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7xample 1 

Three identical coils each of [4.2 + j5.6] ohms are connected in star across a 415 V, 3-phase, 

50 Hz supply. Determine (i) Vph, (ii) Iph, and (iii) power factor. [May 2014]

Solution  Zph = 4.2 + j5.6 = 7 –53.13° W

 VL = 415 V

 f = 50 Hz

For a star-connected load,

 (i)   Vph = 
415

239.6 V
3 3

LV = =

 (ii)   Iph = 
239.6

34.23 A
7

ph

ph

V

Z
= =

 (iii)    pf = cos f = cos (53.13°) = 0.6 (lagging)

7xample 2 

Three equal impedances, each of 8 + j10 ohms, are connected in star. This is further connected 

to a 440 V, 50 Hz, three-phase supply. Calculate (i) phase voltage, (ii) phase angle, (iii) phase 

current, (iv) line current, (v) active power, and (vi) reactive power.

Solution  Zph = 8 + j10 W

  VL = 440 V

  f = 50 Hz

For a star-connected load,

(i) Phase voltage

 Vph = 
VL

3

440

3
=  = 254.03 V

(ii) Phase angle 

 Zph = 8 + j10 = 12.81 –51.34° W

 Zph = 12.81 W

 f = 51.34°

(iii) Phase current

  Iph = 
V

Z

ph

ph

= =254 03

12 81
19 83

.

.
. A

(iv) Line current

 IL = Iph = 19.83 A
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(v)  Active power 

 P = 3  VL IL cos f = 3  ¥ 440 ¥ 19.83 ¥ cos (51.34°) = 9.44 kW

(vi) Reactive power 

 Q = 3  VL IL sin f = 3  ¥ 440 ¥ 19.83 ¥ sin (51.34°) = 11.81 kVAR

7xample 3 

A balanced delta-connected load of impedance (8 – j6) ohms per phase is connected to a 

three-phase, 230 V, 50 Hz supply. Calculate (i) power factor, (ii) line current, and (iii) reactive 

power.

Solution Zph = 8 – j6 W

  VL = 230 V

  f = 50 Hz

For a delta-connected load,

(i) Power factor

 Zph = 8 – j6 = 10 – –36.87° W

  Zph = 10 W

  f = 36.87°

 pf = cos f = cos (36.87°) =  0.8 (leading)

(ii) Line current  

 Vph = VL = 230 V

 Iph = 
V

Z

ph

ph

= =230

10
23A

 IL = 3  Iph = 3  ¥ 23 = 39.84 A

(iii) Reactive power 

 Q = 3  VL IL sin f = 3  ¥ 230 ¥ 39.84 ¥ sin (36.87°) = 9.52 kVAR

7xample 4 

Three coils, each having a resistance and an inductance of 8 W and 0.02 H respectively, are 

connected in star across a three-phase, 230 V, 50 Hz supply. Find the (i) power factor, (ii) line 

current, (iii) power, (iv) reactive volt-amperes, and (v) total volt-amperes.

Solution R = 8 W

  L = 0.02 H

  VL = 230 V

  f = 50 Hz
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For a star-connected load,

(i) Power factor  

 XL = 2p fL = 2p ¥ 50 ¥ 0.02 = 6.28 W

 Zph = R + jXL = 8 + j6.28 = 10.17 –38.13° W

  Zph = 10.17 W

  f = 38.13°

 pf = cos f = cos (38.13°) = 0.786 (lagging)

(ii) Line current

 Vph = 
VL

3
 = 

230

3
 = 132.79 V

  Iph = 
V

Z

ph

ph

= =132 79

10 17
13 05

.

.
. A

  IL = Iph = 13.05 A

(iii) Power  

 P = 3  VL IL cos f = 3  ¥ 230 ¥ 13.05 ¥ 0.786 = 4.088 kW

(iv) Reactive volt-amperes 

 Q = 3  VL IL sin f = 3  ¥ 230 ¥ 13.05 ¥ sin (38.13°) = 3.21 kVAR

(v)  Total volt-ampere

 S  = 3  VL IL = 3  ¥ 230 ¥ 13.05 = 5.198 kVA

7xample 5 

Three similar coils each having a resistance of 10 W and inductance of 0.04 H are connected 

in star across a 3 phase, 50 Hz, 200 V supply. Calculate the line current, total power absorbed, 

reactive volt amperes and total volt amperes. [May 2015]

