ix

����

����������

Solution

Step I Calculation of V
Th

 (Fig. 2.300)

From Fig. 2.300,

I I Ix � 	1 2 …(i)

For Mesh 1,

I1 10� …(ii)

Applying KVL to Mesh 2,

	 	 � 	 �
	 � � 	 	 �

1 3 6 0

3 6 0

2 1 2

2 1 1 2 2

( )

( )

I I I I

I I I I I

x

4 10 01 2I I	 � …(iii)

Solving Eqs (ii) and (iii),

I

I

1  A

 A

�
�

10

42

Writing the V
Th

 equation,

6 0

6 4 0

24

2I V

V

V

	 �
	 �

�

Th

Th

Th  V

( )

1 �8 A 1 �

A

B

IL

����������

1 � 6 �10 A

3Ix

Ix

����

VTh

�

�

�

�

A

B

I1 I2

�������	��



�����������������������������������������������������

Step II Calculation of I
N
 (Fig. 2.301)

When a short circuit is placed across the 3 � resistor, it 

gets shorted as shown in Fig. 2.302.

From Fig. 2.302,

I I Ix � 	1 2 …(i)

For Mesh 1,

I1 � 10 …(ii)

Applying KVL to Mesh 2,

	 	 � �
	 � � 	 �

1 3 0

3 0

2 1

2 1 1 2

( )

( )

I I I

I I I I

x

4 4 01 2I I	 � …(iii)

Solving Eqs (ii) and (iii),

I

I

I IN

1  A

 A

 A

�
�
� �

10

10

10

2

2

Step III Calculation of R
N

R
V

I
N

N

� � �Th 24

10
2 4. �

Step IV Calculation of I
L
 (Fig. 2.303)

IL � �
�

�10
2 4

2 4 1 6
6

.

. .
 A

����*�����#����$���
�	
�����
�	���
��

It states that ‘the maximum power is delivered from a source to a load when the load resistance is equal to 

the source resistance.’

Proof From Fig. 2.304,

I
V

R Rs L

�
�

Power delivered to the load R P I R
V R

R R
L L

L

s L

� � �
�

2
2

2( )

To determine the value of R
L
 for maximum power to be transferred 

to the load,

dP

dR

dP

dR

d

dR

V

R R
R

V R R R R R

R

L

L L s L

L

s L L s L

s

�

�
�

� � 	 �

0

2

2

2

2 2

( )

[( ) ( )( )]

( �� RL )4

1 � 6 �10 A

3Ix

Ix

IN

���� A

B

�������	��

1 �10 A

3Ix

Ix

IN

���� A

B

I1 I2

�������	��

2.4 �10 A 1.6 �

A

B

IL

�������	�	

V

RS

RL

I

�������	�
����������������������

��'�����!���������	��

�����
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( ) ( )R R R R R

R R R R R R R

R R

s L L s L

s L s L L s L

s L

� 	 � �

� � 	 	 �

�

2

2 2 2

2 0

2 2 2 0

Hence, the maximum power will be transferred to the load when load resistance is equal to the source 

resistance.

Steps to be followed in Maximum Power Transfer 

Theorem

1. Remove the variable load resistor R
L
.

2. Find the open circuit voltage V
Th

 across points A and 

B.

3. Find the resistance R
Th

 as seen from points A and 

B.

4. Find the resistance R
L
 for maximum power 

transfer.

R RL � Th

5. Find the maximum power (Fig. 2.305).

I
V

R R

V

R

P I R
V

R
R

V

R

L
L

L L

�
�

�

� � � �

Th

Th

Th

Th

Th

Th

Th
Th

Th

2

4 4

2
2

2

2

max

������ !� ���**� For the value of resistance R
L
 in Fig. 2.306 for maximum power transfer and 

calculate the maximum power.

15 �

10 � 20 �

100 V

27 �

18 �

15 �5 � 27 � 9 �

RL

�������	��

VTh

RTh

RL =RTh

A

B

IL

�������	���������
��&��������������
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Solution

Step I Calculation of V
Th

 (Fig. 2.307)

15 �

10 � 20 �

100 V

27 �

18 �

15 �5 � 27 � 9 �

VTh �
B

�
A

�������	�

By star-delta transformation (Fig. 2.308),

I �
� � � �

�100

5 5 20 9 9
2 08. A

Writing the V
Th

 equation,

100 5 9 0

100 14

100 14 2 08

70 88

	 	 	 �

� 	

� 	

�

I V I

V I

Th

Th

V

( . )

.

Step II Calculation of R
Th

 (Fig. 2.309)

9 �

9 �

9 �

5 �

5 �

5 �

5 � 20 �

(b)

(a)

9 �

9 �

9 �

20 �

5 �

5 �

A B
RTh

A B
RTh

5 �

14 �

34 �

(c)

9 �A B
RTh 5 �

9.92 �

(d)

9 �A B
RTh

�������	��

9 �

9 �

9 �

5 �

20 �

100 V

5 �

5 �

A

I

B
VTh

� � �

� �

�

�������	��
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RTh � �23 92.

Step III Calculation of R
L

For maximum power transfer,

R RL � � �Th 23 92.

Step IV Calculation of P
max

 (Fig. 2.310)

P
V

R
max

( . )

.
.� �

�
�Th

Th

W
2 2

4

70 88

4 23 92
52 51

������ !� ���*�� For the value of resistance R
L
 in Fig. 2.311 for maximum power transfer and 

calculate the maximum power.

80 V 20 V

2 A
5 �

10 � 20 �

RL

�������	��

Solution

Step I Calculation of V
Th

 (Fig. 2.312)

80 V 20 V

2 A
5 �

10 � 20 �

�
��

� �

� � � �
� �

�

A

B

VTh
I1

I2

�������	��

Applying KVL to Mesh 1,

80 5 10 20 20 0

35 30 60

1 1 2 1 2

1 2

� � � � � � �

� �

I I I I I

I I

( ) ( )

…(i)

Writing the current equation for Mesh 2,

I2 2� …(ii)

23.92 �

23.92 �70.88 V

A

B

�������	��



�����������������������������������������������������

Solving Eqs (i) and (ii),

I1 3 43� . A

Writing the V
Th

 equation,

V I I

V

Th

Th V

� � � �
� � � �

20 20 0

20 3 43 2 20 48 6

1 2( )

( . ) .

Step II Calculation of R
Th

 (Fig. 2.313)

RTh � � �15 20 8 57|| .

Step III Calculation of R
L

For maximum power transfer,

R RL � � �Th 8 57.

Step IV Calculation of P
max

 (Fig. 2.314)

P
V

R
max

( . )

.
.� �

�
�Th

Th

W
2 2

4

48 6

4 8 57
68 9

������ !� ���*�� For the value of resistance R
L
 in Fig. 2.315 for maximum power transfer and 

calculate the maximum power.

10 � 20 �

RL

40 �30 �

100 V

�������	��

Solution

Step I Calculation of V
Th

 (Fig. 2.316)

I

I

1

2

100

10 30
2 5

100

20 40
1 66

�
�

�

�
�

�

.

.

A

A

Writing the V
Th

 equation,

V I I

V I I
Th

Th V

� � �
� � � � �

10 20 0

20 10 20 1 66 10 2 5 8 2
1 2

2 1 ( . ) ( . ) .

