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Example 1
Three identical coils each of [4.2 + j5.6] ohms are connected in star across a 415 V, 3-phase,
50 Hz supply. Determine (i) V,,, (ii) 1., and (iii) power factor. [May 2014]
Solution Z,;,=42+)56=7 £53.13°Q
V, =415V
f=50Hz
For a star-connected load,
v, 415
i V,=—==—==239.6V
1) N AN
v 239.6
() 1,--2=""=3423A
P Z,,

(iii) pf =cos ¢ =cos (53.13°) = 0.6 (lagging)

Example 2

Three equal impedances, each of 8 + j10 ohms, are connected in star. This is further connected
to a 440 V, 50 Hz, three-phase supply. Calculate (i) phase voltage, (ii) phase angle, (iii) phase
current, (iv) line current, (v) active power, and (vi) reactive power.

Solution Z,;,=8+/10Q

V, =440V

f=50Hz
For a star-connected load,
(i) Phase voltage

Vv, 440

Vo = E = f =254.03V
(i1) Phase angle

Z,,=8+j10=12.81 £51.34°Q

Z,, = 1281 Q

¢ =51.34°

(iii) Phase current

L, = Zﬂ = 215248013 =19.83A

ph :

(iv) Line current
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(v) Active power

P= 13 V, 1, cos ¢= /3 x440 x 19.83 x cos (51.34°) = 9.44 kW
(vi) Reactive power

Q=3 V, I, sin ¢= /3 x440 x 19.83 x sin (51.34°) = 11.81 kVAR

Example 3

A balanced delta-connected load of impedance (8 — j6) ohms per phase is connected to a
three-phase, 230 V, 50 Hz supply. Calculate (i) power factor, (ii) line current, and (iii) reactive
power.

Solution Z,,=8-j6Q
V=230V
f=50Hz

For a delta-connected load,
(i) Power factor

Z,,=8-j6=10 £-36.87° Q
Z,, = 10Q
¢ =36.87°
pf = cos ¢ =cos (36.87°) = 0.8 (leading)

(i1) Line current

V=V, =230V

p

v
poo Ve B0,
M Zy 10

I,= 3 1,= /3 x23=39.84 A
(ii1) Reactive power
0 =3 VI sin g= 3 x230 % 39.84 x sin (36.87°) = 9.52 kVAR

Example 4

Three coils, each having a resistance and an inductance of 8 Q and 0.02 H respectively, are
connected in star across a three-phase, 230 V, 50 Hz supply. Find the (i) power factor, (ii) line
current, (iii) power, (iv) reactive volt-amperes, and (v) total volt-amperes.

Solution R=8Q
L=002H
V, =230V

f=50Hz
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For a star-connected load,
(i) Power factor

X, =2rnfL=21x50x0.02=6.28 Q

Z,, = R+jX;=8+,6.28=10.17 £38.13° Q

Z,,=10.17Q

¢ =38.13°

pf = cos ¢ =cos (38.13°) = 0.786 (lagging)

(i1) Line current

v, 230
vV, = === =13279V
meBB

Vo 132.
=2 =B 13054
P 10.17

(iii) Power
P =13 V, I, cos p= /3 x 230 x 13.05 X 0.786 = 4.088 kW

(iv) Reactive volt-amperes

0= 3 V, I, sin = /3 x 230 x 13.05 x sin (38.13°) = 3.21 kVAR
(v) Total volt-ampere

S =3V, I, =3 x230x13.05=5.198 kVA

Example 5

Three similar coils each having a resistance of 10 €2 and inductance of 0.04 H are connected
in star across a 3 phase, 50 Hz, 200 V supply. Calculate the line current, total power absorbed,

reactive volt amperes and total volt amperes. [May 2015]
Solution R=10Q
L =0.04H
v, =200V
f=50Hz

X, =2xfL=21x50x0.04=12.57 Q

th =R+jX;,=10+,12.57=16.06 £ 51.5° Q
(1) Line current
v, 200
L~ =115-47V

N

y

ph:ﬁ
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v, .

1, =2t 15T 549 4
Z,  16.06

I,=1,=719A

(i1) Total power absorbed
P=-3V,I, cos¢ =~/3x200x7.19 x cos(51.5°) =1550.5 W

(iii) Reactive volt-ampere
0=3V,1, sing=~/3x200%7.19xsin(51.5°) = 1949.23 VAR

(iv) Total volt ampere
S=~BV,I, =/3x200%7.19 = 2490.68 VA

Example 6

Three coils, each having a resistance of 8 2 and an inductance of 0.02 H, are connected in delta
to a three-phase, 400 V, 50 Hz supply. Calculate the (i) line current, and (ii) power absorbed.

Solution R=8Q
L=0.02H
V, =400V
f=50Hz

For a delta-connected load,
(1) Line current
V,=V,,=400V
X, =2nfL=21x50x%x0.02=6.28 Q
Z,,=R+jX;=8+/628=10.17 £38.13° Q

Z,=10.17Q
¢ = 38.13°
Vo 400

L,= - =—— =651639.33 A
P Zy 1017

I =3 1,=1/3x3933=68.12A

(i1) Power absorbed
P= 3V, 1, cos =3 x 400 x 68.12 x cos (38.13°) = 37.12 kW

Example 7

The three equal impedances of each of 10 £60° £2, are connected in star across a three-phase,
400 V, 50 Hz supply. Calculate the (i) line voltage and phase voltage, (ii) power factor and
active power consumed, (iii) If the same three impedances are connected in delta to the same
source of supply, what is the active power consumed?
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Solution th =10 £60° Q
V, =400V
f=50Hz

For a star-connected load,
(i) Line voltage and phase voltage

V, = 400V
v - =20 23004
NN

(i1) Power factor and active power consumed

¢ = 60°
pf = cos ¢ =cos (60°) = 0.5 (lagging)
4 230.94
= = =23.094 A
Z 10

I = 1,,=23.094 A

P= 3V, I,cos p= /3 x400x23.094 x 0.5 =8 kW

(iii) Active power consumed for delta-connected load

v, =400V
Z,=10Q
Vo=V, =400V
v 4
L= Ton 800 _ 4o A
Zy 10

I, =3 1,=3 x40=69.28 A

P =3 V, I, cos p= /3 x 400 x 69.28 X cos (60°) = 24 kW

Example 8

5.19

Three similar coils A, B, and C are available. Each coil has a 9 Q resistance and a 12
reactance. They are connected in delta to a three-phase, 440 V, 50 Hz supply. Calculate for this
load, the (i) phase current, (ii) line current, (iii) power factor, (iv) total kVA, (v) active power,
and (vi) reactive power. If these coils are connected in star across the same supply, calculate

all the above quantities.

Solution R=9Q
X, =12Q
V, =440V

f=50Hz
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For a delta-connected load,

(1) Phase current

(i1) Line current

(ii1) Power factor

(iv) Total kVA

(v) Active power

V=V, =440V
Z,;,=9+j12=15 £53.13°Q
Z,=15Q
¢ =53.13°
Von 440
__ph T
L, = Z, 15 2933 A

I =3 1,=3%2933=508A
pf = cos ¢ =cos (53.13°) = 0.6 (lagging)

S= 3 ¥, 1,= /3 x440 x 50.8 = 38.71 kVA

P=3 V, 1 cos p= /3 x 440 x 50.8 x 0.6 = 23.23 kW

(vi) Reactive power

0 =3 V, I, sin g= 3 x 440 x 50.8 x sin (53.13°) = 30.97 kVAR

If these coils are connected in star across the same supply,

(i) Phase current

(i1) Line current

(iii) Power factor

(iv) Total kVA

v, = 440 V
Z,=15Q
T 540y
"B '
v
h:ﬂ:w:m‘%A
"z,

I, =1,=1694 A
pf = 0.6 (lagging)

S= 3V, I, =3 x440 x 16.94 =12.91 kVA
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(v) Active power

P=3V, 1, cos p= /3 x 440 x 16.94 x 0.6 = 7.74 kW
(vi) Reactive power

0 =3 VI, sin g= /3 x 440 x 16.94 x sin (53.13°) = 12.33 kVAR

Example 9

A balanced 3-phase load consists of 3 coils, each of resistance 4 2 and inductance 0.02 H.

1t is connected to a 440 V, 50 Hz, 3 ¢ supply. Find the total power consumed when the load is
connected in star and the total reactive power when the load is connected in delta. [Dec 2014]

Solution R=4Q
L=0.02H
V, =440V
f=50Hz

For a star-connected load,
(i) Total power consumed
X, =2rfL=21x50%0.02=06.28 Q

Z,=R+jX, =4+/628=745,5751°Q

Z,,=745Q

¢=57.51°
Vv, 44

Vo = = 0 25403V
33
v

./ 254.03 o, 1A

Z,, 145

I=1,=341A

P=A3V,1, cos¢ =3 X440 x 34.1 x cos(57.51°) = 13.96 kW
O =A3V,1, sing=+/3 x 440 x34.1x3in(57.51°) = 21.92 KVAR

(i1)) When the load is connected in delta across same supply
0,=30y=3 %2192 x 10°> = 65.76 kVAR

Example 10

A 415 V, 50 Hz, three-phase voltage is applied to three star-connected identical impedances.
Each impedance consists of a resistance of 15 €, a capacitance of 177 uF and an inductance
of 0.1 henry in series. Find the (i) power factor, (ii) phase current, (iii) line current, (iv) active
power, (v) reactive power, and (vi) total VA. Draw a neat phasor diagram. If the same impedances
are connected in delta, find the (i) line current, and (ii) power consumed. [Dec 2015]
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Solution V, =415V
f=50Hz
R=15Q
C =177 pF
L=01H
For a star-connected load,
(i) Power factor
X, =2nfL=2rx50x0.1=31.42Q
R 1
A= 2m /0 T 2ex50x177 %10
th = R+ )X, —jXc
= 15+;31.42-/17.98
= 15+13.44
= 20.14 £41.86° Q
Z,=20.14Q
¢ =41.86°
pf = cos ¢ =cos (41.86°) = 0.744 (lagging)

(i1) Phase current

=17.98Q

v, 415
yoo= —L="2"-2396V
RV RN}
I Von 2396 1o
ez 2004
(iii) Line current
I,=1,=119A

(iv) Active power
P=3 V, I cos p= /3 x415x11.9 x 0.744 = 6.36 kW
(v) Reactive power

0= 3 V, I, sin ¢ = V3 x415% 11.9 x sin (41.86°) =5.71 kVAR
(vi) Total VA

S=3 1V, 1,=/3 x415x11.9=8.55kVA
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Phasor Diagram
Vry

VBN

VBR

Fig. 5.21

If the same impedances are connected in delta,

(i) Line current
V=V, =415V

Z,,=20.14Q
v

I, = Do S 5614

Pz, 2014

I =3 1,= 3 x20.61 =35.69 A

(i) Power consumed

P =3V, 1 cos p= /3 x 415 x35.69 x 0.744 = 19.09 kW

Example 11

$=41.86°

5.23

Each phase of a delta-connected load consists of a 50 mH inductor in series with a parallel
combination of a 50 Q resistor and a 50 uF capacitor. The load is connected to a three-phase,
550 V, 800 rad/s ac supply. Find the (i) power factor, (ii) phase current, (iii) line current,

(iv) power drawn, (v) reactive power, and (vi) kVA rating of the load.

Solution L =50 mH
R=50Q
C =50uF
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V, =550V
o = 800 rad/s
For a delta-connected load,
(i) Power factor
X, = wL=800x50x1073=40Q

1 1
oC  800x50x10”
= . R(=jX¢)
‘ph :]XL + R—C
- JX¢
50(—/25)
= 7. + —
JA0F 502 25
=10 +;20=22.36 £63.43° Q
Zy = 2236 Q
¢ = 63.43°

pf = cos ¢ = cos (63.43°) = 0.447 (lagging)
(i1) Phase current
Vi=V,=550V

h =
P Z 2236

=246 A
(iii) Line current
I =3 1,=3 x246=42.61 A
(iv) Power drawn
P=183 V, I, cos ¢= 3 x 550 x 42.61 x 0.447 = 18.14 kW
(v) Reactive power
0= V3 V, 1 sin ¢ = V3 %550 x 42.61 x sin (63.43°)=36.3 kVAR
(vi) kVA rating of the load
S=3 7,1, =3 x550 x42.61 =40.59 kVA

Example 12

A balanced star-connected load is supplied from a symmetrical three-phase 400 volts, 50 Hz
system. The current in each phase is 30 A and lags 30° behind the phase voltage. Find the
(i) phase voltage, (ii) resistance and reactance per phase, (iii) load inductance per phase, and
(iv) total power consumed.