Solution R = 10 W

 L = 0.04 H

 VL = 200 V

 f  = 50 Hz

 XL = 2p fL = 2p × 50 × 0.04 = 12.57 W

 Zph = R + j XL = 10 + j 12.57 = 16.06 – 51.5° W

 (i) Line current

     

200
115 47 V

3 3

L
ph

V
V = = = ◊
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115 47
7.19 A

16.06

ph

ph
ph

V
I

Z

◊= = =

        IL = Iph = 7.19 A

 (ii) Total power absorbed

     3 cos 3 200 7.19 cos(51.5 ) 1550.5 WL LP V I f= = ¥ ¥ ¥ ∞ =

 (iii) Reactive volt-ampere

     3 sin 3 200 7.19 sin (51.5 ) 1949.23 VARL LQ V I f= = ¥ ¥ ¥ ∞ =

 (iv) Total volt ampere

     3 3 200 7.19 2490.68 VAL LS V I= = ¥ ¥ =

7xample 6 

Three coils, each having a resistance of 8 W and an inductance of 0.02 H, are connected in delta 

to a three-phase, 400 V, 50 Hz supply. Calculate the (i) line current, and (ii) power absorbed.

Solution R =  8 W

  L = 0.02 H

  VL = 400 V

  f = 50 Hz

For a delta-connected load,

(i) Line current

 VL = Vph = 400 V

  XL = 2pfL = 2p ¥ 50 ¥ 0.02 = 6.28 W

 Zph = R + jXL = 8 + j6.28 = 10.17 –38.13° W

  Zph = 10.17 W

  f = 38.13°

  Iph = 
V

Z

ph

ph

 = 
400

10 17.
 = 651639.33 A

  IL = 3  Iph = 3  ¥ 39.33 = 68.12 A

(ii) Power absorbed  

 P = 3  VL IL cos f = 3  ¥ 400 ¥ 68.12 ¥ cos (38.13°) = 37.12 kW

7xample 7 

The three equal impedances of each of 10 –60° W, are connected in star across a three-phase, 

400 V, 50 Hz supply. Calculate the (i) line voltage and phase voltage, (ii) power factor and 

active power consumed, (iii) If the same three impedances are connected in delta to the same 

source of supply, what is the active power consumed? 
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Solution Z ph = 10  –60° W

 VL = 400 V

 f = 50 Hz  

For a star-connected load,

(i) Line voltage and phase voltage

 VL = 400 V

 Vph = 
VL

3

400

3
=  = 230.94 V

(ii) Power factor and active power consumed

 f = 60 °

 pf = cos f = cos (60°) = 0.5 (lagging)

 Iph = 
V

Z

ph

ph

= 230 94

10

.
 = 23.094 A

 IL = Iph = 23.094 A

 P = 3 VL IL cos f = 3  ¥ 400 ¥ 23.094 ¥ 0.5 = 8 kW

(iii) Active power consumed for delta-connected load

 VL = 400 V

 Zph = 10 W

 Vph = VL = 400 V

 Iph = 
V

Z

ph

ph

= =400

10
40 A

 IL = 3  Iph = 3  ¥ 40 = 69.28 A

 P = 3  VL IL cos f = 3 ¥ 400 ¥ 69.28 ¥ cos (60°) = 24 kW

7xample 8 

Three similar coils A, B, and C are available. Each coil has a 9 W resistance and a 12 W 

reactance. They are connected in delta to a three-phase, 440 V, 50 Hz supply. Calculate for this 

load, the (i) phase current, (ii) line current, (iii) power factor, (iv) total kVA, (v) active power, 

and (vi) reactive power. If these coils are connected in star across the same supply, calculate 

all the above quantities.