5 �

10 � 20 �

A

B

RTh

�������	�	

8.57 �

8.57 �48.6 V

A

B

�������	�


10 � 20 �

40 �30 �

100 V
�

� �

��

� �

� �
�

A B
VTh

I1 I2

�������	��
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Step II Calculation of R
Th

 (Fig. 2.317)

10 � 20 �

40 �30 �

A B
RTh

�������	�

Redrawing the network (Fig. 2.318),

RTh � � � �( || ) ( || ) .10 30 20 40 20 83

10 �
20 �

40 �30 �

A B

�������	��

Step III Value of R
L

For maximum power transfer,

R RL � � �Th 20 83.

Step IV Calculation of P
max

 (Fig. 2.319)

P
V

R
max

( . )

.
.� �

�
�Th

Th

W
2 2

4

8 2

4 20 83
0 81

������ !� ���*�� For the value of resistance R
L
 in Fig. 2.320 for maximum power transfer and 

calculate the maximum power.

6 �

2 �

RL

4 �3 �

72 V

�������	��

20.83 �

20.83 �8.2 V

A

B

�������	��
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Solution

Step I Calculation of V
Th

 (Fig. 2.321)

Applying KVL to Mesh 1,

72 6 3 0

9 3 72

1 1 2

1 2

� � � �
� �

I I I

I I

( )

…(i)

Applying KVL to Mesh 2,

� � � � �
� � �

3 2 4 0

3 9 0

2 1 2 2

1 2

( )I I I I

I I …(ii)

Solving Eqs (i) and (ii),

I

I

1

2

9

3

�
�

A

A

Writing the V
Th

 equation,

V I I

V I I

Th

Th V

� � �
� � � � �

6 2 0

6 2 6 9 2 3 60

1 2

1 2 ( ) ( )

Step II Calculation of R
Th

 (Fig. 2.322)

6 �

2 �

4 �

4 �

2 �

3 �6 �

3 �

A

B A

B

RTh

RTh

�������	��

RTh � � � �[( || ) ] ||6 3 2 4 2

Step III Calculation of R
L

For maximum power transfer,

R RL � � �Th 2

Step IV Calculation of P
max

 (Fig. 2.323)

P
V

R
max

( )� �
�

�Th

Th

W
2 2

4

60

4 2
450

�#��$������	����$�����	���
���

������ !����*"� For the network shown in Fig. 2.324, find the value of R
L
 for maximum power 

transfer. Also, calculate maximum power.

6 �

2 �

4 �3 �

72 V

� �

� �
�

�

�
�

� �

A

B

VTh

I1

I2

�������	��

2 �

2 �60 V

A

B

�������	�	
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RL

20 �

10 I
�
�

40 �

50 V

I

�������	�


Solution

Step I Calculation of V
Th

 (Fig. 2.325)

Applying KVL to the mesh,

10 20 40 50 0

1

I I I

I

� � � �
� �  A

Writing the V
Th

 equation,

V I

V

V

Th

Th

Th  V

� � �
� � � �

�

40 50 0

40 1 50 0

10

( )

Step II Calculation of I
N
 (Fig. 2.326)

From Fig. 2.326,

I I� 2 …(i)

Applying KVL to Mesh 1,

10 20 0I I� �1

10 20 02I I� �1 …(ii)

Applying KVL to Mesh 2,

� � �40 50 02I

I2 1 25� � . A …(iii)

Solving Eqs (i), (ii) and (iii),

I

I I IN

1  A

 A

� �
� � � � � �

0 625

0 625 1 25 0 6251 2

.

. . .

Step III Calculation of R
N

R
V

IN
Th

Th� � �10

0 625
16

.
�

Step IV Calculation of R
L

For maximum power transfer,

R RL � �Th 16 �
Step V Calculation of P

max
(Fig. 2.327)

P
V

R
max

( )
.� �

�
�Th

Th

 W
4

10

4 16
1 56

2

VTh

20 �

10 I
�
�

40 �
A

B
50 V

�

�

I

�������	��

20 �

10I
�
�

40 �
A

B
50 V

I

IN
I1 I2

�������	��

16 �10 V

A

B

16 �

�������	�
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������������������������������������������������

������ !����*%� For the network shown in Fig. 2.328, calculate the maximum power that may be 

dissipated in the load resistor R
L
.

6 �4 �

3 �

10 A

2Ix

Ix

RL

����

�������	��

Solution

Step I Calculation of V
Th

 (Fig. 2.329)

From Fig. 2.329,

I Ix � 2 …(i)

For Mesh 1,

I1 10� …(ii)

Applying KVL to Mesh 2,

� � � � �
� � � � �
4 2 6 0

4 4 2 6 0

2 1 2

2 1 2 2

( )I I I I

I I I I

x

4 8 01 2I I� � …(iii)

Solving Eqs (ii) and (iii),

I

I

1

2

10

5

�
�

 A

 A

Writing the V
Th

 equation,

6 0 0

6 6 5 30

2

2

I V

V I

� � �
� � �

Th

Th  V( )

Step II Calculation of I
N
 (Fig. 2.330)

From Fig. 2.330,

I I Ix � �2 3 …(i)

For Mesh 1,

I1 10� …(ii)

Applying KVL to Mesh 2,

� � � � � �
� � � � � � �

4 2 6 0

4 4 2 6 6 0

2 2 3

2 2 3 2 3

( ) ( )

( )

I I I I I

I I I I I I

x1

1

4 8 4 02 3I I I1 � � � …(iii)

6 �4 �

3 �

10 A

2Ix

Ix

����

I1 I2

�
�

�

A

�
B

VTh

�������	��

6 �4 �

3 �

10 A

2Ix

Ix

����

I1 I2 I3

A

B

IN

�������		�
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Applying KVL to Mesh 3,

� � � �6 3 03 2 3( )I I I

6 9 02 3I I� � …(iv)

Solving Eqs (ii), (iii) and (iv),

I

I

I

I IN

1  A

 A

 A

 A

�

�

�

� �

10

7 5

5

5

2

3

3

.

Step III Calculation of R
Th

R
V

IN
Th

Th� � �30

5
6 �

Step IV Calculation of R
L

For maximum power transfer,

R RL � �Th 6 �

Step V Calculation of P
max

 (Fig. 2.331)

P
V

R
max

( )
.� �

	
�Th

Th

 W
2 2

4

30

4 16
37 5

������ !����*&� For the network shown in Fig. 2.332, find the value of R
L
 for maximum power

transfer. Also, find maximum power.

1 �

1 �

1 A

2 V

Vx

RL

�
�

� �

2Vx

�������		�

Solution

Step I Calculation of V
Th

 (Fig. 2.333)

From Fig. 2.333,

V I Ix � � � �1 …(i)

For Mesh 1,

I � �1 …(ii)

Vx � 1 V

6 �30 V

A

B

6 �

�������		�

1 �

1 �

1 A

2 V

Vx

�
�

� �

2Vx

I

�

�

A

B

VTh

�������			



�����������������������������������������������������

Writing the V
Th

 equation,

2 1 2 0

2 1 1 2 0

5

V I V

V

V

x � � � �
� � � � �

�

Th

Th

Th  V

( ) ( )

Step II Calculation of I
N
 (Fig. 2.334)

From Fig. 2.334,

V I Ix � � � �1 1 1 …(i)

Meshes 1 and 2 will form a supermesh.

Writing the current equation for the supermesh,

I I2 1� �1 …(ii)

Applying KVL to the outer path of the supermesh,

2 1 2 0

2 2 0

1

1 1

V I

I I

x � � �
� � � �( )

3 01I � …(iii)

Solving Eqs (ii) and (iii),

I

I

I IN

1  A

 A

 A

�
�
� �

0 67

1 67

1 67

2

2

.