Solution vV, =400V
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f=50Hz
1, =30A
o= 30°
For a star-connected load,
(1) Phase voltage
yo= 2209 3504y

CNN

(i1) Resistance and reactance per phase

o = Il/ﬂ = % =7.7Q
ph
Zyy = Zy L$="1.7 £30°=(6.67 + 3.85) Q
R, = 6.67 Q
X, =3.85Q
(ii1) Load inductance per phase
Xop =21 f Ly,

3.85=2n x50%L,,
L,,=0.01225H
(iv) Total power consumed
P =3V, 1L, cos ¢=3x230.94 x 30 X cos (30°) = 18 kW

Example 13

A symmetrical three-phase 400 V system supplies a basic load of 0.8 lagging power factor and
is connected in star. If the line current is 34.64 A, find the (i) impedance, (ii) resistance and
reactance per phase, (iii) total power, and (iv) total reactive voltamperes.

Solution V, =400V
pf = 0.8 (lagging)
I, =34.64 A

For a star-connected load,

(1) Impedance

V, 400

Von = 5= T 23094V
1,=1,=3464A

yo_ V23094
T, 34640
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(i1) Resistance and reactance per phase
pf = cos ¢=10.8
¢ = cos™! (0.8) = 36.87°
Zyy = Zy £9=6.67 £36.87°= (533 +/4)Q
R, =533Q
X =4Q
(ii1) Total power
P= 3V, I, cos = /3 x400x 34.64 x 0.8 =19.19 kW
(iv) Total reactive volt-amperes

0= 3 V, I, sin g= /3 x 400 x 34.64 x sin (36.87°) = 14.4 kKVAR

Example 14

A balanced star-connected load is supplied by a 415 V, 50 Hz three-phase system. Current in
each phase is 20 A and lags 30° behind its phase voltage. Find the (i) phase voltage, (ii) power,
and (iii) circuit parameters. Also, find power consumed when the same load is connected in
delta across the same supply.

Solution V, =415V
f=50Hz
L,=20A
¢ = 30°
For a star-connected load,
(i) Phase voltage
o _
Von = ﬁ—f =239.6 V
(i1) Power

I, =1,=20A
P =3 V, I, cos p= /3 x 415 x 20 X cos (30°) = 12.45 kW

(ii1) Circuit parameters

Vor  239.6
_ph: E:T =11.98 Q
Zy = Z,, £¢=11.98 £30° = (10.37 + j6) Q
R, =1037Q
X, =6Q

X, =2nfL,,
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6 =2nx50xL,,
L,,=19.1 mH
(iv) Power consumed by same delta load across the same supply
P, =3P,=3x1245x103=37.35kW

Example 15

Three identical coils connected in delta to a 440 V, three-phase supply take a total power of
50 kW and a line current of 90 A. Find the (i) phase current, (ii) power factor, and (iii) apparent
power taken by the coils.

Solution V, =440V
P =50kW
I, =90A

For a delta-connected load,

(i) Phase current

10 _5106a

(NN
(i1) Power factor
P=13 V, I cos ¢
50 x 10> = /3 x 440 x 90 x cos ¢
pf = cos ¢ =0.73 (lagging)
(ii1) Apparent power
S= 3 ¥, I, = 3 x440 x 90 = 68.59 kVA

Example 16

Three similar choke coils are connected in star to a three-phase supply. If the line current is
15 A, the total power consumed is 11 kW and the volt-ampere input is 15 kVA, find the line
and phase voltages, the VAR input and the reactance and resistance of each coil. If these coils
are now connected in delta to the same supply, calculate phase and line currents, active and
reactive power.

Solution I; =15A
P=11kW
S =15kVA

For a star-connected load,
(1) Line voltage
s=r
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155103 = V3 x ¥, x 15

V, =57735V
(i1) Phase voltage
V., = ﬁ = >77.33 =333.33V
NI
(iii) VAR input
P 11x10°
cos = —= =0.733
°7 5 15x10°
¢ = 42.86°

0 =3 ¥, I, sin¢ = /3 x577.35 x 15 x sin (42.86°) = 10.2 kVAR

(iv) Reactance and resistance of coil

Ly=1=15A
Vo 33333

= =T =22.22Q
Iy, 15

R=Z, cos $=22.22x0.733 =16.29 Q
X, = Z,,sin ¢=22.22 X sin (42.86°) = 15.11 Q
If these coils are now connected in delta,

(i) Phase current
Vo =V, =571.35V

Z,=2222Q
hy= 22231735 o554
ez 22220 7T

(i1) Line current
I =3 1,=3x%2598=45A
(iii) Active power
P =3V, 1 cos p= /3 x 577.35 x 45 x 0.733 = 32.98 kW
(iv) Reactive power
0= NG V, I, sin g= 3 x577.35 x 45 x sin (42.86°)=30.61 kVAR

Example 17

Three similar coils, connected in star, take a total power of 1.5 kW at p.f. of 0.2 lagging from
a three-phase, 440 V, 50 Hz supply. Calculate the resistance and inductance of each coil.
[Dec 2012]
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Solution P=15kW
pf =0.2 (lagging)
V, =440V
f=50Hz
For a star-connected load.
v, 440

pP= \/§VL1L005¢
1.5%x 103 = /3 x440x 1, X 0.2

I,=9.84A
L, =I,=9.84A
i O
o, 984 '

¢ =cos1(0.2) = 78.46°
th =72, £9=258278.46°=(5.17 + j25.3) Q
R, =5.17Q
X, =253Q
‘vh
XLph =2nfL,,
253 =2nx50%xL,,
L,,=0.08 H

Example 18

A three-phase, star-connected source feeds 1500 kW at 0.85 power factor lag to a balanced
mesh-connected load. Calculate the current, its active and reactive components in each phase
of the source and the load. The line voltage is 2.2 kV.

Solution P = 1500 kW
pf = 0.85 (lagging)
V,=22kV

For a mesh or delta-connected load,
(1) Line current
P=13 Vi1, cos ¢
1500 x 10% = /3 x2.2x 103 X I, X 0.85
I, =463.12 A
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(i1) Active component of current in each phase of the load
1, 46312
L,= E = T =26738 A
L, cos ¢ =267.38x0.85=22727A
(iii) Reactive component of current in each phase of the load
1, sin ¢ = 267.38 x sin (cos™' 0.85)
= 267.38 X 0.526 = 140.85 A
For a star-connected source, the phase current in the source will be the same as the line
current drawn by the load.
(iv) Active component of this current in each phase of the source
I, cos ¢ =463.12x0.85=393.65 A
(v) Reactive component of this current in each phase of the source
I, sin ¢ = 463.12 X 0.526 =243.6 A

Example 19

A three-phase, 208-volt generator supplies a total of 1800 W at a line current of 10 A when
three identical impedances are arranged in a Wye connection across the line terminals of the
generator. Compute the resistive and reactive components of each phase impedance.

Solution V, =208V
P =1800 W
I; =10A
For a Wye-connected load,
Vo= VL _ 208 =120.09V
VERIING] '
L, =1,=10A
v 120.09
= = =120
1, 10

P=43 V, 1, cos ¢
1800 = /3 x 208 x 10 X cos ¢
cos ¢ =0.5
¢ = 60°
Ry, = Z,c089=12%X0.5=6Q

X,y = Z,,sin ¢ =12 x sin (60°) = 10.39 Q
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Example 20

A balanced, three-phase, star-connected load of 100 kW takes a leading current of 80 A, when
connected across a three-phase, 1100 V, 50 Hz supply. Find the circuit constants of the load per
phase.

Solution P =100kW
I, =80A
V,=1100 V
f=50Hz
For a star-connected load,
V., = Y 1190 =635.08V
ENC NG '
L, =1,=80A
v 635.08
__ph_ _
oh = 1, 20 7.94 Q

P=.3 Vy I; cos ¢
100 x 103 = /3 x 1100 X 80 X cos ¢
cos ¢ = 0.656 (leading)
¢ = 49°
R, =Z, cos ¢=7.94x0.656=5.21 Q
Xop = Zypsin ¢ =7.94 X sin (49°) = 6 Q

This reactance will be capacitive in nature as the current is leading.

2n fC
PO B
2 x50x C
C = 530.52 uF

Example 21

Three identical impedances are connected in delta to a three-phase supply of 400 V. The line
current is 34.65 A, and the total power taken from the supply is 14.4 kW. Calculate the resistance
and reactance values of each impedance.

Solution V, =400V
I, =34.65A
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P =144kW
For a delta-connected load,
V=V, =400V

7 _I_L_34.65_20A
"B

4 400

ph

= —=——=20Q
P, 20

P= 3V, I cos ¢
14.4 % 10° = /3 x 400 X 34.65 X cos ¢
cos ¢ = 0.6
¢ = 53.13°
R, =Z,,co8 $=20x0.6=12Q
Xy = Zy, sin ¢ =20 x sin (53.13°) = 16 Q

Example 22

Three similar coils, connected in star, take a total power of 18 kW at a power factor of 0.866
lagging from a three-phase, 400-volt, 50 Hz system. Calculate the resistance and inductance of

each coil. [May 2014]
Solution P=18 kW
pf =0.866 (lagging)
V;, =400V
f=50Hz
For a star-connected load,
v, 400
Vo = L= =230.94V
NERNG

P = \/EVL I; cos¢
18 x 103 = +/3 X 400 x I, x 0.866

I, =30A
I, =1,=30A
4 230.94
h:ﬂ:ﬂ:7_7g
L | 30

ph
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¢ = cos™! (0.866) = 30°
Zy =2y £ 9="1.7 £30° = 6.67 +3.85 Q

R,, =6.67Q

X,y =3.85Q

X, =2nfL

385 =2rx50%xL
L =1225 mH

Example 23

A balanced three-phase load connected in delta, draws a power of 10 kW at 440 V at a pf of 0.6
lead, find the values of circuit elements and reactive volt-amperes drawn. [May 2016]

Solution P=10kW
V, =440V
pf = 0.6 (lead)

For a delta-connected load,

(1) Values of circuit elements
V="V, =440V
P= 3V, 1 cos ¢
10x 10° = \/3x440x 1, X 0.6

I, =2187A
I .

L, = L 28T ea
NERNG]
4 44

2= Do 440 S840
1, 1263

¢ = cos ' (0.6) = 53.13°

Ry, = Z, cos ¢=34.84 x 0.6 =20.90 Q
X,y = Z,,5in ¢=34.84x 0.8 =27.87 Q

(i1) Reactive volt-amperes drawn

0 = V3V,I,sing=/3x440x21.87x 0.8 =13.33 kVAR
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Example 24

Find the values of circuit elements and reactive volt-ampere drawn for a balanced 3-phase load

connected in delta and drawing a power of 12 kW at 440 V. The power factor is 0.7 leading.
[Dec 2013]

Solution P=12kW

V, =440V

pf = 0.7 (leading)
For a delta-connected load,

(1) Values of circuit elements
Vp=V,=440V

pP= \/EVL]L cos ¢
12 % 10% = \/3x440 %1, x0.7

I, =2249A
jhzl—L:%:IZ%A
VRG]

Vor 44
zh=ﬂ=—0=33.99
P T, 1298
R,y = Z,,cos $=33.9x0.7=23.73 Q

X,y = Z,,sing=33.9 xsin (cos™10.7)=33.9x0.71 =24.07 Q
(i1) Reactive volt-amperes drawn
0 = 3V, 1, sing =3 x 440 x22.49%0.71 =12.17 kVAR

Example 25

Each leg of a balanced, delta-connected load consists of a 7 2 resistance in series with a 4 Q2
inductive reactance. The line-to-line voltages are
E,, = 2360 £0°V
E,. = 2360 £~120°V
E., =2360 £120°V
Determine (i) phase current 1, I, and 1., (both magnitude and phase)
(ii) each line current and its associated phase angle
(iii) the load power factor

Solution R=7Q
X, =4Q
V, =2360V
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For a delta-connected load,
(i) Phase current

Vo=V, =2360V

Z,,=T+j4=28.06 £29.74° Q

j= s BOOLC e 297404
“Z,  8.06£29.74° ‘ '

- E, 2360£-120°

e = 5= o sao7qe ~ 2928 £-149.71° A

ph

E. 2360.£120°
= == =292.8 £90.26° A
Z,, 806£29.74°

(i1) Line current

In a delta-connected, three-phase system, line currents lag behind respective phase
currents by 30°.