Solution R = 9 W

 XL = 12 W

 VL = 440 V

 f = 50 Hz
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For a delta-connected load,

(i) Phase current  

 VL = Vph = 440 V

 Zph = 9 + j12 = 15 –53.13° W

  Zph = 15 W

 f = 53.13°

  Iph = 
V

Z

ph

ph

 = 
440

15
 = 29.33 A

(ii) Line current 

 IL = 3  Iph = 3  ¥ 29.33 = 50.8 A

(iii) Power factor 

 pf = cos f = cos (53.13°) = 0.6 (lagging)

(iv) Total kVA 

 S = 3  VL IL = 3  ¥ 440 ¥ 50.8 = 38.71 kVA

(v) Active power

 P = 3  VL IL cos f = 3  ¥ 440 ¥ 50.8 ¥ 0.6 = 23.23 kW

(vi) Reactive power

 Q = 3  VL IL sin f = 3  ¥ 440 ¥ 50.8 ¥ sin (53.13°) = 30.97 kVAR

If these coils are connected in star across the same supply,

(i) Phase current

 VL = 440 V

  Zph = 15 W

 Vph = 
VL

3

440

3
=  = 254.03 V

  Iph = 
V

Z

ph

ph

= =254 03

15
16 94

.
. A

(ii) Line current

 IL = Iph = 16.94 A

(iii) Power factor

 pf = 0.6 (lagging)

(iv) Total kVA

 S = 3  VL IL = 3  ¥ 440 ¥ 16.94  = 12.91 kVA
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(v) Active power  

 P = 3  VL IL cos f = 3  ¥ 440 ¥ 16.94 ¥ 0.6 = 7.74 kW

(vi) Reactive power 

 Q = 3  VL IL sin f = 3  ¥ 440 ¥ 16.94 ¥ sin (53.13°) = 12.33 kVAR

7xample 9 

A balanced 3-phase load consists of 3 coils, each of resistance 4 W and inductance 0.02 H. 

It is connected to a 440 V, 50 Hz, 3 f supply. Find the total power consumed when the load is 

connected in star and the total reactive power when the load is connected in delta. [Dec 2014]

Solution R = 4 W

 L = 0.02 H

 VL = 440 V

 f = 50 Hz

For a star-connected load,

 (i) Total power consumed

     XL = 2p fL = 2p × 50 × 0.02 = 6.28 W

     
4 6.28 7.45 57.51ph LZ R j X j= + = + = – ∞ W

     Zph = 7.45 W

     f = 57.51°

     

440
254.03 V

3 3

L
ph

V
V = = =

     

254.03
34.1A

7.45
= = =ph

ph
ph

V
I

Z

     IL = Iph = 34.1 A

     3 cos 3 440 34.1 cos(57.51 ) 13.96 kWf= = ¥ ¥ ¥ ∞ =L LP V I

     3 sin 3 440 34.1 sin (57.51 ) 21.92 kVARL LQ V I f= = ¥ ¥ ¥ ∞ =

 (ii) When the load is connected in delta across same supply

     QD = 3QY = 3 × 21.92 × 103 = 65.76 kVAR

7xample 10 

A 415 V, 50 Hz, three-phase voltage is applied to three star-connected identical impedances. 

Each impedance consists of a resistance of 15 W, a capacitance of  177 µF and an inductance 

of 0.1 henry in series. Find the (i) power factor, (ii) phase current, (iii) line current, (iv) active 

power, (v) reactive power, and (vi) total VA. Draw a neat phasor diagram. If the same impedances 

are connected in delta, �nd the (i) line current, and (ii) power consumed. [Dec 2015]
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Solution VL = 415 V

 f = 50 Hz

  R = 15 W

 C = 177 µF

  L = 0.1 H

For a star-connected load,

(i) Power factor  

 XL = 2pfL = 2p ¥ 50 ¥ 0.1 = 31.42 W

  XC = 
1

2

1

2 50 177 10
17 98

6
p pfC

=
¥ ¥ ¥

=- . W

 Zph = R + jXL – jXC

  = 15 + j31.42 – j17.98

  = 15 + j13.44

  = 20.14 –41.86° W

  Zph = 20.14 W

  f = 41.86°

 pf =  cos f = cos (41.86°) = 0.744 (lagging)

(ii) Phase current 

 Vph = 
VL

3

415

3
239 6= = . V

  Iph = 
V

Z

ph

ph

= =239 6

20 14
11 9

.