.

.

Step III Calculation of R
Th

R
V

IN
Th

Th� � �5

1 67
3

.
�

Step IV Calculation of R
L

For maximum power transfer,

R RL � �Th 3 �

Step V Calculation of P
max

 (Fig. 2.335)

P
V

R
max

( )
.� �

�
�Th

Th

 W
2 2

4

5

4 3
2 08

������ !����*'� What will be the value of R
L
 in Fig. 2.336 to get maximum power delivered to it? 

What is the value of this power?

4 �4 �3 A

0.5 V

RL

���� �

�

V

�������		�

1 �

1 �

1 A

2 V

Vx

�
�

� �

2Vx

A

B

I1 I2

IN

�������		


3 �5 V

A

B

3 �

�������		�



2.10� �'�����(���������	������������

Solution

Step I Calculation of V
Th

 (Fig. 2.337)

By source transformation,

From Fig. 2.337,

V ITh � 4

Applying KVL to the mesh,

12 4 0 5 4 0

12 0 5 0

8

� � � �

� � � �

�

I V I

V V V

V

.

.

Th

Th Th Th

Th V

Step II Calculation of I
N
 (Fig. 2.338)

If two terminals A and B are shorted, the 4 � resistor gets 

shorted.

V � 0

Dependent source 0.5 V depends on the controlling 

variable V . When V = 0, the dependent source vanishes, i.e. 

0.5 V = 0 as shown in Fig. 2.339 and Fig. 2.340.

IN � �12

4
3 A

4 �
4 �

12 V

�

�

A

B

0.5 V

����

IN V
12 V

A

B

4 �

IN

�������		� �������	
�

Step III Calculation of R
Th

R
V

IN
Th

Th� � � �8

3
2 67.

Step IV Calculation of R
L

For maximum power transfer,

R RL � � �Th 2 67.

Step V Calculation of P
max

 (Fig. 2.341)

P
V

R
max

( )

.
� �

	
�Th

Th

W
2 2

4

8

4 2 67
6

4 �4 �3 A

0.5 VTh

VTh

���� �

�

A

B

�������		

4 �
4 �

12 V

VTh

�

�

A

B

I

0.5 VTh

����

�������		�

2.67 �8 V

A

B

2.67 �

IL

�������	
�
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Superposition Theorem

Problem 4.1  Calculate the voltage V across the resistor R by using the superposition theorem.

1 A 

j1�

 j5�

j4�
1 VR = 1�

Fig. 4.30

Solution We consider two cases:

Case (1) When the 1-A current source is acting alone

For Fig. 4.31(a), the voltage across the resistor R � 1 � is, ′ =
+

V
j

j1
.

Case (2) When the 1-V voltage source is acting alone

For Fig. 4.31(b), the current through the resistor ′′ =
+

I
j

1

1

and hence, the voltage across the resistor R � 1 � is ′′ = ′′ × =
+

V I
j

1
1

1
.

So, by the superposition theorem, total voltage across the resistor when 

both the sources are acting simultaneously is,

 
V V V

j

j j
= ′+ ′′ =

+
+

+
=( )

1

1

1
1V

Problem 4.2 Use the superposition theorem on the circuit shown in 

Fig. 4.32 to find ‘I’.

Solution We consider two cases:

Case(1) When the 10-V voltage source is acting alone

For Fig. 4.33(a), by KVL, 5 2 2 10 2′ − ′ + ′ = ′ = − ′i v i v i
x x

with

 
⇒ ′+ ′ = ⇒ ′ =7 4 10 10

11
i i i A

Case (2) When 1-V voltage source is acting alone

For Fig 4.33(b), by KCL at the node (x)

 2
2

= + ′′ = −
′
+ ′′i i

v
i

x

x  (i)

But loop analysis in the left loop gives

 
5 3 0

3

5
′′ + ′′ = ′′ = − ′′i v i v

x x
or,

Solved Exercises 

j 1�

1�

�

 

1 A V�

Fig. 4.31 (a)  Circuit with current 

source acting alone

j1�

 j 5�

j 4�

1�

�

�

 
 

V� 1 V

Fig. 4.31 (b) Circuit with 

voltage source acting alone

10 V

5�

�

 

�
�

 

 

2V
x

2� V
x 2 A

I

Fig. 4.32

Fig. 4.33 (a) Voltage source 

acting alone

10 V 

5�

2�
�

�

�
 

 
 

2V
x
�

V
x
�i�
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From (i), 2
2

3

5

20

11
= −

′′
− ′′ ⇒ ′′= −

v
v vx

x x

 

∴ ′′ = − × −
⎛
⎝⎜

⎞
⎠⎟
=i

3

5

20

11

12

11
A

So, by the superposition theorem total current, when both the sources are 

acting simultaneously, is,

 
I i i= ′ − ′′ = −

⎛
⎝⎜

⎞
⎠⎟
= −( )

10

11

12

11

2

11
A

Problem 4.3 Determine the current in the capacitor branch by the superposition 

theorem.

Solution When the voltage source is acting alone

Here, the current in the capacitor branch is

 

′ =
∠ °

+( )+ −( ) = ∠ °I
j j

4 0

3 4 3 4

2

3
0 A

When the current source is acting alone

Here, the current in the capacitor branch is

 

′′ = ∠ ° ×
+

+ + −
= − +
⎛
⎝⎜

⎞
⎠⎟

I
j

j j
j2 90

4

3
1

( )

( ) ( )

3 4

3 4 3 4
A

 � total current when both the sources are acting simultane-

ously is

 

I I I j j= ′ + ′′ = − +
⎛
⎝⎜

⎞
⎠⎟
= − +
⎛
⎝⎜

⎞
⎠⎟

= ∠

( )

.

2

3

4

3
1

2

3
1

1 2 1123 7. ° A

Problem 4.4 Find the current i0 using superposition 

 theorem.

(a) 

i
0

i
0

4�

5�0�V 2�0�A

10cos4t (V)

j5�

 j2�

4�

1H 8 V

2�

�

 

�

 

 (c) 

6�

j4�8�

 j2�

i
0

2�0� (A)

10�30� (V)
�
 

(b) 

 Fig. 4.36

2�

X

i
x

5�
2V

x
�

�

 

V
x
�i �

� 

2 A

Fig. 4.33 (b) Current source 

acting alone

�  

 j4�
j4�

3�

3�

2�90�A

4�0� V

Fig. 4.34

 j4�
j4�

3�

3�

2�90° A

Fig. 4.35 (a) 

When voltage source 

acting alone

Fig. 4.35 (b) 

When current source 

acting alone

�  

 j4�
j4�

3�

3�
4�0° V
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Solution (a) When the voltage source is acting alone

 The current in this case is 

′ =
−

= +
⎛
⎝⎜

⎞
⎠⎟

i
j

j
0

5

4 2
1

1

2
A

 When the current source is acting alone

In this case, the current is, 

′′= ∠ ° ×
−

= +
⎛
⎝⎜

⎞
⎠⎟

i
j

j
0

2 0
4

4 2

8

5

14

5
A

�  �by the superposition theorem, total current is 

i i i j
0 0 0

1
8

5

1

2

4

5
2 9 2= ′ + ′′( )= +

⎛
⎝⎜

⎞
⎠⎟
+ +

⎛
⎝⎜

⎞
⎠⎟
= ∠. 66 56. ° A

(b) When the dc source is acting alone

  Equivalent impedance, Z
j

j

j

j
=

×
+

+
⎛
⎝⎜

⎞
⎠⎟
=

+
+

4 4

4 4
2

2 6

1

�  �main current, I
Z

j

j

j

j
= =

+( )
+

=
+( )