I, = \31,=3x292.8=507.14 A
I,,=507.14 £-59.71° A
I, = 507.14 Z-179.71° A
I,. = 507.14 £60.26° A
(ii1) Load power factor
pf = cos (29.74°) = 0.868 (lagging)

Example 26

A three-phase, 200 kW, 50 Hz, delta-connected induction motor is supplied from a three-phase,
440 V, 50 Hz supply system. The efficiency and power factor of the three-phase induction motor
are 91% and 0.86 respectively. Calculate (i) line currents, (ii) currents in each phase of the
motor, (iii) active, and (iv) reactive components of phase current.

Solution P, =200 kW
V, =440V
JS=50Hz
n=91%
pf = 0.86

For a delta-connected load (induction motor),
(1) Line current
o

_ Output power _ £,
Input power P,

1
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3
0op = 20010
B
P, =219.78 kW

P, = \/EVLILCOS¢
219.78 x 103 = /3 x 440 x I, x 0.86

I, =3353A
(i1) Currents in each phase of motor

I, 3353

l,=—F7==—F7==193.6A
N E RN
(iii) Active component of phase current

L, cos ¢ =193.6 x0.86=166.5A

(iv) Reactive component of phase current
L, sin ¢ = 193.6 X sin (cos™'0.86)=193.6 X 0.51 =98.7 A

Example 27

A three-phase, 400 V, star-connected alternator supplies a three-phase, 112 kW, mesh-connected
induction motor of efficiency and power factor 0.88 and 0.86 respectively. Find the (i) current in
each motor phase, (ii) current in each alternator phase, and (iii) active and reactive components
of current in each case.

Solution V, =400V
P,=112kW
n=0.88
pf = 0.86

For a mesh-connected load (induction motor),
(1) Current in each motor phase
Vo =V, =400V
_ Output power _ F,

Input power P,

1

112x10°
088 = ———
B
P. = 127.27 kW

P, = NE) Vy I; cos ¢
12727 x10° = 3 x 400 x I; x 0.86
I, =213.6 A
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_ L2136 =123.32A

(NGNS
Current in a star-connected alternator phase will be same as the line current drawn by
the motor.
(i1) Current in each alternator phase
I, =213.6 A
(iii) Active component of current in each phase of motor
L, cos ¢ = 123.32x0.86 = 105.06 A
Reactive component of current in each phase of the motor
1, sin ¢ = 123.32 X sin (cos™' 0.86)=123.32%x0.51 =62.89 A
(iv) Active component of current in each alternator phase
I, cos ¢ =213.6x0.86=183.7A
Reactive component of current in each alternator phase
I, sin ¢ = 213.6 x sin (cos™' 0.86) =213.6 X 0.51 =108.94 A

Example 28

Three similar resistors are connected in star across 400 V, three-phase lines. The line current is
5 A. Calculate the value of each resistor. To what value should the line voltage be changed to
obtain the same line current with the resistors connected in delta?

Solution vV, =400V
I, =5A
For a star-connected load,
v, 400
Von = ﬁ = ﬁ =230.94V
L,=1,=5A
Z,=R = @: 23094 =46.19 Q
L 5 '

For a delta-connected load,

L =5A
R, = 46.19Q
L 5
Ly=—F=-"%A
"o
5
Vo = Ly Ry = 5 X 46.19=133.33 V
v, = 13333V

Voltage needed is one-third of the star value.



5.38 Basic Electrical Engineering

Example 29

Three 100 £, non-inductive resistors are connected in (a) star, and (b) delta across a 400V, 50
Hz, three-phase supply. Calculate the power taken from the supply in each case. If one of the
resistors is open circuited, what would be the value of total power taken from the mains in each
of the two cases?

Solution V, =400V
Z,;, =100 Q
For a star-connected load,
Vi
Vo = ﬁ = ﬁ =230.94V
I @: 230.94 C531A
P Zy, 100 ‘
I, =1,=231A
cos ¢ =1 (For pure resistor, pf=1)

P= BBV, I cos p= /3 x400x231x1=1600.41 W
For a delta-connected load,
V., =V,=400V

p

Von _ 400
Ly=—>—=——=4A
P Zy o 100

L =31,=+3x4=693A
P= 3V, I cos p= /3 x400x6.93 x 1 =4801.24 W

When one of the resistors is open circuited
(i) Star connection The circuit consists of two 100 Q resistors in series across a 400 V
supply.

Currents in lines 4 and C = 400 2A
200

Power taken from the mains = 400 x 2 =800 W
A

T Hence, when one of the resistors is open circuited, the
400V 100 power consumption is reduced by half.

l (ii) Delta connection In this case, currents in 4 and C
c 100 Qw remain as usual 120° out of phase with each other.
Bo Current in each phase = 100 =4A

Fig.5.22(a) Star connection
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A

Power taken from the mains = 2 x4 x 400 = 3200 W 40T0 Vv 100 Q
Hence, when one of the resistors is open circuited, the ¢
power consumption is reduced by one-third. 5o 1000

Fig.5.22(b) Delta connection
Example 30

Three identical impedances of 10 £30° £ each are connected in star and another set of three
identical impedances of 18 £60° Q are connected in delta. If both the sets of impedances are
connected across a balanced, three-phase 400 V supply, find the line current, total volt-amperes,
active power and reactive power.

Solution Zy =10 £30°Q
Z, = 18 £60° Q
V, =400V
Three identical delta impedances can be converted into equivalent star impedances.
=, Z, 18£60°
Zy = TA = %: 6£60°Q

Now two star-connected impedances of 10 £30° Q and 6 £60° € are connected in parallel
across a three-phase supply.

~ _ (10£30°)(6£60°)
0 10£30°+ 6.£60°

For a star-connected load,

=3.87 £48.83° Q

(i) Line current

vy = L=20 0300y
(NN

Von _ Vpn _ 230,94
L= =20 ="""—=5967A
M Zoy Zey 387

I, =1,,=59.6TA
(i1) Total volt-amperes

S= 3V, I, =3 x400x59.67 =41.34 kVA
(iii) Active power

P =3 V, I, cos = /3 x 400 x 59.67 X cos (48.83°) =27.21 kW
(iv) Reactive power

O =3 V, I sin g= /3 x400x 59.67 x sin (48.83°) = 31.12 kVAR
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Example 31

Three star-connected impedances Zy = (20 + j37.7) 2 per phase are connected in parallel with
three delta-connected impedances Z, = (30 — j159.3) Q2 per phase. The line voltage is 398 V.
Find the line current, pf, active and reactive power taken by the combination.

Solution Zy =20 +,37.7=42.68 £62.05° Q
Z,=30-/159.3=162.1 £-79.3° Q
v, =398V

Three identical delta-connected impedances can be converted into equivalent star
impedances.
71 _ 162.1£-79.3°
Y 3
Now two star-connected impedances of 42.68 £62.05° Q and 54.03 £-79.3° Q are
connected in parallel across the three-phase supply.
= (42.68£62.05°)(54.03£—79.3°)
“ 42.68£62.05°+54.03£—79.3°)
For a star-connected load,

=54.03 £-79.3° Q

=68.33£9.88° Q

(i) Line current

V= % = % =229.79V
L,= Zﬂ = % = 26289.3739 =336A
ph eq :
I, =1,=336A

(i1) Power factor
pf = cos ¢ =cos (9.88°) = 0.99 (lagging)
(iii) Active power
P= 3 V, 1, cos ¢= /3 x398x3.36 x0.99 =2.29 kW
(iv) Reactive power
Q=3 V, I, sing= J3 x398 x 3.36 x sin (9.88°) = 397.43 VAR

Example 32

Three coils, each having a resistance of 20 Q and a reactance of 15 Q, are connected in star
to a 400 V, three-phase, 50 Hz supply. Calculate (i) line current, (ii) power supplied, and
(iii) power factor. If three capacitors, each of same capacitance, are connected in delta to the
same supply so as to form a parallel circuit with the above coils, calculate the capacitance of
each capacitor to obtain a resultant power factor of 0.95 lagging.

Solution R, =20Q
X =15Q
V, =400V
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For a star-connected load,
(1) Line current

Zy = R+ X, =20+ )15 =25 £36.87° Q

Von = Vi _ 390 23004 v
NERNG]
V

I - Vpn _ 230.94 _904A

meZ, 25

I, =1,=924A

(ii) Power supplied
P, = 3V, I, cos ¢, = \[3 X 400 x 9.24 x cos (36.87°) = 5.12 kW

(iii) Power factor

pf = cos ¢, = cos (36.87°) = 0.8 (lagging)
(iv) Value of capacitance of each capacitor

0,= BV, I sin ¢, = /3 x400x 9.24 x sin (36.87°) = 3.84 kKVAR
When capacitors are connected in delta to the same supply

pf = 0.95

¢, = cos™! (0.95)=18.19°

tan ¢, = tan (18.19°) = 0.33

Since capacitors do not absorb any power, power remains the same even when capacitors

are connected. But reactive power changes. Pi=P,=P
P, = 5.12kW & T
0, = P,tan ¢, =5.12 x0.33 = 1.69 kVAR Cj_zQ1
Difference in reactive power is supplied by three capacitors. St
0=0,-0,=3.84-1.69=2.15kVAR l
0=B V, I, sin ¢ Fig. 5.23
2.15x 10° = /3 x 400 x I, X sin (90°)
I, =31A

_ 1
by = £ <1794
Von
- X,
Vph x2rxf 400x 27 x50

=V, x2nC

=14.24 yF
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Polyphase Circuits

INTRODUCTION

The vast majority of power is supplied to consumers in the form of
sinusoidal voltages and currents, typically referred to as alternating
current or simply ac. Although there are exceptions, for example,
some types of train motors, most equipment is designed to run on
either 50 or 60 Hz. Most 60 Hz systems are now standardized to
run on 120 V, whereas 50 Hz systems typically correspond to
240 V (both voltages being quoted in rms units). The actual voltage
delivered to an appliance can vary somewhat from these values,
and distribution systems employ significantly higher voltages to
minimize the current and hence cable size. Originally Thomas
Edison advocated a purely dc power distribution network, purport-
edly due to his preference for the simple algebra required to
analyze such circuits. Nikola Tesla and George Westinghouse, two
other pioneers in the field of electricity, proposed ac distribution
systems as the achievable losses were significantly lower. Ulti-
mately they were more persuasive, despite some rather theatrical
demonstrations on the part of Edison.

The transient response of ac power systems is of interest
when determining the peak power demand, since most equipment
requires more current to start up than it does to run continuously.
Often, however, it is the steady-state operation that is of primary
interest, so our experience with phasor-based analysis will prove to
be handy. In this chapter we introduce a new type of voltage
source, the three-phase source, which can be connected in either a
three- or four-wire Y configuration or a three-wire A configuration.
Loads can also be either Y- or A-connected, depending on the
application.

KEY CONCEPTS

Single-Phase Power Systems
[

Three-Phase Power Systems

@
Three-Phase Sources

Line Versus Phase Voltage
[ 4

Line Versus Phase Current
@

Y-Connected Networks
@

A-Connected Networks
[

Balanced Loads
[

Per-Phase Analysis

[
Power Measurement in
Three-Phase Systems
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CHAPTER 12 POLYPHASE CIRCUITS

12.1 _ POLYPHASE SYSTEMS

So far, whenever we used the term “sinusoidal source” we pictured a single
sinusoidal voltage or current having a particular amplitude, frequency, and
phase. In this chapter, we introduce the concept of polyphase sources, focus-
ing on three-phase systems in particular. There are distinct advantages in us-
ing rotating machinery to generate three-phase power rather than single-
phase power, and there are economical advantages in favor of the
transmission of power in a three-phase system. Although most of the electri-
cal equipment we have encountered so far is single-phase, three-phase
equipment is not uncommon, especially in manufacturing environments. In
particular, motors used in large refrigeration systems and in machining facil-
ities are often wired for three-phase power. For the remaining applications,
once we have become familiar with the basics of polyphase systems, we will
find that it is simple to obtain single-phase power by just connecting to a sin-
gle “leg” of a polyphase system.

Let us look briefly at the most common polyphase system, a balanced
three-phase system. The source has three terminals (not counting a neutral
or ground connection), and voltmeter measurements will show that sinu-
soidal voltages of equal amplitude are present between any two terminals.
However, these voltages are not in phase; each of the three voltages is 120°
out of phase with each of the other two, the sign of the phase angle depend-
ing on the sense of the voltages. One possible set of voltages is shown in
Fig. 12.1. A balanced load draws power equally from all three phases. Af no
instant does the instantaneous power drawn by the total load reach zero;
in fact, the total instantaneous power is constant. This is an advantage in
rotating machinery, for it keeps the torque on the rotor much more constant
than it would be if a single-phase source were used. As a result, there is less
vibration.