.
. A

(iii) Line current  

 IL = Iph = 11.9 A

(iv) Active power  

 P = 3  VL IL cos f = 3  ¥ 415 ¥ 11.9 ¥ 0.744 = 6.36 kW

(v) Reactive power

 Q = 3  VL IL sin f = 3  ¥ 415 ¥ 11.9 ¥ sin (41.86°) = 5.71 kVAR

(vi) Total VA

 S = 3  VL IL = 3  ¥ 415 ¥ 11.9 = 8.55 kVA
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Phasor Diagram

Fig. 5.21

If the same impedances are connected in delta,

(i) Line current

  VL = Vph = 415 V

  Zph = 20.14 W

  Iph = 
V

Z

ph

ph

= =415

20 14
20 61

.
. A

  IL = 3  Iph = 3  ¥ 20.61 = 35.69 A

(ii) Power consumed 

 P = 3  VL IL cos f = 3  ¥ 415 ¥ 35.69 ¥ 0.744 = 19.09 kW

7xample 11 

Each phase of a delta-connected load consists of a 50 mH inductor in series with a parallel 

combination of a 50 W resistor and a 50 µF capacitor. The load is connected to a three-phase, 

550 V, 800 rad/s ac supply. Find the (i) power factor, (ii) phase current, (iii) line current,  

(iv) power drawn, (v) reactive power, and (vi) kVA rating of the load.

Solution  L = 50 mH

  R = 50 W

  C = 50 mF
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  VL = 550 V

  w = 800 rad/s

For a delta-connected load,

(i) Power factor

  XL = wL = 800 ¥ 50 ¥ 10–3 = 40 W

 XC = 
1 1

800 50 10
25

6
wC

=
¥ ¥

=- W

 Zph = jXL + 
R jX

R jX

C

C

( )-

-

  = j40 + 
50 25

50 25

( )-

-

j

j

  = 10 + j20 = 22.36 –63.43° W

  Zph = 22.36 W

  f = 63.43°

 pf = cos f = cos (63.43°) = 0.447 (lagging)

(ii) Phase current

 VL = Vph = 550 V

  Iph = 
V

Z

ph

ph

= =550

22 36
24 6

.
.  A

(iii) Line current

  IL = 3  Iph = 3  ¥ 24.6 = 42.61 A

(iv) Power drawn

 P = 3  VL IL cos f = 3  ¥ 550 ¥ 42.61 ¥ 0.447 = 18.14 kW

(v) Reactive power

 Q = 3  VL IL sin f = 3  ¥ 550 ¥ 42.61 ¥ sin (63.43°) = 36.3 kVAR

(vi) kVA rating of the load

 S = 3  VL IL = 3  ¥ 550 ¥ 42.61 = 40.59 kVA

7xample 12 

A balanced star-connected load is supplied from a symmetrical three-phase 400 volts, 50 Hz 

system. The current in each phase is 30 A and lags 30° behind the phase voltage. Find the  

(i) phase voltage, (ii) resistance and reactance per phase, (iii) load inductance per phase, and 

(iv) total power consumed. 

Solution VL = 400 V
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 f = 50 Hz

 Iph = 30 A

 f = 30°

For a star-connected load,

(i) Phase voltage

 Vph = 
VL

3

400

3
=  = 230.94 V

(ii) Resistance and reactance per phase

 Zph = 
V

I

ph

ph

= =230 94

30
7 7

.
. W

 Zph = Zph –f = 7.7 –30° = (6.67 + j 3.85) W

 Rph = 6.67 W

 Xph = 3.85 W

(iii) Load inductance per phase 

 Xph = 2p f Lph

 3.85 = 2p  ¥ 50 ¥ Lph

 Lph = 0.01225 H

(iv) Total power consumed

 P = 3Vph Iph cos f = 3 ¥ 230.94 ¥ 30 ¥ cos (30°) = 18 kW

7xample 13 

A symmetrical three-phase 400 V system supplies a basic load of 0.8 lagging power factor and 

is connected in star. If the line current is 34.64 A, �nd the (i) impedance, (ii) resistance and 

reactance per phase, (iii) total power, and (iv) total reactive voltamperes. 

Solution VL = 400 V

 pf = 0.8 (lagging)

 IL = 34.64 A

For a star-connected load,

(i) Impedance 

 Vph = 
VL

3

400

3
=  = 230.94 V

 Iph = IL = 34.64 A

 Zph = 
V

I

ph

ph

= 230 94

34 64

.