+
8 8 1

2 6

4 1

1 3

� � �the current, ′ = ×
+

=
+

+
×

+
= −
⎛
⎝⎜

⎞
⎠⎟

i I
j

j

j j
j

0

4

4 4

4 1

1 3

4

4 4

2

5

6

5

( )
A

 When the ac source is acting alone

  Equivalent impedance, Z
j

j

j

j
= +

×
+

⎛
⎝⎜

⎞
⎠⎟
=

+
+

4
4 2

2 4

4 6

1 2

� � �main current, 

I
Z

j

j

j

j
=

∠ °
= ∠ °

+
+

=
+
+

10 0
10 0

1 2

4 6

10 20

4 6

( )

�  � the current, 

i I
j

j

j j
j

0

2

2 4

10 1 2

4 6

1

1 2

10

13

15

13
′′ = ×

+
=

+
+

×
+

= −
⎛( )

⎝⎝⎜
⎞
⎠⎟

A

�  �by the superposition theorem, total current is, i i i j
0 0 0

2

5

10

13

6

5

15

13
= ′ + ′′ = +

⎛
⎝⎜

⎞
⎠⎟
− +

⎛
⎝⎜

⎞
⎠⎟
=( ) 22 63 63 58. .∠− ° A

(c) When the voltage source is acting alone

 Equivalent impedance, Z
j j

j

j

j
=

−
+

+ =
+
+

4 8 2

8 2
6

28 22

4

( )

4�

 j2�

j5�

 

�
5�0� V

i
0
�

Fig. 4.37 (a) Voltage source acting 

alone

4�

 j2�

j5�

2�0�A

i
0
�

Fig. 4.37 (b) Current source acting 

alone

4� 2�

�

 

j4�10 cost 4t(V)

i
0
��

Fig. 4.38 (b) ac source acting alone

Fig. 4.38 (a) dc source acting alone

4 � 2�

�

 

j4� 8 V 

i
0
�
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� � �main current, I
j

j

j j

j
=

∠ ° +
+

=
+ +
+

10 30 4

28 22

8 66 5 4

28 22

( ) ( . )( )

�  �the current, 

′ = ×
−
+

=
+

+
= ∠− °i I

j

j

j

j0

8 2

8 2

8 66 5

56 44
0 14 8 16

.
. . A

 When the current source is acting alone

6�

6�
8�

8�

 j2�
 j2�

j4�

i
0
� i

0
�

j4�

2�0� (A)

2�0� (A)

Fig. 4.40

 where, Z
j

j

j

j
=

×
+

=
+

4 6

6 4

12

3 2

�  �the current, 

′′ = ∠ ×
− +

=
+

= ∠i
Z

j Z

j

j0
2 0

8 2

12

12 11
0 73 47 49� �. . A

�  �by the superposition theorem, total current is

i i i
0 0 0

0 14 8 16 0 73 47 49 0 6= ′ + ′′( )= ∠− ° + ∠ °( )=. . . . . 331 0 518 0 81 39 38+( )= ∠ °j . . . A

Problem 4.5 Find v0 using the superposition theorem.

Fig. 4.42

30 sin 5t (V)

8�

�

�

 

 
v

0 2 cos 10t (A)0.2 F 1 H 

Solution (a) When the voltage source is acting alone

Here, X
j

j
C
=

−
×

= −
5 0 2

1
.

�  and X j j
L
= × × =5 1 5�

By KCL, 

−
− ′

+
′

−
+

′
= ⇒ ′ =

+( )
30

8 1 5
0

30

8 0 125 0 8

0 0 0

0

v v

j

v

j
v

j. .
== ∠− °4 631 81 12. . ( )V

6�

i
0
�

8�

 j2�

j4� 10�30� (V)
�
 

Fig. 4.39 Voltage source acting alone

Fig. 4.41

8�

 j 2�

i
0
�

2�0� (A)Z
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 When the current source is acting alone

 Here, X
j

j
C
=

−
×

= −
10 0 2

0 5
.

. �  and X j j
L
= × × =10 1 10�

 By KCL, 2
1

8

1

10

1

0 5

2

0 125 1 90 0
= ′′ + +

−
⎛
⎝⎜

⎞
⎠⎟

⇒ ′′ =
+

v
j j

v
j. . .

== ∠− °1 051 86 24. . ( )V

  By the superposition theorem, when both the sources are acting simultaneously, the voltage is

 v v v t
0 0 0

4 631 5 81 12 1 051= ′ + ′′ = − ° +( ) . sin( . ) . cos(110 86 24t − °. ) ( )V

Problem 4.6 Find i0  and i from the circuit of Fig. 4.44 using 

superposition theorem.

Solution When the 6-V source is acting alone

The circuit is shown.

Here, ′ = ′i i
0

By KVL, 6 2 6
6

8

3

4
0 75

0
′ + ′ = ⇒ ′ = ′ = = =i i i i A A.

When the 1-A source is acting alone

By KCL, we get, 1 1
0 0

= ′′− ′′ ⇒ ′′ = + ′′i i i i

By KVL for the supermesh,

1 5 2 0 3 5 0

3

0 0 0

0

× ′′+ ′′+ ′′= ′′+ ′′ =

′′+

i i i i i

i

or

or

,

, 55 1 0
5

4
1 25

0 0
+ ′′( )= ′′= − = −i ior A, .

∴ ′′ = − = −i 1 1 25 0 25. . A

By the superposition theorem, the total currents when both the 

sources are acting simultaneously is given as

 

i i i

i i i

= ′+ ′′ = − =
= ′ + ′′ =

( ) ( . . ) .

( ) (

0 75 0 25 0 5

0
0 0 0

A

.. . ) .75 1 25 0 5− = −

⎫
⎬
⎪

⎭⎪A

8 �

�

 

v
0
� 2�0� (A)30�0� (V)

8 �

�

�

 

 
v

0
� j5� j1�  j0.5� j10�

Fig. 4.43 (a) Voltage source acting alone Fig. 4.43 (b) Current source acting alone

Fig. 4.44

6 V 1A 

i
0

2i
0

i1� 5�

�
 

�

 

6 V 

i
0
�

2i
0
�

i �1� 5�

�

 

�

 

Fig. 4.45 (a) 6-V Source acting alone

1A 

i
0
�

2i
0
�

i�1� 5�

�

 

Fig. 4.45 (b) 1-A source acting alone
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Problem 4.7 Using the superposition theorem, calculate the current through the (2 ⴙ j3)⍀ impedance 

branch of the circuit shown in Fig. 4.46.

Fig. 4.46

5 � 

� 
  

� 
  

j5 � 

j3 � 2 � 4 � 

20 V 30 V 6 � 

Solution   Case (I) When the 30-V source is acting alone

Impedance, Z
j j

j j
j= +

+( )×
+ +

= +( )5
4 4 3 5

4 4 3 5
6 32 2 6

.

.
. . Ω

∴ ′ = =
+

= −( )I
Z j

j
30 30

6 32 2 6
4 06 1 67

. .
. . A

′ = ′ ×
+ +

= +i I
j

j j
j

5

4 4 3 5
2 39 0 27

.
( . . ) A

Case (II) when the 20-V source is acting alone

Impedance, Z
j

j
j= +

+( )×
+ +

= +( )4
4 5 5 5 6

4 5 5 5 6
7 31 1 41

. .