Volts

1.0
0.8
0.6
0.4
02

0

02

-04

-0.6

038

t(s)

.0
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

M FIGURE 12.1 An example set of three voltages, each of which is 120° out of phase with the other
two. As can be seen, only one of the voltages is zero at any particular instant.
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The use of a higher number of phases, such as 6- and 12-phase systems,
is limited almost entirely to the supply of power to large rectifiers. Recti-
fiers convert alternating current to direct current by only allowing current to
flow to the load in one direction, so that the sign of the voltage across the
load remains the same. The rectifier output is a direct current plus a smaller
pulsating component, or ripple, which decreases as the number of phases
increases.

Almost without exception, polyphase systems in practice contain
sources which may be closely approximated by ideal voltage sources or by
ideal voltage sources in series with small internal impedances. Three-phase
current sources are extremely rare.

Double-Subscript Notation

It is convenient to describe polyphase voltages and currents using double-
subscript notation. With this notation, a voltage or current, such as V,;, or
I, 4, has more meaning than if it were indicated simply as V3 or L. By def-
inition, the voltage of point a with respect to point b is V. Thus, the plus
sign is located at a, as indicated in Fig. 12.2a. We therefore consider the
double subscripts to be equivalent to a plus-minus sign pair; the use of both
would be redundant. With reference to Fig. 12.2b, for example, we see that
Vi = Vup + Veq. The advantage of the double-subscript notation lies in
the fact that Kirchhoff’s voltage law requires the voltage between two
points to be the same, regardless of the path chosen between the points;
thus Voo = Vo + Vs = Vue + Veu = Vup + Vo + Vea, and so forth. The
benefit of this is that KVL may be satisfied without reference to the circuit
diagram; correct equations may be written even though a point, or subscript
letter, is included which is not marked on the diagram. For example, we
might have written V,; = V,, + V.4, where x identifies the location of any
interesting point of our choice.

One possible representation of a three-phase system of voltages' is
shown in Fig. 12.3. Let us assume that the voltages V,,, V;,, and V., are
known:

Vo = 100/0° V
Vi = 100/—120° V
V., = 100/=240° V

The voltage V,;, may be found, with an eye on the subscripts, as

Vab = Van + an = Van - Vbn
—100/0° — 100/—120° V

=100 — (=50 — j86.6) V
=173.2/30° V

The three given voltages and the construction of the phasor V,;, are shown
on the phasor diagram of Fig. 12.4.

A double-subscript notation may also be applied to currents. We define
the current I, as the current flowing from a to b by the most direct path. In

(1) In keeping with power industry convention, rms values for currents and voltages will be used
implicitly throughout this chapter.
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Y|
1

(b)

M FIGURE 12.2 (a) The definition of the voltage V..
(b)Vag = Vab + Ve +Veg = Vap + Veq.

M FIGURE 12.3 A network used as a numerical
example of double-subscript voltage notation.

Vio=Vu+V

ab — Yan nb

Vbn

M FIGURE 12.4 This phasor diagram illustrates the
graphical use of the double-subscript voltage
convention to obtain Vgp for the network of Fig. 12.3.
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L,

M FIGURE 12.5 Anillustration of the use and misuse
of the double-subscript convention for current

notation.
Oa
w®
——o a
Single-phase on
3-wire ——on
source A e
_O b
O b
(a) )

M FIGURE 12.7 (a) Asingle-phase three-wire source.

(b) The representation of a single-phase three-wire
source by two identical voltage sources.

CHAPTER 12 POLYPHASE CIRCUITS

every complete circuit we consider, there must of course be at least two pos-
sible paths between the points a and b, and we agree that we will not use
double-subscript notation unless it is obvious that one path is much shorter,
or much more direct. Usually this path is through a single element. Thus, the
current I, is correctly indicated in Fig. 12.5. In fact, we do not even need
the direction arrow when talking about this current; the subscripts fell us the
direction. However, the identification of a current as I.; for the circuit of
Fig. 12.5 would cause confusion.

PRACTICE o

12.1 Let V,, = 100/0° V, V,;, = 40/80° V, and V., = 70/200° V.
Find (a) Vad; (b) Vbc; (C) Vcd~

12.2 Refer to the circuit of Fig. 12.6 and let Iy; = 3 A, I;, =2 A, and
Ihd = —6 A. Find (Cl) ch; (b) Ief; (C) I,'j.

¢ aan b
sa( 2 2 N)ea
¢ EAN— AN !
Dsa 2 2
g i i j
24 2 2 (oa
k Wy I
® FIGURE 12.6

Ans: 12.1: 114.0/20.2° V; 41.8/145.0° V; 44.0/20.6° V. 12.2: =3 A; TA; T A.

12.2 _ SINGLE-PHASE THREE-WIRE SYSTEMS

Before studying polyphase systems in detail, it can be helpful first to look
at a simple single-phase three-wire system. A single-phase three-wire
source is defined as a source having three output terminals, such as a, n,
and b in Fig. 12.7a, at which the phasor voltages V,, and V,;, are equal.
The source may therefore be represented by the combination of two iden-
tical voltage sources; in Fig. 12.7b, V,, = V,;, = V. It is apparent that
Vaur =2V, = 2V, and we therefore have a source to which loads operat-
ing at either of two voltages may be connected. The normal North American
household system is single-phase three-wire, permitting the operation of
both 110 V and 220 V appliances. The higher-voltage appliances are nor-
mally those drawing larger amounts of power; operation at higher voltage
results in a smaller current draw for the same power. Smaller-diameter wire
may consequently be used safely in the appliance, the household distribution
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system, and the distribution system of the utility company, as larger-diameter
wire must be used with higher currents to reduce the heat produced due to
the resistance of the wire.

The name single-phase arises because the voltages V,, and V,;, being
equal, must have the same phase angle. From another viewpoint, however,
the voltages between the outer wires and the central wire, which is usually re-
ferred to as the neutral, are exactly 180° out of phase. Thatis, V,, = —V,,,
and V., + Vp,, = 0. Later, we will see that balanced polyphase systems are
characterized by a set of voltages of equal amplitude whose (phasor) sum is
zero. From this viewpoint, then, the single-phase three-wire system is really
a balanced two-phase system. Tivo-phase, however, is a term that is tradi-
tionally reserved for a relatively unimportant unbalanced system utilizing
two voltage sources 90° out of phase.

Let us now consider a single-phase three-wire system that contains
identical loads Z, between each outer wire and the neutral (Fig. 12.8). We
first assume that the wires connecting the source to the load are perfect
conductors. Since

Van = an
then,
Van Vn
Iia = =Ipp = 2
ZP ZP

and therefore
Liv =Ipp +1aa =Ipp —Ion =0

Thus there is no current in the neutral wire, and it could be removed with-
out changing any current or voltage in the system. This result is achieved
through the equality of the two loads and of the two sources.

Effect of Finite Wire Impedance

We next consider the effect of a finite impedance in each of the wires. If
lines aA and bB each have the same impedance, this impedance may be
added to Z,,, resulting in two equal loads once more, and zero neutral cur-
rent. Now let us allow the neutral wire to possess some impedance Z,,.
Without carrying out any detailed analysis, superposition should show us
that the symmetry of the circuit will still cause zero neutral current. More-
over, the addition of any impedance connected directly from one of the
outer lines to the other outer line also yields a symmetrical circuit and zero
neutral current. Thus, zero neutral current is a consequence of a balanced, or
symmetrical, load; nonzero impedance in the neutral wire does not destroy
the symmetry.

The most general single-phase three-wire system will contain unequal
loads between each outside line and the neutral and another load directly
between the two outer lines; the impedances of the two outer lines may be
expected to be approximately equal, but the neutral impedance is often
slightly larger. Let us consider an example of such a system, with particular
interest in the current that may flow now through the neutral wire, as well as
the overall efficiency with which our system is transmitting power to the
unbalanced load.

M FIGURE 12.8 Asimple single-phase three-wire
system. The two loads are identical, and the neutral
current is zero.
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EXAMPLE 12.1

Analyze the system shown in Fig. 12.9 and determine the power
delivered to each of the three loads as well as the power lost in the
neutral wire and each of the two lines.

1

=)

A
a NNV
115/0° V rms L 50 Q 200
30
—A—y (1)
115/0° V rms Iy 100 Q S
10
b WA,
B

M FIGURE 12.9 Atypical single-phase three-wire system.

Identify the goal of the problem.

The three loads in the circuit are the 50 €2 resistor, the 100 €2 resistor,
and a 20 + ;10 €2 impedance. Each of the two lines has a resistance
of 1 , and the neutral wire has a resistance of 3 2. We need the cur-
rent through each of these in order to determine power.

Collect the known information.

We have a single-phase three-wire system; the circuit diagram of
Fig. 12.9 is completely labeled. The computed currents will be in
rms units.

Devise a plan.

The circuit is conducive to mesh analysis, having three clearly defined
meshes. The result of the analysis will be a set of mesh currents,
which can then be used to compute absorbed power.

Construct an appropriate set of equations.
The three mesh equations are:

—115&4—11 + 50(11 - 12) + 3(11 — 13) =0
(20 + j10)L, + 100(Ir — I3) + 50(L, — I;) = 0
—115/0° +3(I: —I,) + 1000 — L) + 1, =0

which can be rearranged to obtain the following three equations

541, —50I, —3I; =115/0°
—50I, +(170+ j10)l, —100I; =0
-3 —100L, +104I; = 115/0°

Determine if additional information is required.
We have a set of three equations in three unknowns, so it is possible
to attempt a solution at this point.
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Attempt a solution.
Solving for the phasor currents I;, I, and I3 using a scientific calcula-
tor, we find

I, =11.24/-19.83° A
I, =9.3890/-24.47" A
I; =10.37/-21.80° A

The currents in the outer lines are thus
Ia=1 =11.24/-19.83° A
and
I,s = —Is = 10.37/158.20° A
and the smaller neutral current is
Ly =13 -1, =09459/-177.7° A
The average power drawn by each load may thus be determined:
Pso = |I;, — L|? (50) = 206 W
Py = |I; — L|? (100) = 117 W
Py ji0 = [L* (20) = 1763 W
The total load power is 2086 W. The loss in each of the wires is next
found:
Poa=IL" (1) =126 W
Pop = |I3* (1) = 108 W
Py = L[> 3) =3W
giving a total line loss of 237 W. The wires are evidently quite long;

otherwise, the relatively high power loss in the two outer lines would
cause a dangerous temperature rise.

Verify the solution. Is it reasonable or expected?
The total absorbed power is 206 + 117 4+ 1763 + 237, or 2323 W,
which may be checked by finding the power delivered by each voltage
source:

P.y = 115(11.24) cos 19.83° = 1216 W

Py, = 115(10.37) cos 21.80° = 1107 W

or a total of 2323 W. The transmission efficiency for the system is

__ total power delivered to load 2086
7= ol power generated 2086 + 237

= 89.8%

This value would be unbelievable for a steam engine or an internal
combustion engine, but it is too low for a well-designed distribution
system. Larger-diameter wires should be used if the source and the
load cannot be placed closer to each other.

o 463

Note that we do not need to include a factor of % since
we are working with rms current values.

Imagine the heat produced by two 100 W light bulbs!
These outer wires must dissipate the same amount
of power. In order to keep their temperature down,
a large surface area is required.

(Continued on next page)
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M FIGURE 12.11 A Y-connected three-phase
four-wire source.

o C

CHAPTER 12 POLYPHASE CIRCUITS

A phasor diagram showing the two source voltages, the currents
in the outer lines, and the current in the neutral is constructed in
Fig. 12.10. The fact that I,4 + I,5 + I,y = O is indicated on the
diagram.

M FIGURE 12.10 The source voltages and three of the currents in the circuit
of Fig. 12.9 are shown on a phasor diagram. Note that l;4 + lpg + I,y = 0.

PRACTICE |

12.3 Modify Fig. 12.9 by adding a 1.5 €2 resistance to each of the two
outer lines, and a 2.5 2 resistance to the neutral wire. Find the average
power delivered to each of the three loads.

Ans: 153.1 W; 95.8 W; 1374 W.