.
 = 6.67 W
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(ii) Resistance and reactance per phase 

 pf = cos f = 0.8

 f = cos–1 (0.8) = 36.87°

 Zph = Zph –f = 6.67 –36.87° = (5.33 + j 4) W

 Rph = 5.33 W

 Xph = 4 W

(iii) Total power

 P = 3 VL IL cos f = 3  ¥ 400 ¥ 34.64 ¥ 0.8 = 19.19 kW

(iv) Total reactive volt-amperes

 Q = 3  VL IL sin f = 3  ¥ 400 ¥ 34.64 ¥ sin (36.87°) = 14.4 kVAR

7xample 14 

A balanced star-connected load is supplied by a 415 V, 50 Hz three-phase system. Current in 

each phase is 20 A and lags 30° behind its phase voltage. Find the (i) phase voltage, (ii) power, 

and (iii) circuit parameters. Also, �nd power consumed when the same load is connected in 

delta across the same supply. 

Solution VL = 415 V

 f = 50 Hz

 Iph = 20 A

 f = 30°

For a star-connected load,

(i) Phase voltage

 Vph = 
VL

3

415

3
=  = 239.6 V

(ii) Power

 IL = Iph = 20 A

 P = 3  VL IL cos f = 3  ¥ 415 ¥ 20 ¥ cos (30°) = 12.45 kW

(iii) Circuit parameters

 Zph = 
V

I

ph

ph

= 239 6

20

.
 = 11.98 W

 Z ph  = Zph –f = 11.98 –30° = (10.37 + j6) W

 Rph = 10.37 W

 Xph = 6 W

 Xph = 2pf Lph
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 6 = 2p ¥ 50 ¥ Lph

 Lph = 19.1 mH

(iv) Power consumed by same delta load across the same supply

 PD = 3PY = 3 ¥ 12.45 ¥ 103 = 37.35 kW

7xample 15 

Three identical coils connected in delta to a 440 V, three-phase supply take a total power of  

50 kW and a line current of 90 A. Find the (i) phase current, (ii) power factor, and (iii) apparent 

power taken by the coils.

Solution  VL = 440 V

  P = 50 kW

  IL = 90 A

For a delta-connected load,

(i) Phase current  

  Iph = 
IL

3

90

3
51 96= A= .

(ii) Power factor 

 P = 3 VL IL cos f

 50 ¥ 103 = 3  ¥ 440 ¥ 90 ¥ cos f

 pf = cos f = 0.73 (lagging)

(iii) Apparent power  

 S = 3  VL IL = 3  ¥ 440 ¥ 90 = 68.59 kVA

7xample 16 

Three similar choke coils are connected in star to a three-phase supply. If the line current is 

15 A, the total power consumed is 11 kW and the volt-ampere input is 15 kVA, �nd the line 

and phase voltages, the VAR input and the reactance and resistance of each coil. If these coils 

are now connected in delta to the same supply, calculate phase and line currents, active and 

reactive power.

Solution  IL = 15 A

  P = 11 kW

  S = 15 kVA

For a star-connected load,

(i) Line voltage  

 S = 3  VL IL
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 15 ¥ 103 = 3  ¥ VL ¥ 15

 VL = 577.35 V

(ii) Phase voltage

 Vph = 
VL

3

577 35

3
333 33= =.

. V

(iii) VAR input

 cos f  = 
P

S
=

¥

¥

=
11 10

15 10
0 733

3

3
.

 f = 42.86°

  Q = 3  VL IL sin f  = 3  ¥ 577.35 ¥ 15 ¥ sin (42.86°) = 10.2 kVAR

(iv) Reactance and resistance of coil

  Iph = IL = 15 A

  Zph = 
V

I

ph

ph

= 333 33

15

.
 = 22.22 W

  R = Zph cos f = 22.22 ¥ 0.733 = 16.29 W

  XL = Zph sin f = 22.22 ¥ sin (42.86°) = 15.11 W

If these coils are now connected in delta,

(i) Phase current  

 Vph = VL = 577.35 V

  Zph = 22.22 W

 Iph = 
V

Z

ph

ph

= 577 35

22 22

.