. .
. . Ω

∴ ′′ = =
+

= −I
Z j

20 20

7 31 1 41
2 64 0 509

. .
( . . ) A

′′ = − ′′ ×
+ +

= − −i I
j

j
6

4 5 5 5 6
1 064 0 848

. .
( . . ) A

By the superposition theorem, total current flowing through the (2 � j3) impedance is

i i i j j= ′+ ′′ = + − − =( ) ( . . ) ( . . ) ( .2 39 0 27 1 064 0 848 1 3225 1 117 1 733 40 14+ = ∠ °j . ) . .A A

Problem 4.8 Using the superposition theorem, find VAB.

Solution We consider three cases:

Case (I) When the 2-V source is acting alone

The circuit is shown Fig. 4.50.

Fig. 4.47

5 � 

� 
  

j5 � 

j3 � 2 � 4 � 

30 V 
I�

i� 6 � 

5 � 

� 
  

j5 � 

j3 � 2 � 4 � 

20 V 
i � 

I � 
6 � 

Fig. 4.48

6 �

2 A

4 �A 2 �

 �

 �

4 V

2 V

B

Fig. 4.49

Fig. 4.50

A 4�

I�

2�
�  

2 V

6�

B
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For this circuit, the current in the loop is obtained as ′ = =I
2

12

1

6
A

  the voltage between A and B is ′ = ′ × = × =V I
AB

6
1

6
6 1V

Case (II) When the 4-V source is acting alone

The circuit is shown in Fig. 4.51.

In this circuit, the loop current is obtained as

  ′′ = =I
4

12

1

3
A

  voltage between A and B is,

  ′′ = − ′′ × = − × = −V I
AB

6
1

3
6 2 V

Case (III) When the 2-A source is acting alone

The circuit is shown in Fig. 4.52.

We convert the current source into its equivalent voltage source as 

shown in Fig. 4.53.

The loop current is ′′′ = =I
8

12

2

3
A

�  voltage between A and B is  

′′′= − ′′′ × = − × = −V I
AB

6
2

3
6 4 V

   voltage between A and B when all the sources are acting 

simultaneously is given by superposition theorem as

V V V V
AB AB AB AB
= ′ + ′′ + ′′′= − −( )= −1 2 4 5 V

Problem 4.9 Find the current i in the circuit shown in the Fig. 4.54 using the 

superposition theorem.

Solution We consider the three cases:

Case (I) When the 10-V source is acting alone

The circuit is shown in Fig. 4.55.

A 4�

4 V

I�

2�

6�

B

� 

Fig. 4.51

Fig. 4.52

6�

2 A

4�A 2� B

Fig. 4.53

6�

4�

I ��

2�

8V

A B
� 

Fig. 4.54

4 i

8 A

2 A i

10V

2� 3�

�

�

 

 

2 A

4 i

3�2�

i �

� 

10 V

3�2�

� 

� 

i�

4i�

2 A2 � 3�

i �

2 i �

Fig. 4.57Fig. 4.55 Fig. 4.56



Network Analysis and Synthesis

184

By KVL for the loop, we get, − ′ + ′ − + ′ = ⇒ ′ =4 3 10 2 0 10i i i i A

Case (II) When the 2-A source is acting alone

The circuit is shown in Fig. 4.56.

We convert the dependent voltage source into its equivalent dependent current source as shown in Fig. 4.57.

The total current (2 � 2i��) is divided into two paths, resistors 2 � and 3 �.

  by current divider rule, current through the 3-� resistor is

 

′′ =
+

⎛
⎝⎜

⎞
⎠⎟
× + ′′ ⇒ ′′ =i i i

2

2 3
2 2 4( ) A

Case (III) When the 8-A source is acting alone

The circuit is shown in Fig. 4.58.

By KVL for the loop, we get,

where, 

− ′′′+ − + =
′′′ = − = ′′′+
⇒ −

4 3 8 2 0

8 8

i I I

i I I i

( )

( ) , ( )or

44 3 2 8 0 16′′′ + ′′+ ′′′ + = ⇒ =−i i i i( ) A

  current when all the sources are acting simultaneously is given by the 

superposition theorem as

 i i i i= ′ + ′′ + ′′′ = + − = −( ) ( )10 4 16 2 A

Problem 4.10 Using the superposition theorem determine V1, the 

voltage across the 3-ohm resistor in Fig. 4.59.

Solution Case (I) When the 8-A current source is acting alone

By KVL for the supermesh, 3 2 4 0
1

21 1
′ + − ′ = ⇒ = ′i i i i i

By KCL at the node x,  

 i i i i i
1

8
1

2
8 16= + ′ ⇒ ′ = + ′ ⇒ ′ = −( ) A

∴ ′= ′ = × − = −V i
1

3 3 16 48( ) V

Case (II) When the 2-A current source is acting 

alone

By KVL,

3 2 2 4 0 5 6 4 0
2 2 2

( )i i i i i+ + − ′′ = ⇒ + − ′′ =

Now, ′′ = +i i( )
2

2

∴ + − + = ⇒ =

∴ ′′ = + = + =

∴

5 6 4 2 0 2

2 2 2 4

2 2 2

2

i i i

i i

( )

( ) ( )

A

A

′′′= ′′ = × =V i
1

3 3 4 12 V

8 A2� 3�

i ��

4 i ��

I

� 

Fig. 4.58

i

�

�

 

 

�
 3�

2�

8 A
4 i

2 A

10V

V
1

Fig. 4.59

Fig. 4.60 (a) Fig. 4.60 (b)

i�

i
1

x

�

 

�
 3�

2�

8 A
4 i � V

1
�

i �i
2

�

 

�
 3�

2�

4 i�

2 A

2A

V
1
�



Network Theorems

185

Case (III) When the 10-V voltage source is acting alone

By KVL, 3 10 2 4 0 10′′′ − + ′′′− ′′′ = ⇒ ′′′ =i i i i A

∴ ′′′= × =V
1

10 3 30 V

When all the sources are acting simultaneously, by the superposition theorem the 

voltage is given as

V V V V
1 1 1 1

48 12 30 6= ′+ ′′+ ′′′ = − + + = −( ) ( ) V

Problem 4.11 For the network shown in Fig. 4.61 

 calculate the current throughout the impedance (3 ⴙ j4)� 

using superposition theorem.

Solution When the 10�90ⴗ V is acting alone

Main current, I
j j

j j

j j

j
=

∠ °

+
+
+ +

=
+

− +
10 90

5
3 4 5

3 4 5

10 3 9

5 60( )

( )

∴ ′ = ×
+

=
×

− +
=

−
− +

I I
j

j

j j

j j

5

3 9

10 5

5 60

10

1 12

When the 10�0� V is acting alone

Main current, I

j
j

j

j

j
=

∠ °

+
+
+ +

=
+

− +
10 0

5
3 4 5

3 4 5

10 8 4

5 60( )

( )

∴ ′′ = ×
+

=
×

− +
=
− +

I I
j j j

5

8 4

10 5

5 60

10

1 12

When both the sources are acting simultaneously, by the superposition 

theorem, the total current flowing through the impedance (3 � j4) is

I I I
j j

= ′ + ′′ =
−

− +
+
− +

=( )
10

1 12

10

1 12
0 A

Problem 4.12 Using the superposition theorem, determine the current in the 4-⍀ resistor in the network 

shown in Fig. 4.64.