12.3 A THREE-PHASE Y-Y CONNECTION

Three-phase sources have three terminals, called the line terminals, and
they may or may not have a fourth terminal, the neutral connection. We will
begin by discussing a three-phase source that does have a neutral connec-
tion. It may be represented by three ideal voltage sources connected in a Y,
as shown in Fig. 12.11; terminals a, b, ¢, and n are available. We will con-
sider only balanced three-phase sources, which may be defined as having

|Van| = |Vbn| = |Vcn|

and
Van + Vbn + Vcn =0

These three voltages, each existing between one line and the neutral, are
called phase voltages. If we arbitrarily choose V,,, as the reference, or define

Van = Vpﬁ

where we will consistently use V), to represent the rms amplitude of any of
the phase voltages, then the definition of the three-phase source indicates
that either

Voo =V,/=120°  and V., = V,/=240°

or
Viu =V,/120°  and V., = V,/240°

The former is called positive phase sequence, or abc phase sequence, and
is shown in Fig. 12.12a; the latter is termed negative phase sequence, or
cba phase sequence, and is indicated by the phasor diagram of Fig. 12.12b.
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V.=V, [-240°V

Vy, =V, [120°

Vun = va M
V=V, [=120° V., =V, [240°

(@) (b)
M FIGURE 12.12 (a) Positive, or abc, phase sequence. (b) Negative, or cba, phase sequence.

The actual phase sequence of a physical three-phase source depends on the
arbitrary choice of the three terminals to be lettered a, b, and c. They may
always be chosen to provide positive phase sequence, and we will assume
that this has been done in most of the systems we consider.

Line-to-Line Voltages

Let us next find the line-to-line voltages (often simply called the line
voltages) which are present when the phase voltages are those of Fig. 12.12a.
It is easiest to do this with the help of a phasor diagram, since the angles are
all multiples of 30°. The necessary construction is shown in Fig. 12.13; the
results are

Vo =+/3 V,/30° [1]

Vie = 3V, /=90° 2] v,

Vea = V3V, [=210° [3] \
Kirchhoff’s voltage law requires the sum of these three voltages to be zero; \\\ 3

Vbc

the reader is encouraged to verify this as an exercise.
If the rms amplitude of any of the line voltages is denoted by V;, then
one of the important characteristics of the Y-connected three-phase source

M FIGURE 12.13 A phasor diagram which is used
to determine the line voltages from the given phase
voltages. Or, algebraically, Vg = Vg — Vpp =

may be expressed as Vp/0° —Vp[=120° = V), — V) cos(—120°) —
jVpsin(=120°) = V(1 + 3 + j/3/2) =
Vi =3V, N

Note that with positive phase sequence, V,, leads V;, and V;, leads
V., in each case by 120°, and also that V;, leads V. and V. leads V,,
again by 120°. The statement is true for negative phase sequence if “lags”
is substituted for “leads.”

Now let us connect a balanced Y-connected three-phase load to our
source, using three lines and a neutral, as drawn in Fig. 12.14. The load is

o, @

n

Cc

M FIGURE 12.14 Abalanced three-phase system, connected Y-Y and including a neutral.
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represented by an impedance Z, between each line and the neutral. The
three line currents are found very easily, since we really have three single-
phase circuits that possess one common lead:?

IaA — Van
ZP
Vin  Van/—120°
Ly = Z” = == = L/ 120°
P P

I.c =1,4/-240°
and therefore
INn = IaA +IbB +Icc =0

Thus, the neutral carries no current if the source and load are both bal-
anced and if the four wires have zero impedance. How will this change if an
impedance Z; is inserted in series with each of the three lines and an imped-
ance Z, is inserted in the neutral? The line impedances may be combined with
the three load impedances; this effective load is still balanced, and a perfectly
conducting neutral wire could be removed. Thus, if no change is produced in
the system with a short circuit or an open circuit between n and N, any imped-
ance may be inserted in the neutral and the neutral current will remain zero.

It follows that, if we have balanced sources, balanced loads, and bal-
anced line impedances, a neutral wire of any impedance may be replaced
by any other impedance, including a short circuit or an open circuit; the
replacement will not affect the system’s voltages or currents. It is often
helpful to visualize a short circuit between the two neutral points, whether a
neutral wire is actually present or not; the problem is then reduced to three
single-phase problems, all identical except for the consistent difference in
phase angle. We say that we thus work the problem on a “per-phase” basis.

EXAMPLE 12.2

For the circuit of Fig. 12.15, find both the phase and line currents,
and the phase and line voltages throughout the circuit; then calcu-
late the total power dissipated in the load.

A@

Ce

* C
M FIGURE 12.15 A balanced three-phase three-wire Y-Y connected system.

(2) This can be seen to be true by applying superposition and looking at each phase one at a time.
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Since one of the source phase voltages is given and we are told to use
the positive phase sequence, the three phase voltages are:

Vi =200/0° V Vp, =200/=120° V Ve =200/=240° V

The line voltage is 200+/3 = 346 V; the phase angle of each line volt-
age can be determined by constructing a phasor diagram, as we did in
Fig. 12.13 (as a matter of fact, the phasor diagram of Fig. 12.13 is
applicable), subtracting the phase voltages using a scientific calculator,
or by invoking Eqs. [1] to [3]. We find that V;, is 346/30° V,
Vie =346/=90° V, and V., = 346/—-210° V.

The line current for phase A is

Van  200/0°
L= = =2/-60° A
ATz, T 100/60°

Since we know this is a balanced three-phase system, we may write the
remaining line currents based on I,4:

Ip =2/(=60° — 120°) = 2/—180° A
Lc=2/(-60° —240°) = 2/-300° A

Finally, the average power absorbed by phase A is Re{V,,I” ,}, or
Psy = 200(2) cos(0° + 60°) =200 W

Thus, the total average power drawn by the three-phase load is 600 W.

The phasor diagram for this circuit is shown in Fig. 12.16. Once we
knew any of the line voltage magnitudes and any of the line current
magnitudes, the angles for all three voltages and all three currents could
have been obtained by simply reading the diagram.

PRACTICE .

12.4 A balanced three-phase three-wire system has a Y-connected load.
Each phase contains three loads in parallel: —j 100 €2, 100 €2, and

50 + j50 Q2. Assume positive phase sequence with V,;, = 400/0° V.
Find (a) V.,; (b) L,4; (c) the total power drawn by the load.

Ans: 231/—30° V; 4.62/—30° A; 3200 W.

Before working another example, this would be a good opportunity to
quickly explore a statement made in Sec. 12.1, i.e., that even though phase
voltages and currents have zero value at specific instants in time (every
1/120 s in North America), the instantaneous power delivered to the toral
load is never zero. Consider phase A of Example 12.2 once more, with the
phase voltage and current written in the time domain:

van = 200+/2 cos(1207t + 0°) V
and
ian =242 cos(120rr — 60°) A

® 467

Vb('

M FIGURE 12.16 The phasor diagram that applies to
the circuit of Fig. 12.15.

I The factor of /2 is required to convert from rms units.
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Thus, the instantaneous power absorbed by phase A is

pa(t) = vayiay = 800cos(1207mt) cos(120rr — 60°)
= 400[cos(—60°) + cos(240mt — 60°)]
= 200 + 400 cos(2407t — 60°) W

in a similar fashion,
pr(t) =200 + 400 cos(240mr — 300°) W

and
pc(t) =200+ 400 cos(240mr — 180°) W

The instantaneous power absorbed by the toral load is therefore
p(t) = pa(t) + ppt) + pc(t) = 600 W

independent of time, and the same value as the average power computed in
Example 12.2.

EXAMPLE 12.3

A balanced three-phase system with a line voltage of 300 V is sup-
plying a balanced Y-connected load with 1200 W at a leading PF
of 0.8. Find the line current and the per-phase load impedance.

The phase voltage is 300/+/3 V and the per-phase power is 1200/3 =
400 W. Thus the line current may be found from the power relationship

300
400 = —(11)(0.8)
3
and the line current is therefore 2.89 A. The phase impedance magnitude
is given by
V 300/+/3
|Zp|=_p= /f=6OQ
I, 2.89

Since the PF is 0.8 leading, the impedance phase angle is —36.9°; thus
Z,=60/-36.9° Q.

PRACTICE _

12.5 A balanced three-phase three-wire system has a line voltage of
500 V. Two balanced Y-connected loads are present. One is a capacitive
load with 7 — j2 Q per phase, and the other is an inductive load with

4 4 j2 Q per phase. Find (a) the phase voltage; (b) the line current;

(c) the total power drawn by the load; (d) the power factor at which

the source is operating.

Ans: 289 V; 97.5 A; 83.0 kW; 0.983 lagging.
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EXAMPLE 12.4

A balanced 600 W lighting load is added (in parallel) to the system
of Example 12.3. Determine the new line current.

We first sketch a suitable per-phase circuit, as shown in Fig. 12.17. The
600 W load is assumed to be a balanced load evenly distributed among
the three phases, resulting in an additional 200 W consumed by each
phase.

The amplitude of the lighting current (labeled I;) is determined by

300
200 = — |I;| cos 0°
NE]

so that
I;| =1.155 A

In a similar way, the amplitude of the capacitive load current (labeled I,)
is found to be unchanged from its previous value, since the voltage
across it has remained the same:

I, =2.89 A

If we assume that the phase with which we are working has a phase
voltage with an angle of 0°, then since cos™! (0.8) = 36.9°,

I, =1.155/0° A I, =2.89/436.9° A
and the line current is
I, =1, +1, =3.87/426.6" A
We can check our results by computing the power generated by this

phase of the source

300
P, = f3.87 cos(+26.6°) = 600 W

which agrees with the fact that the individual phase is known to be sup-
plying 200 W to the new lighting load, as well as 400 W to the original
load.

PRACTICE .

12.6 Three balanced Y-connected loads are installed on a balanced
three-phase four-wire system. Load 1 draws a total power of 6 kW at
unity PF, load 2 pulls 10 kVA at PF = 0.96 lagging, and load 3
demands 7 kW at 0.85 lagging. If the phase voltage at the loads is
135V, if each line has a resistance of 0.1 €2, and if the neutral has a
resistance of 1 €2, find (a) the total power drawn by the loads; (b) the
combined PF of the loads; (c) the total power lost in the four lines;

(d) the phase voltage at the source; (e) the power factor at which the
source is operating.

Ans: 22.6 kW; 0.954 lag; 1027 W; 140.6 V; 0.957 lagging.

I, I,

— —
1
+\ 300
= Vrms

0

400 W
0.8 PF
leading

B FIGURE 12.17 The per-phase circuit that is used

to analyze a balanced three-phase example.
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If an unbalanced Y-connected load is present in an otherwise balanced
three-phase system, the circuit may still be analyzed on a per-phase basis if
the neutral wire is present and if it has zero impedance. If either of these
conditions is not met, other methods must be used, such as mesh or nodal
analysis. However, engineers who spend most of their time with unbalanced
three-phase systems will find the use of symmetrical components a great
time saver.

We leave this topic for more advanced texts.

12.4 THE DELTA (A) CONNECTION

An alternative to the Y-connected load is the A-connected configuration, as
shown in Fig. 12.18. This type of configuration is very common, and does
not possess a neutral connection.

a b A B
E) (D)
c C

M FIGURE 12.18 A balanced A-connected load is present on a three-
wire three-phase system. The source happens to be Y-connected.

Let us consider a balanced A-connected load which consists of an imped-
ance Z, inserted between each pair of lines. With reference to Fig. 12.18, let
us assume known line voltages

Ve = Vbl = |Vpe| = Vel
or known phase voltages
Vp = |Vanl = |Vpul = [Venl
where
Ve =+3V, and V., =+3V,/30°

as we found previously. Because the voltage across each branch of the A is
known, the phase currents are easily found:
Vub I _ Vbc I _ Vm
i BC = ca=—

and their differences provide us with the line currents, such as

IAB =
p

P
Lia =Tap —Ica

Since we are working with a balanced system, the three phase currents are
of equal amplitude:

I, = Iag| = Ipc| = Ical
The line currents are also equal in amplitude; the symmetry is apparent from
the phasor diagram of Fig. 12.19. We thus have

I = Laal = Ipsl = [Lcl
and

I, =31,
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IcC
Veu Ven Vs
Ica
Lip
Van
Lia
Iyc
IbB Vbn
' Vie

M FIGURE 12.19 A phasor diagram that could apply to the
circuit of Fig. 12.18 if Z, were an inductive impedance.

Let us disregard the source for the moment and consider only the bal-
anced load. If the load is A-connected, then the phase voltage and the line
voltage are indistinguishable, but the line current is larger than the phase
current by a factor of V3 ; with a Y-connected load, however, the phase cur-
rent and the line current refer to the same current, and the line voltage is
greater than the phase voltage by a factor of /3.
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Determine the amplitude of the line current in a three-phase system
with a line voltage of 300 V that supplies 1200 W to a A-connected
load at a lagging PF of 0.8; then find the phase impedance.