.
 = 25.98 A

(ii) Line current  

 IL = 3  Iph = 3  ¥ 25.98 = 45 A

(iii) Active power 

 P = 3  VL IL cos f = 3  ¥ 577.35 ¥ 45 ¥ 0.733 = 32.98 kW

(iv) Reactive power 

 Q = 3  VL IL sin f = 3  ¥ 577.35 ¥ 45 ¥ sin (42.86°) = 30.61 kVAR

7xample 17 

Three similar coils, connected in star, take a total power of 1.5 kW at p.f. of 0.2 lagging from 

a three-phase, 440 V, 50 Hz supply. Calculate the resistance and inductance of each coil. 

 [Dec 2012]
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Solution  P = 1.5 kW

     pf = 0.2 (lagging)

     VL = 440 V

     f = 50 Hz

    For a star-connected load.

     Vph = 
VL

3
 = 

440

3
 = 254.03 V

     P = 3 VL IL cos f

     1.5 ¥ 103 = 3  ¥ 440 ¥ IL ¥ 0.2

     IL = 9.84 A

     Iph = IL = 9.84 A

     Zph = 
V

I

ph

ph

 = 
254 03

9 84

.

.
 = 25.82 W

     f = cos–1 (0.2) = 78.46°

     
–
Zph = Zph –f = 25.82 –78.46° = (5.17 + j 25.3) W

     Rph = 5.17 W

     XLph
 = 25.3 W

     XLph
 = 2p f Lph

     25.3 = 2p ¥ 50 ¥ Lph

     Lph = 0.08 H

7xample 18 

A three-phase, star-connected source feeds 1500 kW at 0.85 power factor lag to a balanced 

mesh-connected load. Calculate the current, its active and reactive components in each phase 

of the source and the load. The line voltage is 2.2 kV.

Solution  P = 1500 kW

 pf = 0.85 (lagging)

  VL = 2.2 kV

For a mesh or delta-connected load,

(i) Line current

  P = 3 VL IL cos f

 1500 ¥ 103 = 3  ¥ 2.2 ¥ 103 ¥ IL ¥ 0.85

  IL = 463.12 A
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(ii) Active component of current in each phase of the load

  Iph = 
IL

3

463 12

3
= .

 = 267.38 A

  Iph cos f = 267.38 ¥ 0.85 = 227.27 A

(iii) Reactive component of current in each phase of the load

 Iph sin f = 267.38 ¥ sin (cos–1 0.85)

  = 267.38 ¥ 0.526 = 140.85 A

For a star-connected source, the phase current in the source will be the same as the line 

current drawn by the load.

(iv) Active component of this current in each phase of the source

 IL cos f = 463.12 ¥ 0.85 = 393.65 A

(v) Reactive component of this current in each phase of the source

 IL sin f = 463.12 ¥ 0.526 = 243.6 A

7xample 19 

A three-phase, 208-volt generator supplies a total of 1800 W at a line current of 10 A when 

three identical impedances are arranged in a Wye connection across the line terminals of the 

generator. Compute the resistive and reactive components of each phase impedance.

Solution  VL = 208 V

 P = 1800 W

  IL = 10 A

For a Wye-connected load,

 Vph = 
VL

3

208

3
=  = 120.09 V

  Iph = IL = 10 A

  Zph = 
V

I

ph

ph

= 120 09

10

.
 = 12 W

  P = 3  VL IL cos f

 1800  = 3  ¥ 208 ¥ 10 ¥ cos f

  cos f = 0.5

  f = 60°

 Rph = Zph cos f = 12 ¥ 0.5 = 6 W

 Xph = Zph sin f = 12 ¥ sin (60°) = 10.39 W
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7xample 20 

A balanced, three-phase, star-connected load of 100 kW takes a leading current of 80 A, when 

connected across a three-phase, 1100 V, 50 Hz supply. Find the circuit constants of the load per 

phase.

Solution  P = 100 kW

  IL = 80 A

  VL = 1100 V

  f = 50 Hz

For a star-connected load,

 Vph = 
VL

3

1100

3
=  = 635.08 V

  Iph = IL = 80 A

  Zph = 
V

I

ph

ph

= 635 08

80

.
 = 7.94 W

  P = 3 VL IL cos f

 100 ¥ 103  = 3  ¥ 1100 ¥ 80 ¥ cos f

 cos f = 0.656 (leading)

 f = 49°

 Rph = Zph cos f = 7.94 ¥ 0.656 = 5.21 W

 Xph = Zph sin f = 7.94 ¥ sin (49°) = 6 W

This reactance will be capacitive in nature as the current is leading.