20�0�A 100�90�V

4 �

5�

2 �

j2�  j2�
�

 

Fig. 4.64

10�90�V 10�0�V

5 �

3 �

j 5 �

j 4 �

�

 

�

 

Fig. 4.61

10�90�V

5 �

3 �

j 5 �

j 4 �I�

�

 

Fig. 4.62

i��

�

�

 

 

�
 3�

2� 10 V

4 i �� V
1
��

Fig. 4.60 (c)

10�0�V

5 �

3 �

j 5 �

j 4 �I �

�

 

Fig. 4.63
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Solution  Case (I) When the 20�0�A source is acting alone

The circuit is shown in Fig. 4.65.

20�0�A

4�

5�

2�

j2�
I
1

 j2�

Fig. 4.65

Reducing the parallel combination, the simplified circuit is 

shown in Fig. 4.66.

Z
j

j
j

1

5 2

5 2
1 857 68 2 0 69 1 72=

×
+

= ∠ ° = +( ). . . . �

 

Z
j

j
j

2

2 2

2 2
1 1 1 414 45=

× −
−

= − = ∠− °
( )

( ) .� �

By current division rule, the current through the 4-� resistor is

I
Z

Z Z j1

1

1 2

20 0
4

20 0
1 857 68 2

0 69 1
= ∠ ×

+ +
= ∠ ×

∠
+

� �
�. .

. ..
. . .

72 4 1 1
6 48 61 3 14 5 66

+ + −
= ∠ = +( )

j
j� A

Case (II) When the 100�90� V source is acting alone

Here, the current source is open-circuited. Combining the par-

allel connection of 5 � and j 2 � the simplified circuit is shown 

in Fig. 4.67.

By KVL for the two loops, we get,

 

( . . )

( . . )

4 0 69 1 72 2 2 0

4 69 0 28 2

2

2

+ + − + =

⇒ − +

j j I j I

j I j II =0  (i)

and, j I j I j2 2 2 100 90 100
2
+ − = ∠ ° =( )  (ii)

Solving (i) and (ii), we get

I

j

j j

j

j j

2

0 2

100 2 2

4 69 0 28 2

2 2 2

200

1
=

−
−

−

=
−

( )

( . . )

( )

22 83 9 93
12 33 37 75 9 75 7 55

. .
. . ( ) ( . . )

+
= ∠ ° = +

j
jA A

By superposition theorem, when both the sources are acting simultaneously, the current through the 4-� 

resistor is

I I I j j j= − = + − + = − −
1 2

3 14 5 66 9 75 7 55 6 61 1( . . ) ( . . ) ( . .. ) . .9 6 89 163 67= ∠− ° A

The direction of the current is from right to left.

20�0�A

4�

I
1Z

1
Z

2

Fig. 4.66

20�90�A

4� 2�

 j2�
I
2Z

1

�

 
I

Fig. 4.67
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Problem 4.13  Find I in the Fig. 4.68 using the superposition  theorem.

Solution When the 4-V voltage source is acting alone

The circuit is shown in Fig. 4.69.

Here, by KVL,

or, 

− + ′ + ′− ′=

′ + × − ′ = ′= − ′

′

4 3 5 0

3 4 2 4 2

I V V

I I V I

I

x x

x
( ) [ ]

==− = −
4

5
0 8A A.or, 

When the 2-A current source is acting alone

The circuit is shown in Fig. 4.70.

By KCL, 2
2

5

3

12

5
2 4=

′′
+

′′− ′′
⇒ ′′= − = −

V V V
Vx x x

x
. V

 
∴ ′′ =

′′− ′′
=
− − × −

⎛
⎝⎜

⎞
⎠⎟
= =I

V V
x x

5

3

12

5
5

12

5

3

16

5
3 2. AA

When both the sources are acting simultaneously, the current by superposi-

tion theorem is given as I I I= + = − + =( ' ") ( . . ) .0 8 3 2 2 4 A

Thevenin’s and Norton’s Theorem

Problem 4.14 Draw the Thevenin’s equivalent of the cir-

cuit in Fig. 4.71 and find the load current, i.

Solution Open-circuiting the terminals, by KVL for two 

meshes,

3 10 4 5
1 2 1 2
i i i i− = − + = −and

Solving, i i
1 2

5
11

5
11

= = −, and

∴ = + = −
⎛
⎝⎜

⎞
⎠⎟
=V i

oc
V( )5 2 5

10

11

45

112

��

4 V

2�

3�

1�

V
X

�
�

 

 

�
 2 A

5 V
X

I

Fig. 4.68

4 V

2�

3�

V
X
�

�
�

 

 

�
 

5 V
X
�

I�

Fig. 4.69

2�

3�

1�
V

X
�

�

 

�
 2 A

5 V
X
�

I�

Fig. 4.70

�

1� 1�

1�
1�

2�

10 V

i
1

i
2

V
oc

 

Fig. 4.72 (a)

1 �

1 �

1�

2�

1 �

10 V 5 V

i

R=2 �

Fig. 4.71

1�

2�2/3�
R

th

1� 1�

1� 2�1�
R

th

Fig. 4.72 (b)
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Equivalent resistance, R
th
=

×

+
=

5

3
2

5
3

2

10

11
�

So, the load current is, i
V

R
=

+
=

+
= =oc

th

A
2

45
11

10
11

2

45

32
1 40625.

Problem 4.15 Find I, in the given figure, using Thevenin’s theorem.

Solution Removing the 2-� resistor,

By KVL for the supermesh, − − + + = ⇒ = −10 3 0 10 2
0 0 0 0 0

v v v v v
c c

But, due to open-circuit, the 1-A source will circulate through the1-� 

resistor.

∴ = × =

∴ = − =

v

V
c

0

0

1 1 1

10 2 8

V

V( )

Let’s short circuit the terminals x–y,

By KVL,

− − + = =10 3 0 5
0 0 0

v v vor,

But, by KCL at the node (a),

v
I

I v

0

0

1
1

1 4

= −

⇒ = − = −

sc

sc
A e.g.,current is f low( ) ( iing from to

th

oc

sc

y x

R
V

I

)

∴ = = =
8

4
2�

So, the current through the 2-� resistor, I =
+

=
8

2 2
2 A

Problem 4.16 By the iterative use of Thevenin’s theorem, reduce the 

circuit shown in Fig. 4.76 to a single emf acting in series with a single resis-

tor. Hence, calculate the current in the 10-⍀ resistor connected across XY.

Fig. 4.76

10�

10�

90�

10�

100�

100�

100� 1000�

1000�

100 V

X

Y

i

2�V
oc

�

 

R
th

Fig. 4.73
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10 V 1 A

I

V
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3V
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�

 

 

Fig. 4.74

V
0

V
OC

3V
0

10V 1 A
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Fig. 4.75 (a)

Fig. 4.75 (b)

V
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I
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3V
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Solution Consider the section of the net-

work to the left of A–B: By use of Theremin’s 

theorem, this portion is reduced to the form of 

Fig. 4.77 (b).

∴ =
×
+

=

∴ =
×

R

V

th

th

1000 100

1000 100

1000

11

100 1000

1

�

1100

1000

11
= V

Applying Thevenin’s theorem to the section left 

of CD of Fig. 4.77 (b),

∴ =
( )×
( )+ =

∴ =

R

V

th

th

1000
11

10

2100
11

10

2100

221

10

�

000
11

10

2100
11

10

1000

221

( )×
( )+ = V

Applying Theremin’s theorem to the section left 

of EF of Fig. 4.77 (c), 

∴ =
( )×
( )+ =R

th

24200
221

100

24200
221

100

24200

463
�

∴∴ =
×

( )+ =V
th

V
( )1000

221
100

24200
221

100

1000

463

Section left to XY is put as in Fig. 4.77 (d).