Let us again consider a single phase. It draws 400 W, 0.8 lagging PF, at
a 300V line voltage. Thus,

400 = 300(/,)(0.8)
and

I, =1.667 A
and the relationship between phase currents and line currents yields
I = V3(1.667) =2.89 A

Next, the phase angle of the load is cos~!(0.8) = 36.9°, and therefore
the impedance in each phase must be

300

Z,=——/36.9° = 180/36.9° Q
2 1.667/ 2 [36.9

PRACTICE "

12.7 Each phase of a balanced three-phase A-connected load consists
of a 200 mH inductor in series with the parallel combination of a 5 uF
capacitor and a 200 €2 resistance. Assume zero line resistance and a
phase voltage of 200 V at @ = 400 rad/s. Find (a) the phase current;
(b) the line current; (c) the total power absorbed by the load.

Ans: 1.158 A; 2.01 A; 693 W.

EXAMPLE 12.5

Again, keep in mind that we are assuming all voltages

and currents are quoted as rms values.
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EXAMPLE 12.6

Determine the amplitude of the line current in a three-phase
system with a 300 V line voltage that supplies 1200 W to a
Y-connected load at a lagging PF of 0.8. (T'his is the same circuit
as in Example 12.5, but with a Y-connected load instead.)

On a per-phase basis, we now have a phase voltage of 300/+/3 V,
a power of 400 W, and a lagging PF of 0.8. Thus,

300
400 = —(1,)(0.8
ﬁ( »)(0.8)

and
I, =2.89 (and so I, = 2.89 A)

The phase angle of the load is again 36.9°, and thus the impedance in
each phase of the Y is
~300//3

= ——/36.9° = 60/36.9° @
P 2.89 / /

The +/3 factor not only relates phase and line quantities but also appears
in a useful expression for the total power drawn by any balanced three-
phase load. If we assume a Y-connected load with a power-factor angle 6,
the power taken by any phase is

1%
P, =V,I,cos0 = V,I; cosO = —L 1, cosh

V3

and the total power is
P =3P, =+/3V.I; cosé

In a similar way, the power delivered to each phase of a A-connected load is

I
P, =V,I,cos0 = V. I,cos0 = V. —= cos 6

V3

giving a total power
P =3P, =+/3V.I,cosb [4]

Thus Eq. [4] enables us to calculate the total power delivered to a balanced
load from a knowledge of the magnitude of the line voltage, of the line cur-
rent, and of the phase angle of the load impedance (or admittance), regard-
less of whether the load is Y-connected or A-connected. The line current in

PRACTICE "

12.8 Abalanced three-phase three-wire system is terminated with two
A-connected loads in parallel. Load 1 draws 40 kVA at a lagging PF of 0.8,
while load 2 absorbs 24 kW at a leading PF of 0.9. Assume no line
resistance, and let V,;, = 440/30° V. Find (a) the total power drawn by the
loads; (b) the phase current I 4 51 for the lagging load; (¢) Lag2; (d) I, 4.

Ans: 56.0 kW; 30.3/—6.87° A; 20.2/55.8° A; 75.3/—12.46° A.
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Examples 12.5 and 12.6 can now be obtained in two simple steps:
1200 = ~/3(300)(1,)(0.8)

Therefore,

5
I = —289A
SN

A brief comparison of phase and line voltages as well as phase and line
currents is presented in Table 12.1 for both Y- and A-connected loads
powered by a Y-connected three-phase source.

TABLE 12.1 Comparison of Y- and A-Connected Three-Phase Loads. V;, Is the Voltage

Magnitude of Each Y-Connected Source Phase
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o
Load Phase Voltage Line Voltage Phase Current Line Current Power per Phase
Vas =Va
= (V/3/30°)Van
Van Van
= +/3V,/30° La=Lwv=— Lia=Iay = ——
_ o _ P P V3 Vi I cosf
Van =V, /[0° Vic = Vi Van Vin where cos 0 =
Y Vgy = V,/—120° = (/3/30°)Vgy L =Ipn = 7 Ip =Ipy = -7 power factor of
Ven =V, /—240° = /3V,/=90° - ’ ch the load
N N
Vea = Veu Ic =Icy = ZL Ic=Icy = 7z
= (V3[30) Ve ! '
= /3V,/=210°
Vas =V Vag =V Vas Vs
o o IAB = IaA = (ﬁioc))
=/3V,/30 = /3V,/30 z, Z, V3V, 1} cos®
Vec = Vi Vec = Vi Vic Ve  where cosf =
A 1 = — = —30)°) —
= +/3V,/=90° =3V, /=90° Be Z, Lp = (V3/=30) Z,  power factor of
he load
Vea =V Vea=V Vea Veca t
) ca Ica = —4 Lc = (v3/=30°) <4
= +/3V, /=210 _ v, T g, c = (V3/=30° Z,

A-Connected Sources

The source may also be connected in a A configuration. This is not typical,
however, for a slight unbalance in the source phases can lead to large cur-
rents circulating in the A loop. For example, let us call the three single-
phase sources V,;, V., and V4. Before closing the A by connecting d to a,
let us determine the unbalance by measuring the sum V,;, + Vp. + V.
Suppose that the amplitude of the result is only 1 percent of the line voltage.
The circulating current is thus approximately % percent of the line voltage
divided by the internal impedance of any source. How large is this impedance
apt to be? It must depend on the current that the source is expected to deliver
with a negligible drop in terminal voltage. If we assume that this maximum
current causes a 1 percent drop in the terminal voltage, then the circulating
current is one-third of the maximum current! This reduces the useful current
capacity of the source and also increases the losses in the system.
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He who cannot forgive others breaks the bridge over which he must
pass himself.
—G. Herbert

Enhancing Your Skills and Your Career

ABET EC 2000 criteria (3.e), “an ability to identify, formulate,
and solve engineering problems.”

Developing and enhancing your “ability to identify, formulate, and
solve engineering problems” is a primary focus of textbook. Follow-
ing our six step problem-solving process is the best way to practice
this skill. Our recommendation is that you use this process whenever
possible. You may be pleased to learn that this process works well for
nonengineering courses.

ABET EC 2000 criteria (f), “an understanding of professional
and ethical responsibility.”

“An understanding of professional and ethical responsibility” is required
of every engineer. To some extent, this understanding is very personal
for each of us. Let us identify some pointers to help you develop this
understanding. One of my favorite examples is that an engineer has the
responsibility to answer what I call the “unasked question.” For
instance, assume that you own a car that has a problem with the trans-
mission. In the process of selling that car, the prospective buyer asks
you if there is a problem in the right-front wheel bearing. You answer
no. However, as an engineer, you are required to inform the buyer that
there is a problem with the transmission without being asked.

Your responsibility both professionally and ethically is to perform
in a manner that does not harm those around you and to whom you are
responsible. Clearly, developing this capability will take time and matu-
rity on your part. I recommend practicing this by looking for profes-
sional and ethical components in your day-to-day activities.

Photo by Charles Alexander
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Historical note: Thomas Edison invented
a three-wire system, using three wires
instead of four.

Vo Lo

(@)
Figure 12.1

Chapter 12 Three-Phase Circuits

12.1 Introduction

So far in this text, we have dealt with single-phase circuits. A single-phase
ac power system consists of a generator connected through a pair of wires
(a transmission line) to a load. Figure 12.1(a) depicts a single-phase two-
wire system, where V), is the rms magnitude of the source voltage and ¢
is the phase. What is more common in practice is a single-phase three-
wire system, shown in Fig. 12.1(b). It contains two identical sources
(equal magnitude and the same phase) that are connected to two loads by
two outer wires and the neutral. For example, the normal household sys-
tem is a single-phase three-wire system because the terminal voltages
have the same magnitude and the same phase. Such a system allows the
connection of both 120-V and 240-V appliances.

(b)

Single-phase systems: (a) two-wire type, (b) three-wire type.

v, /0°

v, /-90°

Figure 12.2

Two-phase three-wire system.

Vl}g a A 7
N o—
VPLAZOO B Zp,
S —{ }—
v, /+120°
p : c C 73
n N

Figure 12.3

Three-phase four-wire system.

Circuits or systems in which the ac sources operate at the same fre-
quency but different phases are known as polyphase. Figure 12.2 shows
a two-phase three-wire system, and Fig. 12.3 shows a three-phase four-
wire system. As distinct from a single-phase system, a two-phase system
is produced by a generator consisting of two coils placed perpendicular
to each other so that the voltage generated by one lags the other by 90°.
By the same token, a three-phase system is produced by a generator con-
sisting of three sources having the same amplitude and frequency but out
of phase with each other by 120°. Since the three-phase system is by far
the most prevalent and most economical polyphase system, discussion in
this chapter is mainly on three-phase systems.

Three-phase systems are important for at least three reasons. First,
nearly all electric power is generated and distributed in three-phase, at
the operating frequency of 60 Hz (or w = 377 rad/s) in the United
States or 50 Hz (or w = 314 rad/s) in some other parts of the world.
When one-phase or two-phase inputs are required, they are taken from
the three-phase system rather than generated independently. Even when
more than three phases are needed—such as in the aluminum industry,
where 48 phases are required for melting purposes—they can be provided
by manipulating the three phases supplied. Second, the instantaneous
power in a three-phase system can be constant (not pulsating), as we
will see in Section 12.7. This results in uniform power transmission
and less vibration of three-phase machines. Third, for the same amount
of power, the three-phase system is more economical than the single-
phase. The amount of wire required for a three-phase system is less
than that required for an equivalent single-phase system.
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Historical

Nikola Tesla (1856-1943) was a Croatian-American engineer whose
inventions—among them the induction motor and the first polyphase ac
power system—greatly influenced the settlement of the ac versus dc de-
bate in favor of ac. He was also responsible for the adoption of 60 Hz as
the standard for ac power systems in the United States.

Bom in Austria-Hungary (now Croatia), to a clergyman, Tesla had
an incredible memory and a keen affinity for mathematics. He moved
to the United States in 1884 and first worked for Thomas Edison. At
that time, the country was in the “battle of the currents” with George
Westinghouse (1846-1914) promoting ac and Thomas Edison rigidly
leading the dc forces. Tesla left Edison and joined Westinghouse
because of his interest in ac. Through Westinghouse, Tesla gained the
reputation and acceptance of his polyphase ac generation, transmission,
and distribution system. He held 700 patents in his lifetime. His other
inventions include high-voltage apparatus (the tesla coil) and a wire-
less transmission system. The unit of magnetic flux density, the tesla,
was named in honor of him.

]

Courtesy Smithsonian
Institution
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We begin with a discussion of balanced three-phase voltages. Then
we analyze each of the four possible configurations of balanced three-
phase systems. We also discuss the analysis of unbalanced three-phase
systems. We learn how to use PSpice for Windows to analyze a bal-
anced or unbalanced three-phase system. Finally, we apply the concepts
developed in this chapter to three-phase power measurement and resi-
dential electrical wiring.

12.2 Balanced Three-Phase Voltages

Three-phase voltages are often produced with a three-phase ac gener-
ator (or alternator) whose cross-sectional view is shown in Fig. 12.4.
The generator basically consists of a rotating magnet (called the rofor)
surrounded by a stationary winding (called the stator). Three separate

Three-
phase b o
output

no d

Figure 12.4

A three-phase generator.
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V) Vi) e
/

A0

Ve

Figure 12.5
The generated voltages are 120° apart
from each other.

Chapter 12 Three-Phase Circuits

windings or coils with terminals a-a’, b-b', and c-c¢’ are physically
placed 120° apart around the stator. Terminals a and a’, for example,
stand for one of the ends of coils going into and the other end coming
out of the page. As the rotor rotates, its magnetic field “cuts” the flux
from the three coils and induces voltages in the coils. Because the coils
are placed 120° apart, the induced voltages in the coils are equal in
magnitude but out of phase by 120° (Fig. 12.5). Since each coil can be
regarded as a single-phase generator by itself, the three-phase genera-
tor can supply power to both single-phase and three-phase loads.

A typical three-phase system consists of three voltage sources con-
nected to loads by three or four wires (or transmission lines). (Three-
phase current sources are very scarce.) A three-phase system is
equivalent to three single-phase circuits. The voltage sources can be
either wye-connected as shown in Fig. 12.6(a) or delta-connected as in
Fig. 12.6(b).

Vz?u ; t Vab

%
Vbc

Figure 12.6

(b)

Three-phase voltage sources: (a) Y-connected source, (b) A-connected

source.

(b)

Figure 12.7

Phase sequences: (a) abc or positive

sequence, (b) acb or negative sequence.