  XC = 
1

2p fC

  6 = 
1

2 50p ¥ ¥ C

 C = 530.52 µF

7xample 21 

Three identical impedances are connected in delta to a three-phase supply of 400 V. The line 

current is 34.65 A, and the total power taken from the supply is 14.4 kW. Calculate the resistance 

and reactance values of each impedance.

Solution  VL = 400 V

  IL = 34.65 A
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  P = 14.4 kW

For a delta-connected load,

  VL = Vph = 400 V

  Iph = 
IL

3

34 65

3
= .

 = 20 A

  Zph = 
V

I

ph

ph

= 400

20
 = 20 W

  P = 3  VL IL cos f

 14.4 ¥ 103 = 3  ¥ 400 ¥ 34.65 ¥ cos f

 cos f = 0.6

  f = 53.13°

 Rph = Zph cos f = 20 ¥ 0.6 = 12 W

 Xph = Zph sin f = 20 ¥ sin (53.13°) = 16 W

7xample 22 

Three similar coils, connected in star, take a total power of 18 kW at a power factor of 0.866 

lagging from a three-phase, 400-volt, 50 Hz system. Calculate the resistance and inductance of 

each coil. [May 2014]

Solution                              P = 18 kW

     pf = 0.866 (lagging)

     VL = 400 V

     f  = 50 Hz

For a star-connected load,

     Vph = 
400

230.94 V
3 3

LV = =

     P = 3 cosL LV I f

     18 ¥ 103 = 3 400 0.866LI¥ ¥ ¥

     IL = 30 A

     Iph = IL = 30 A

     Zph = 
230.94

7.7
30

= = Wph

ph

V

I
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     f = cos–1 (0.866) = 30°

     Z
–

ph = Zph – f = 7.7 –30° = 6.67 + j3.85 W

     Rph = 6.67 W

     Xph = 3.85 W

     Xph = 2p f L

     3.85 = 2p ¥ 50 ¥ L

     L  = 12.25 mH

7xample 23 

A balanced three-phase load connected in delta, draws a power of 10 kW at 440 V at a pf of 0.6 

lead, �nd the values of circuit elements and reactive volt-amperes drawn. [May 2016]

Solution P = 10 kW

 VL = 440 V

 pf = 0.6 (lead)

For a delta-connected load,

 (i) Values of circuit elements

 VL = Vph = 440 V

  P = 3  VL IL cos f

 10 ¥ 103 = 3 440 0.6LI¥ ¥ ¥

 IL = 21.87 A

 Iph = 
21.87

12.63 A
3 3

LI = =

 Zph = 
440

34.84
12.63

ph

ph

V

I
= = W

  f = 1cos (0.6) 53.13-
= ∞

 Rph = Zph cos f = 34.84 × 0.6 = 20.90 W

 Xph = Zph sin f = 34.84 × 0.8  = 27.87 W

 (ii) Reactive volt-amperes drawn

 Q = 3 sin 3 440 21.87 0.8 13.33 kVAR
LLV I f = ¥ ¥ ¥ =
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7xample 24 

Find the values of circuit elements and reactive volt-ampere drawn for a balanced 3-phase load 

connected in delta and drawing a power of 12 kW at 440 V. The power factor is 0.7 leading.

 [Dec 2013]

Solution P = 12 kW

 VL = 440 V

  pf = 0.7 (leading)

For a delta-connected load,

(i) Values of circuit elements

 VL = Vph = 440 V

 P = 3 cosL LV I f

 12 ¥ 103 = 3 440 0.7LI¥ ¥ ¥

 IL = 22.49 A

 Iph = 
22.49

12.98 A
3 3

LI = =

 Zph = 
440

33.9
12.98

= = Wph

ph

V

I

 Rph = Zph cos f = 33.9 × 0.7 = 23.73 W

 Xph = Zph sin f = 33.9 × sin (cos–10.7) = 33.9 × 0.71 = 24.07 W

(ii) Reactive volt-amperes drawn

  Q = 3 sin 3 440 22.49 0.71 12.17 kVARL LV I f = ¥ ¥ ¥ =

7xample 25 

Each leg of a balanced, delta-connected load consists of a 7 W resistance in series with a 4 W 

inductive reactance. The line-to-line voltages are

 Eab = 2360 –0° V

 Ebc = 2360 –– 120° V

 Eca = 2360 –120° V

Determine (i) phase current Iab, Ibc and Ica (both magnitude and phase)

 (ii) each line current and its associated phase angle

 (iii) the load power factor

Solution  R = 7 W

  XL = 4 W

  VL = 2360 V
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For a delta-connected load,

(i) Phase current

 Vph = VL = 2360 V

 Zph = 7 + j4 = 8.06 –29.74° W

 Iab = 
E

Z

ab

ph

 = 
2360 0

8 06 29 74

– ∞
– ∞. .