∴ = + =

=
( )×

R

V

th

th

24200

463
1000

487200

463

1000
463

�

11000

24200
463

1000

1000

4872( )+ = V

Hence, the current in the 10-� resistor is

I =
( )

( )+ =
1000

487 2

487200
436

10
0 0193

.
. A

Fig. 4.77 (b)
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1000�
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1000/11 V

X

Y

Fig. 4.77 (c )

100�
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1000/221V

X

Y

Fig. 4.77 (d)
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F
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1000�

1000/463 V
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Fig. 4.77 (a)
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Problem 4.17 In the operational-amplifier circuit shown 

in Fig. 4.78 find I, in the R ⴝ 4-k⍀ resistor, using Thevenin’s 

theorem.

Solution Open- circuiting the 4-k� resistor,

Here,  e e V
2 3 0

0= =,

 

e e V e
e V1

3

1 0

3

1

3 1 0

12

2 10 4 10 8 10
0 7 48 2

−

×
+

−

×
+

×
= ⇒ = +( ))

 (i)

 
0

8 10

0

12 10
0

3

2

1

3

0

3 0 1

−

×
+

−

×
= ⇒ =−

e V
V e  (ii)

From (i) and (ii), ⇒ e1 � 4�8 V � eoc

Now, we connect a 1-A current source at the place of the 

4-k� resistor.

By KCL at the node (1),

e e V e
e V1

3

1 0

3

1

3 1 0
2 10 4 10 8 10

1 7 8000 2
×

+
−

×
+

×
= ⇒ = +

By KCL at the node (2), 

V e e e e

R

0 1 1 1 1

3

2
7 8000 2

3

2
800= − ⇒ = + −

⎛
⎝⎜

⎞
⎠⎟

⇒ =

∴ =

V

th

ee

i

1

3

1
800

4 8

4000 800

4 8

4 8 10
1

=

∴ =
⋅
+

=
⋅

⋅ ×
=

�

mA

Problem 4.18 Find Thevenin’s equivalent about AB for the circuit 

shown in Fig. 4.80.

Solution Open-circuiting the 4-� resistor by KCL,

V
v V V

s

oc

oc oc
V

−
= = − ⇒ =

10

2
4 4 10 10( )

Fig. 4.78
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12 V

R=4k

12k

�

�

 

 

V
o
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Fig. 4.79
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e
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e
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V
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Fig. 4.80
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Short-circuiting the terminals AB, by KCL

V V
v V

V

I

s

1 1

1

1

10

2 4
4 4 10

180

19
9 47

−
+ = = −

= = ⋅

∴ =

( )

V

sc

99 47

4
2 368

4 22

⋅
= ⋅

∴ = = ⋅

A

th

th

sc

R
V

I
�

Problem 4.19  In the network, determine the steady current in the 8-⍀ inductor using Thevenin’s  theorem.

Fig. 4.82

j8�j4� j4�

 j 6� j 8�

a b

 

��

 

100 � 60°  (V)100 � 0°  (V)

Solution With a-b open-circuited,

Fig. 4.83

j4� j4�

 j 6� j 8�

a b

 

��

 

100�60° (V)100�0° (V)

V
j j

j

V
j j

a

b

=
∠
−

− = ∠

=
∠
−

100 0

4 8
8 200 0

100 60

4 6

�
�

�

( )

(

V

−− = ∠

∴ = − = ∠ − ∠ =

j

V V V
a b

6 300 60

200 0 300 60

)

( ) (

�

� �

V

th
550 259 81

4 8

4 8

4 6

−

∴ =
−
−

+
−

j

Z
j j

j j

j j

j

. )

( )( ) ( )( )

V

th 44 6
20

−
=

j
j �

  current in the 8-� inductor, i
V

Z Z

j

j j
L

=
+

=
−

+
= ∠−th

th

( . )
. .

50 259 81

20 8
9 45 169 1�AA
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Solution 
 (a) With A–B open, the current is

I
j j

j
j

=
∠

− +
× =

∠
+

10 0

5 5 15
15

150 90

5 10

� �

Thevenin voltage

V V I j
jABth

= = × −( )= ∠
+

× ∠− =5
150 90

5 10
5 90 67 08

�
�( ) . ∠∠− 63 4. �V

Thevenin impedance, 

Z Z
j j

j jABth
= =

− × +
− + +

= ∠− °
5 5 15

5 5 15
7 07 81 86

( )
. . �

Thus, the Thevenin’s equivalent circuit is shown in Fig. 4.85 (b).

(b) Here, Thevenin voltage,

V
j j

j
j j

j

V

th
=

∠ °
+ + −

× − =
−

+
20 90

5 10 3 4
3 4

120 3 4

8 6
( )

( )

tth
V=

∠ °
∠ °

= ∠ °
50 36 87

5 36 87
10 0

.

.
( )

Problem 4.20 Obtain Thevenin’s equivalent circuit with respect to terminals A–B in the networks shown 

below.

1�

1�

A

1/2 H

B

���
� �

1/4 F

1/4 F

2cos 2tu(t)

(d)

100�0 � (V)

j 6�
 j 5 �

5�

8�
4�

10�

B

A
���

� �

(c)

20�90° (V)

j 10�

 j 4 �

3�

5�
A

B

���
� �

(b)

10�0 � (A)
j15�

 j15�

2�

3�

A

B

(a)

5 I

I 100�

j10�
 j 5�

10�0 � (V)

A

B

 
�

(e)

Fig. 4.84

Fig. 4.85 (a)

I

 j 5�

j 15�10 �0° (A)

A

B

2�

Z
th
 = 7.07 � 81.86°(�)

V
th
 = 67.08 � 63.4°  (V)

�

 

A

B

Fig. 4.85 (b)
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Thevenin impedance, 

Z
j j

j jth
=

+ × −
+ + −

=
∠( ) ( )

( ) ( )

. .5 10 3 4

5 10 3 4

11 8 63 43�� �

�
�

× ∠−
∠

= ∠−
5 53 13

10 36 87
5 59 26 56

.

.
. . ( )�

Thus, the Thevenin’s equivalent circuit is shown in Fig. 4.86 (b).

100�0� (V)

A

5�

8�

j6�
 j5�

10�

B

�
 

Fig. 4.87

Z
th
 = 7.07 � 81.86°(�)

V
th
 = 67.08 � 63.4°  (V)

�

 

A

B

Fig. 4.86 (b)

20 �90� (V)�
 

A

B

3�

5�

 j4�

j10�

Fig. 4.86 (a)

(c) Here, with A–B open, the equivalent impedance,

Z
j j

j j

j

j
= +

− × +
− + +

=
−
+

=10
5 13 6

5 13 6

160 55

13 1
1

( )

( )
� 22 98 23 37. .∠− ° ( )�

� �main current, I
Z

=
∠ °

=
∠ °

∠− °
= ∠ °

100 0 100 0

12 98 23 37
7 7 23 37

. .
. . ( )A

 �Thevenin voltage, 

V I
j

j j
j

th
= ×

−
− + + +

⎛
⎝⎜

⎞
⎠⎟
× + = ∠ °

5

5 5 8 6
8 6 7 7 23 37( ) . . ××

−
+

⎛
⎝⎜

⎞
⎠⎟
× + = ∠− °

j

j
j

5

13 1
8 6 29 553 34 16( ) . . ( )V

 �Thevenin impedance, Z
j

j
j

th
=

× −
−

+
⎡

⎣
⎢

⎤

⎦
⎥ + = ∠− °

10 5

10 5
5 8 6 5 33 0 5

( )
( ) . . (��)

(d) The circuit is redrawn as shown in Fig. 4.88, considering two capacitors in parallel.