Let us consider the wye-connected voltages in Fig. 12.6(a) for
now. The voltages V,,, V,,,, and V., are respectively between lines a, b,
and ¢, and the neutral line n. These voltages are called phase voltages.
If the voltage sources have the same amplitude and frequency w and
are out of phase with each other by 120°, the voltages are said to be
balanced. This implies that

VLIIZ + Vhlz + V(‘n =0 (12‘1)
|V¢m‘ = ‘Vbn| = ‘Vc‘n‘ (12‘2)
Thus,

Balanced phase voltages are equal in magnitude and are out of phase
with each other by 120°.

Since the three-phase voltages are 120° out of phase with each
other, there are two possible combinations. One possibility is shown in
Fig. 12.7(a) and expressed mathematically as

Van = ‘/p OO
Vi, = V,/—120° (12.3)
V., =V,/=240° = V,/+120°
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where V), is the effective or rms value of the phase voltages. This is
known as the abc sequence or positive sequence. In this phase sequence,
V.. leads V,,,, which in turn leads V. This sequence is produced when
the rotor in Fig. 12.4 rotates counterclockwise. The other possibility is
shown in Fig. 12.7(b) and is given by

Vun = ‘/]) 00
V., =V,/—120° (12.4)
Vi, = V,/=240° =V, /+120°

This is called the acb sequence or negative sequence. For this phase
sequence, V,, leads V_,, which in turn leads V,,,. The acb sequence is
produced when the rotor in Fig. 12.4 rotates in the clockwise direction.
It is easy to show that the voltages in Eqgs. (12.3) or (12.4) satisfy
Egs. (12.1) and (12.2). For example, from Eq. (12.3),

Vun + Vbn + Vcn = ‘/p OO + ‘/p _1200 + ‘/17 +1200

V,(1.0 — 0.5 — j0.866 — 0.5 + j0.866) (12.5)
0

The phase sequence is the time order in which the voltages pass
through their respective maximum values.

The phase sequence is determined by the order in which the phasors
pass through a fixed point in the phase diagram.

In Fig. 12.7(a), as the phasors rotate in the counterclockwise
direction with frequency w, they pass through the horizontal axis in a
sequence abcabca . . . . Thus, the sequence is abc or bca or cab. Sim-
ilarly, for the phasors in Fig. 12.7(b), as they rotate in the counter-
clockwise direction, they pass the horizontal axis in a sequence
acbacba . . . . This describes the acb sequence. The phase sequence is
important in three-phase power distribution. It determines the direc-
tion of the rotation of a motor connected to the power source, for
example.

Like the generator connections, a three-phase load can be either
wye-connected or delta-connected, depending on the end application.
Figure 12.8(a) shows a wye-connected load, and Fig. 12.8(b) shows a
delta-connected load. The neutral line in Fig. 12.8(a) may or may not
be there, depending on whether the system is four- or three-wire. (And,
of course, a neutral connection is topologically impossible for a delta
connection.) A wye- or delta-connected load is said to be unbalanced
if the phase impedances are not equal in magnitude or phase.

A balanced load is one in which the phase impedances are equal in
magnitude and in phase.

For a balanced wye-connected load,

7, =Z,=17s=17y (12.6)
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As a common tradition in power
systems, voltage and current in this
chapter are in rms values unless
otherwise stated.

The phase sequence may also be re-
garded as the order in which the phase
voltages reach their peak (or maximum)
values with respect to time.

Reminder: As time increases, each
phasor (or sinor) rotates at an angular
velocity w.

(a)

Zc Zb
b o
Zﬂ
c O
(b)

Figure 12.8

Two possible three-phase load configura-
tions: (a) a Y-connected load, (b) a
A-connected load.
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Reminder: A Y-connected load consists
of three impedances connected to a
neutral node, while a A-connected
load consists of three impedances
connected around a loop. The load is
balanced when the three impedances
are equal in either case.

Chapter 12 Three-Phase Circuits

where Zy is the load impedance per phase. For a balanced delta-
connected load,

Z,=7,=17, =17, (12.7)

where Z, is the load impedance per phase in this case. We recall from
Eq. (9.69) that

1
Zy=3Ly o Zy=_Z (12.8)

so we know that a wye-connected load can be transformed into a delta-
connected load, or vice versa, using Eq. (12.8).

Since both the three-phase source and the three-phase load can be
either wye- or delta-connected, we have four possible connections:

* Y-Y connection (i.e., Y-connected source with a Y-connected
load).

e Y-A connection.

e A-A connection.

e A-Y connection.

In subsequent sections, we will consider each of these possible con-
figurations.

It is appropriate to mention here that a balanced delta-connected
load is more common than a balanced wye-connected load. This is due
to the ease with which loads may be added or removed from each phase
of a delta-connected load. This is very difficult with a wye-connected
load because the neutral may not be accessible. On the other hand,
delta-connected sources are not common in practice because of the cir-
culating current that will result in the delta-mesh if the three-phase volt-
ages are slightly unbalanced.

Example 12.1

Determine the phase sequence of the set of voltages

Uan = 200 cos(wr + 10°)
Upn = 200 cos(wt — 230°), Uen = 200 cos(wt — 110°)

Solution:
The voltages can be expressed in phasor form as

V,, =200/10°V,  V,,=200/-230°V, V,, =200/—110°V

We notice that V,, leads V,, by 120° and V,,, in turn leads V,,, by 120°.
Hence, we have an acb sequence.

Practice Problem 12.1

Given that V,, = 110{30O V, find V,, and V_,, assuming a positive
(abc) sequence.

Answer: 110/150°V, 110/—-90° V.
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12.3 Balanced Wye-Wye Connection

We begin with the Y-Y system, because any balanced three-phase sys-
tem can be reduced to an equivalent Y-Y system. Therefore, analysis
of this system should be regarded as the key to solving all balanced
three-phase systems.

A balanced Y-Y system is a three-phase system with a balanced
Y-connected source and a balanced Y-connected load.

Consider the balanced four-wire Y-Y system of Fig. 12.9, where a
Y-connected load is connected to a Y-connected source. We assume a
balanced load so that load impedances are equal. Although the imped-
ance Zy is the total load impedance per phase, it may also be regarded
as the sum of the source impedance Z;, line impedance Z,, and load
impedance Z; for each phase, since these impedances are in series. As
illustrated in Fig. 12.9, Z, denotes the internal impedance of the phase
winding of the generator; Z, is the impedance of the line joining a
phase of the source with a phase of the load; Z; is the impedance of
each phase of the load; and Z, is the impedance of the neutral line.
Thus, in general

Zy=Z.+Z,+ 17, (12.9)

A
L
ZS
ZL
Vo z,
N
z

V73 7,
B
[ 1
| I

[

Z,

Figure 12.9
A balanced Y-Y system, showing the source, line,
and load impedances.

Z, and Z, are often very small compared with Z;, so one can assume
that Zy = Z, if no source or line impedance is given. In any event, by
lumping the impedances together, the Y-Y system in Fig. 12.9 can be
simplified to that shown in Fig. 12.10.

Assuming the positive sequence, the phase voltages (or line-to-
neutral voltages) are

Vun = Vp 0°

(12.10)
Vi, = V,/—120°,  V,, =V,/+120°
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Figure 12.10

Balanced Y-Y connection.
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Var =V + Vo

(b)

Figure 12.11

Phasor diagrams illustrating the relation-
ship between line voltages and phase
voltages.

Chapter 12 Three-Phase Circuits

The line-to-line voltages or simply line voltages V,;,, V., and V., are
related to the phase voltages. For example,

Vah = V(m + Vn/) = V(m - Vbn = ‘/p 0° — ‘/p —120°

o1 ) v uzity
Similarly, we can obtain
Vie = Vi = Ve = V3V, /—90° (12.11b)
Veu = Ven — Vo = V3V, /—210° (12.11¢)

Thus, the magnitude of the line voltages V; is V/3 times the magnitude
of the phase voltages V), or

Vv, = V3V, (12.12)
where
‘/p = |Vun‘ = ‘V/m| = ‘VL'H| (12°13)
and
VL = |Vub‘ = |Vbn'| = ‘VL'£I| (12“14)

Also the line voltages lead their corresponding phase voltages by 30°.
Figure 12.11(a) illustrates this. Figure 12.11(a) also shows how to
determine V,, from the phase voltages, while Fig. 12.11(b) shows the
same for the three line voltages. Notice that V;, leads V. by 120°, and
V,. leads V., by 120° so that the line voltages sum up to zero as do
the phase voltages.

Applying KVL to each phase in Fig. 12.10, we obtain the line cur-

rents as
A\ V/, V[m{ —120°
Ia == Ib =

. =———=1,/-120°
ZY Zy Zy L

(12.15)
V., Van/—240°
LL=——"=—_"—"=1/-240°
C ZY ZY a
We can readily infer that the line currents add up to zero,
I,+1,+1.=0 (12.16)
so that
In = _(Iu + Ih + Ic) =0 (12.173)
or
Vv=72,1,=0 (12.17b)

that is, the voltage across the neutral wire is zero. The neutral line can
thus be removed without affecting the system. In fact, in long distance
power transmission, conductors in multiples of three are used with the
earth itself acting as the neutral conductor. Power systems designed in
this way are well grounded at all critical points to ensure safety.
While the line current is the current in each line, the phase current
is the current in each phase of the source or load. In the Y-Y system, the
line current is the same as the phase current. We will use single subscripts
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for line currents because it is natural and conventional to assume that line
currents flow from the source to the load.

An alternative way of analyzing a balanced Y-Y system is to do
so on a “per phase” basis. We look at one phase, say phase a, and ana-
lyze the single-phase equivalent circuit in Fig. 12.12. The single-phase
analysis yields the line current I, as

Van

I =
a ZY

(12.18)

From I,,, we use the phase sequence to obtain other line currents. Thus,
as long as the system is balanced, we need only analyze one phase.
We may do this even if the neutral line is absent, as in the three-wire
system.
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Figure 12.12

A single-phase equivalent circuit.

Calculate the line currents in the three-wire Y-Y system of Fig. 12.13.

. 5-j2Q N

1
|

() 1oz v

| —
| I

—_

(=]

+

~.

oo

)

110/-240° V Q a 110,/-120° V

Figure 12.13
Three-wire Y-Y system; for Example 12.2.

Solution:
The three-phase circuit in Fig. 12.13 is balanced; we may replace it
with its single-phase equivalent circuit such as in Fig. 12.12. We obtain
I, from the single-phase analysis as

Van

Zy

where Zy = (5 — j2) + (10 + j8) = 15 + j6 = 16.155/21.8°. Hence,

I, =

110/0°

= —21.8°A
16.155/21.8°

= 6.81

a

Since the source voltages in Fig. 12.13 are in positive sequence, the
line currents are also in positive sequence:

I, =1,/-120° = 6.81/—141.8° A
I = I,/—-240° = 6.81/—261.8° A = 6.81/98.2° A

Example 12.2
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Practice Problem 12.2

This is perhaps the most practical
three-phase system, as the three-phase
sources are usually Y-connected while
the three-phase loads are usually
A-connected.

A Y-connected balanced three-phase generator with an impedance of
0.4 + j0.3 Q per phase is connected to a Y-connected balanced load
with an impedance of 24 + j19 () per phase. The line joining the gen-
erator and the load has an impedance of 0.6 + j0.7 Q) per phase.
Assuming a positive sequence for the source voltages and that V, =
120 @ V, find: (a) the line voltages, (b) the line currents.

Answer: (a) 207.8 /60° V,207.8 /—60° V, 207.8 /—180° V,

(b) 3.75/—8.66° A, 3.75 / —128.66° A, 3.75 /111.34° A.

12.4 Balanced Wye-Delta Connection

A balanced Y-A system consists of a balanced Y-connected source
feeding a balanced A-connected load.

The balanced Y-delta system is shown in Fig. 12.14, where the
source is Y-connected and the load is A-connected. There is, of course,
no neutral connection from source to load for this case. Assuming the
positive sequence, the phase voltages are again

VLlll = V) 00
O (12.19)
V/m = ‘/p _12007 VC,, = ‘/17 +120°

As shown in Section 12.3, the line voltages are
Vap = \@VP[ 30° = Vg, Vie = \ﬁvp —90° = Vg
Vc'u = \/g‘/pf _1500 = VCA

showing that the line voltages are equal to the voltages across the load
impedances for this system configuration. From these voltages, we can
obtain the phase currents as

(12.20)

\4 Vac Vea
Lig = ZiAAB, BC = i, Ica = TA (12.21)

These currents have the same magnitude but are out of phase with each

other by 120°.
IH

—_—

Figure 12.14

Balanced Y-A connection.
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Another way to get these phase currents is to apply KVL. For
example, applying KVL around loop aABbna gives

7Vun + ZAIAB + Vbn =0
or

V(m B Vbn o Vub o

— VAB
b= "7z
A A A

(12.22)

which is the same as Eq. (12.21). This is the more general way of find-
ing the phase currents.

The line currents are obtained from the phase currents by apply-
ing KCL at nodes A, B, and C. Thus,

I, = Lip — Icas I, = Ipc — Lus, L= Tcy — Ipe (12.23)

Since ICA = IAB! _2400,
I, = Iap — Lea = Lup(1 — 1{ —240°)

= Lig(1 + 0.5 — j0.866) = L,z V3/=30° (12.24)

showing that the magnitude /; of the line current is \/3 times the mag-
nitude , of the phase current, or

I, = V3I, (12.25)
where
IL = |Iu‘ = ‘Ih‘ = |Ic| (12.26)
and
I, = |Lig| = [Ipc| = [Ical (12.27)

Also, the line currents lag the corresponding phase currents by 30°,
assuming the positive sequence. Figure 12.15 is a phasor diagram illus-
trating the relationship between the phase and line currents.

An alternative way of analyzing the Y-A circuit is to transform
the A-connected load to an equivalent Y-connected load. Using the A-Y
transformation formula in Eq. (12.8),

(12.28)

After this transformation, we now have a Y-Y system as in Fig. 12.10.
The three-phase Y-A system in Fig. 12.14 can be replaced by the single-
phase equivalent circuit in Fig. 12.16. This allows us to calculate only
the line currents. The phase currents are obtained using Eq. (12.25) and
utilizing the fact that each of the phase currents leads the correspon-
ding line current by 30°.
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I, Iyc

Figure 12.15

Phasor diagram illustrating the relationship
between phase and line currents.

Figure 12.16
A single-phase equivalent circuit of a bal-
anced Y-A circuit.

A balanced abc-sequence Y-connected source with V,, = 100/10° V
is connected to a A-connected balanced load (8 + j4) () per phase. Cal-
culate the phase and line currents.

Example 12.3
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Solution:
This can be solved in two ways.

B METHOD 1 The load impedance is
Z, =8 + j4 = 8.944/26.57° Q)
If the phase voltage V,, = 100/10°, then the line voltage is

Var = Var V3/30° = 100V3/10° + 30° = V15
or
Vap = 173.2/40°V
The phase currents are
L, = Vag _ 173.2/40°
Z, 8.944/26.57°
Igc = IABM = 19.36/—106.57° A
Icy = IABM =19.36/133.43° A

The line currents are
I, = LizV3/-30° = V/3(19.36)/13.43° — 30°
= 33.53/-16.57° A
I, =1,/—120° = 33.53/—-136.57° A
I.=1,/+120° = 33.53/103.43° A

= 19.36/13.43° A

B METHOD 2 Alternatively, using single-phase analysis,
v, 100/10°
Iu = =
Z,/3  2.981/26.57°

= 33.54/—-16.57° A

as above. Other line currents are obtained using the abc phase sequence.

Practice Problem 12.3

One line voltage of a balanced Y-connected source is V,p =
120{—20O V. If the source is connected to a A-connected load of
20/40° Q, find the phase and line currents. Assume the abc sequence.

Answer: 6/—60° A, 6/—180° A, 6/60° A, 10.392 /—90° A,
10.392/150° A, 10.392 /30° A.

12.5 Balanced Delta-Delta Connection

A balanced A-A system is one in which both the balanced source
and balanced load are A-connected.

The source as well as the load may be delta-connected as shown
in Fig. 12.17. Our goal is to obtain the phase and line currents as usual.



12.5  Balanced Delta-Delta Connection 515

a —
V( a +_ 7 Vab
L,
. o —
N\ b .
Vb(' C

Figure 12.17

A balanced A-A connection.

Assuming a positive sequence, the phase voltages for a delta-connected
source are

vV, =V,/0°
b= Vo[ (12.29)
Vb(' = ‘/p _12007 Vn'a = ‘/p +120°

The line voltages are the same as the phase voltages. From Fig. 12.17,
assuming there is no line impedances, the phase voltages of the delta-
connected source are equal to the voltages across the impedances; that is,

Vub = VAIS’ Vh(' = VBC’ V(‘a = VCA (12‘30)
Hence, the phase currents are

o Var _ Ve _Vec _ Ve
AB > BC ZA ZA

Z Z
_Vea _ Ve

L., = A —
A Zs Z

(12.31)

Since the load is delta-connected just as in the previous section, some
of the formulas derived there apply here. The line currents are obtained
from the phase currents by applying KCL at nodes A, B, and C, as we
did in the previous section:

I, = Lng — Ica, I, = Ipc — Iyg. I =1y — Iz (12.32)

Also, as shown in the last section, each line current lags the correspond-
ing phase current by 30°; the magnitude /; of the line current is V' 3 times
the magnitude 7, of the phase current,

1, = VI, (12.33)

An alternative way of analyzing the A-A circuit is to convert both
the source and the load to their Y equivalents. We already know that
Z, = Z.,/3. To convert a A-connected source to a Y-connected source,
see the next section.

A balanced A-connected load having an impedance 20 — j15 Q is Example 12.4
connected to a A-connected, positive-sequence generator having

V. = 330 ﬁ V. Calculate the phase currents of the load and the line

currents.
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Solution:
The load impedance per phase is

Z, =20 —j15=25/-36.87°Q
Since V5 = V,,,, the phase currents are
Vs 330/0°
T Zy 25/-36.87
Igc = Inp/—120° = 13.2/-83.13° A
Ica = Lap/+120° = 13.2 /156.87° A

For a delta load, the line current always lags the corresponding phase
current by 30° and has a magnitude \/3 times that of the phase current.
Hence, the line currents are

I, = 1,5V3/-30° = (13.2/36.87°)(V3/-30°)
=22.86/6.87° A
I, =1,/-120° = 22.86/—113.13° A
I =1,/+120° = 22.86/126.87° A

= 13.2/36.87° A

IAB

Practice Problem 12.4

A positive-sequence, balanced A-connected source supplies a balanced
A-connected load. If the impedance per phase of the load is 18 + j12 ()
and I, = 9.609/35° A, find L5 and V .

Answer: 5.548 /65° A, 120 /98.69° V.

12.6 Balanced Delta-Wye Connection

A balanced A-Y system consists of a balanced A-connected source
feeding a balanced Y-connected load.

Consider the A-Y circuit in Fig. 12.18. Again, assuming the abc
sequence, the phase voltages of a delta-connected source are

Var =V,/0°,  V,.=V,/—120°
(12.34)
Voo =V,/+120°

These are also the line voltages as well as the phase voltages.
We can obtain the line currents in many ways. One way is to apply
KVL to loop aANBba in Fig. 12.18, writing

~V + Zyl, — Z,I, = 0
or

Zy(d, — 1) =V, =V, /0°
Thus,

VLo

Iu - Ib = 7
Y

(12.35)
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Vca +_ +_ Vab
Zy Z
1, !
VA >
¢ NS/ b B ¢
Vbc Ic
—_—

Figure 12.18
A balanced A-Y connection.

But I, lags I, by 120° since we assumed the abc sequence; that is,
I, = 1,/—120°. Hence,

L -1, =1L - 1/-120°

1 V3 (12.36)
=IL|1+-+j—|=1LV3/30°
( S tis ) N3/
Substituting Eq. (12.36) into Eq. (12.35) gives
V,/V3/-30°
[ = 2 (230 (12.37)

a
Zy

From this, we obtain the other line currents I, and I. using the posi-
tive phase sequence, i.e., I, = I,/—120° 1. = I,/+120°. The phase
currents are equal to the line currents.

Another way to obtain the line currents is to replace the delta-
connected source with its equivalent wye-connected source, as shown
in Fig. 12.19. In Section 12.3, we found that the line-to-line voltages
of a wye-connected source lead their corresponding phase voltages by
30°. Therefore, we obtain each phase voltage of the equivalent wye-
connected source by dividing the corresponding line voltage of the
delta-connected source by V3 and shifting its phase by —30°. Thus,
the equivalent wye-connected source has the phase voltages

V,
V,, = /—=30°
V3
Vy

V,
V,, \%[—1502 v, = 3{+90°

If the delta-connected source has source impedance Z; per phase, the
equivalent wye-connected source will have a source impedance of Z,/3
per phase, according to Eq. (9.69).

Once the source is transformed to wye, the circuit becomes a wye-
wye system. Therefore, we can use the equivalent single-phase circuit
shown in Fig. 12.20, from which the line current for phase a is

V,,/\@{ —30°
a — ZY
which is the same as Eq. (12.37).

(12.38)

(12.39)
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Figure 12.19

Transforming a A-connected source to an

equivalent Y-connected source.

V, /-30°
V3

Figure 12.20

The single-phase equivalent circuit.



518

Chapter 12 Three-Phase Circuits

Alternatively, we may transform the wye-connected load to an
equivalent delta-connected load. This results in a delta-delta system,
which can be analyzed as in Section 12.5. Note that

Vi

-30°
\EL (12.40)
VBN = VAN! _]200, VCN = VAN{ +120°

As stated earlier, the delta-connected load is more desirable than
the wye-connected load. It is easier to alter the loads in any one phase
of the delta-connected loads, as the individual loads are connected
directly across the lines. However, the delta-connected source is hardly
used in practice because any slight imbalance in the phase voltages will
result in unwanted circulating currents.

Table 12.1 presents a summary of the formulas for phase cur-
rents and voltages and line currents and voltages for the four con-
nections. Students are advised not to memorize the formulas but to
understand how they are derived. The formulas can always be

Vanv = 1L Zy =

TABLE 12.1

Summary of phase and line voltages/currents for
balanced three-phase systems.”

Connection Phase voltages/currents Line voltages/currents
Y-Y V=V, /0° V= V3V, /30°
V,, =V,/—120° Vi = Vi /—120°
V., = V,/+120° V.. =V, /+120°
Same as line currents 1,=V,/Z,
I,=1,/-120°
L =1,/+120°
Y-A V=V, /0° Va, = Vag = V3V, /30°
V,, =V,/—120° Vi = Ve = V. /= 120°
V., = V,/+120° Voo = Veu = Vo /+120°
Lig = Vag/Za I, = IAB\/§( —30°
Iyc = Vic/Za I, = Ia{ —120°
Ica = Veu/Za L =1,/+120°
A-A Ve =V, /0° Same as phase voltages

Vi = V,/—120°
Vo, =V,/+120°

Lig = Vu/Zx I, = IAB\/§( —30°
Ipc = Viyo/Zx I, = Ia{ —120°
Icy = Veu/Za IL.=1,/+120°

A-Y Ve, =V, /0° Same as phase voltages

Vi = V,/—120°
Vo =V,/+120°

v,/ —30°

Same as line currents I,=—"F"—
\V3Zy

IL,=1,/—-120°

I.=1,/+120°

! Positive or abc sequence is assumed.
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obtained by directly applying KCL and KVL to the appropriate three-
phase circuits.
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A balanced Y-connected load with a phase impedance of 40 + j25 Q) is
supplied by a balanced, positive sequence A-connected source with a line
voltage of 210 V. Calculate the phase currents. Use V,,;, as a reference.

Solution:
The load impedance is
Zy =40 + j25 = 47.17/32° Q
and the source voltage is
V, =210/0°V

When the A-connected source is transformed to a Y-connected source,

Vb
Vi = 7{—30" =1212/-30°V
V3
The line currents are

v 121.2/-30°
== ———=——=1257/-62°A
Zy  47.12/32°
I, =1,/-120° = 2.57/—178° A

L =1,/120° = 2.57/58° A

which are the same as the phase currents.

Example 12.5

In a balanced A-Y circuit, V,, = 240/15° and Zy = (12 + j15) Q.
Calculate the line currents.

Answer: 7.21/—66.34° A, 7.21 /+173.66° A, 7.21 /53.66° A.

12.7 Power in a Balanced System

Let us now consider the power in a balanced three-phase system. We
begin by examining the instantaneous power absorbed by the load. This
requires that the analysis be done in the time domain. For a Y-connected
load, the phase voltages are

Vay = V2V, coswt, vay = V2V, cos(wt — 120°)

12.41
ven = V2V, cos(wt + 120°) ( )

where the factor V2 is necessary because V), has been defined as the rms
value of the phase voltage. If Z, = Z/0, the phase currents lag behind
their corresponding phase voltages by 6. Thus,
iu = V2I,cos(wt — 0), i, = V2I,cos(wt — 6 — 120°) (12.42)
i. = V21, cos(wt — 6 + 120°)

Practice Problem 12.5