C C C F
eq
= + = +

⎛
⎝⎜

⎞
⎠⎟
=( )

1 2

1

4

1

4

1

2

Thevenin voltage is given as

V s
s

s

s

s
s

s

s s
th

( )
( )(

=
+

×
+( )

+ + +( ) = + +
2

4

1 2

1 2 1
2

4

4
2 2

22)
(V)

  Thevenin impedance, Z s
s

s
th

( )= +( ) +( )=1 2 1
2

1�

(e) To find Vth

 With A–B open, the current of the dependent source can 

flow through the capacitor only.

∴ =
∠ °
+

= ∠− °I
j

10 0

100 10
0 09995 5 7. . (A)

  
s /2

2/s2s /s 2�4

1�

A

B

1�

�

 

Fig. 4.88
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  Thevenin voltage,

V V I j I j j I

j

th AB
= = × − × − =

= ×

( ) { ( )}

.

10 5 5 35

35 0 099955 5 7 3 48 84 3∠− ° = ∠ °. . . ( )V

To find IN

 Converting the dependent current source into the 

voltage source, by KVL,

and 

10 0 100 10 10

25 10 10

0∠ = + −

− − = − +

( )

( ) (

j I j I

j I j I I j

N

N
−− j5)

Solving for IN, I
N

A= ∠ °0 6 31. ( )

 �Thevenin impedance, 

Z
V

Ith

th

N

= =
∠
∠

= ∠
3 48 84 3

0 6 31
5 8 53 3

. .

.
. . ( )

�

�
� �

Problem 4.21 Find V0 using Thevenin’s theorem

Solution To find Vth

Removing the 2-� resistor and open circuiting the termi-

nals and then converting the dependent current source into 

dependent voltage source, we redraw the circuit as follows.

By KVL for the two loops, (here, i0 � I1)

( ) ( )4 4 4 12 2 6 0
1 2 1 2

− + = − − + − =j I j I j I j Iand

Solving for I2,

I

j

j

j j

j j

j

j2

4 4 12

2 0

4 4 4

2 6

24

24 24
=

− −
−
−
− −

=
−

− − −

( )

( ) 88

3

4 3
0 6 53 13=

+
= ∠ °

j

j
. . ( )A

Therefore, Thevenin voltage is 

V I j
jth

V= × − =
+

= ∠− °
2

8
24

4 3
4 8 36 87( ) . . ( )

To find IN

Removing the 2-� resistor and short-circuiting the termi-

nals and then converting the dependent current source into 

dependent voltage source, we redraw the circuit as shown in Fig. 4.92 (b)
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By KVL for the two loops,

( )

( )

4 4 4 12

2 2 0

1 2

1 2

− + = −

− + − =

j I j I

j I j I

Solving for I2,

I I

j

j

j j

j j

j

j2

4 4 12

2 0

4 4 4

2 2

24

8 8
= =

− −
−
−
− −

=
−

− −N

( )

( ) −−
=

+
= ∠ °

8

3

2
1 341 63 435

j

j
. . ( )A

Therefore, Thevenin impedance is,  

Z
V

Ith

th

N

= =
∠− °
∠ °

∠−
4 8 36 87

1 341 63 435
3 58 100

. .

. .
. .. ( )3° Ω

Thus, Thevenin’s equivalent circuit becomes as shown 

in Fig. 4.93.

Thus, the required voltage, 

v
V

Z0 2
2

4 8 36 87

3 58 100 3
=

+

⎛

⎝
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⎞

⎠
⎟ × =

∠− °
∠− °

th

th

. .

. . ++
⎛
⎝⎜

⎞
⎠⎟
× = ∠ °

2
2 1 27 32. ( )V

Problem 4.22 Obtain the Norton’s equivalent circuit 

with respect to the terminals AB for the network shown 

in Fig. 4.94.

Solution Removing the source,

∴ =
×
+

= = ⋅Z
eq
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Fig. 4.92 (b)
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Short-circuiting AB, 

I
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3 33.

So, Norton’s equivalent circuit is shown in Fig.
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Problem 4.23  Replace the circuit in Fig. 4.97 with the Thevenin’s equivalent circuit across A and B.

10 mV V
0
/104 V

75I

30 k�

1k�I

V
0

A

B

� �

�

 

  

Fig. 4.97

Solution By KVL for the left-hand side loop,

 1 10
10

10 103 0

4

3× × + = × −I
V

 (i)

In the right-hand side loop, the dependent current source current will circulate in the resistor. By KVL,

 V I I
0

3 4
30 10 75 225 10= × × −( )= − ×  (ii)

Substituting the value of I from (ii) in (i), we get,

⇒ × × −
×

⎛

⎝⎜
⎞

⎠⎟
+ = ×

⇒ −

−1 10
225 10 10

10 10

4 44

3 0

4

0

4

3
V V

. ×× + × = ×

⇒ =−
×
×

− − −

−

10 1 10 10 10

10 10

3 44 1

4

0

4

0

3

0

3

V V

V
. 00

29
4−
= − V

Now, short circuiting the terminals A and B, we get by 

KVL to left-hand-side loop,

1 10 0 10 10 1 10
3 3 5× × + = × ⇒ = ×− −

I I A

Also, from right-hand side loop on the short circuit,

I I
sc

A= − = − × × = − ×− −
75 75 1 10 75 10

5 5

Thus, the Thevenin equivalent impedance is given as

Z
V

Ith

oc

sc

k= =
−

− ×
=

−

29

75 10
38 67

5
. �

Thevenin’s equivalent circuit is shown in the Fig. 4.99. 

Problem 24 Find the Thevenin’s equivalent between 

terminals a and b of the circuit shown in Fig. 4.100.

Solution  By KVL for the right-hand side mesh,

 V V I I
oc x
= = − × = −( )40 50 2000

0 0
 (i)

From the left-hand side loop,
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 I
V V

x oc

0

3 2

1000

3 2

1000
=

−
=

−
 (ii)

From (i) and (ii), we get,

 

V
V

V
oc

oc

oc
V= −

−⎛

⎝⎜
⎞

⎠⎟
⇒ =2000

3 2

1000
2

To determine the Thevenin’s impedance, we short cir-

cuit the terminals a and b.

Here,

I I

R
V

I

oc

sc

th

sc

A= − = − ×
⎛
⎝⎜

⎞
⎠⎟
= −

∴ =

40 40
3

1000
0 12

0
.

== =
2

0 12
16 67

.
. �

Thevenin’s equivalent circuit is shown in Fig. 4.102.

Problem 25 In the network shown in Fig. 4.103 

the switch is closed at time t ⴝ 0. Assuming all the 

initial currents and voltages as zero, find the cur-

rent through the inductor L2 by the use of Norton’s 

theorem.

Solution The network for t 
 0 in Laplace 

domain is shown in Fig. 4.104.

The equivalent network reduces to one as shown 

in Fig. 4.105.
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To find the current in L2, we have to find Thevenin’s equivalent circuit across the terminals A and B. The 

impedance between terminals A and B is given as

 

Z Z

s
s

s
s

s

s s

s

s
ABth

= =
+( )×

+ +
=

+( )
+ +

=
+( )
+

2
1

2
1

2

2 1

2

2

11
2( )