 = 292.8 –– 29.74° A

 Ibc = 
E

Z

bc

ph

= – - ∞
– ∞

2360 120

8 06 29 74. .
 = 292.8 ––149.71° A

 Ica = 
E

Z

ca

ph

= – ∞
– ∞

2360 120

8 06 29 74. .
 = 292.8 –90.26° A

(ii) Line current

In a delta-connected, three-phase system, line currents lag behind respective phase 

currents by 30°.

 IL = 3 Iph = 3 ¥ 292.8 = 507.14 A

  ILa = 507.14 –– 59.71° A

  ILb = 507.14 ––179.71° A

  ILc = 507.14 –60.26° A

(iii) Load power factor

 pf = cos (29.74°) = 0.868 (lagging)

7xample 26 

A three-phase, 200 kW, 50 Hz, delta-connected induction motor is supplied from a three-phase, 

440 V, 50 Hz supply system. The eciency and power factor of the three-phase induction motor 

are 91% and 0.86 respectively. Calculate (i) line currents, (ii) currents in each phase of the 

motor, (iii) active, and (iv) reactive components of phase current.

Solution Po = 200 kW

  VL = 440 V

  f = 50 Hz

  h = 91%

  pf = 0.86

For a delta-connected load (induction motor),

(i) Line current

      h = 
Output power

Input power
= P

P

o

i
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 0.91 = 
200 103

¥

Pi

 Pi = 219.78 kW

  Pi = 3 VL IL cos f

 219.78 ¥ 103 = 3  ¥ 440 ¥ IL ¥ 0.86

  IL = 335.3 A

(ii) Currents in each phase of motor

 Iph = 
IL

3

335 3

3
= .

 = 193.6 A

(iii)  Active component of phase current

 Iph cos f = 193.6 ¥ 0.86 = 166.5 A

(iv)  Reactive component of phase current 

 Iph sin f = 193.6 ¥ sin (cos–1 0.86) = 193.6 ¥ 0.51 = 98.7 A

7xample 27 

A three-phase, 400 V, star-connected alternator supplies a three-phase, 112 kW, mesh-connected 

induction motor of eciency and power factor 0.88 and 0.86 respectively. Find the (i) current in 

each motor phase, (ii) current in each alternator phase, and (iii) active and reactive components 

of current in each case.

Solution  VL = 400 V

  Po = 112 kW

  h = 0.88

  pf = 0.86

For a mesh-connected load (induction motor),

(i) Current in each motor phase

 Vph = VL = 400 V

  h = 
Output power

Input power
= P

P

o

i

 0.88 = 
112 103

¥

Pi

 Pi = 127.27 kW

 Pi = 3 VL IL cos f

 127.27 ¥ 103 = 3  ¥ 400 ¥ IL ¥ 0.86

  IL = 213.6 A
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 Iph =  
IL

3

213 6

3
= .

 = 123.32 A

Current in a star-connected alternator phase will be same as the line current drawn by 

the motor.

(ii) Current in each alternator phase

 IL = 213.6 A

(iii) Active component of current in each phase of motor

 Iph cos f = 123.32 ¥ 0.86 = 105.06 A

Reactive component of current in each phase of the motor

 Iph sin f = 123.32 ¥ sin (cos–1 0.86) = 123.32 ¥ 0.51 = 62.89 A

(iv) Active component of current in each alternator phase

 IL cos f = 213.6 ¥ 0.86 = 183.7 A

Reactive component of current in each alternator phase

 IL sin f = 213.6 ¥ sin (cos–1 0.86) = 213.6 ¥ 0.51 = 108.94 A

7xample 28 

Three similar resistors are connected in star across 400 V, three-phase lines. The line current is  

5 A. Calculate the value of each resistor. To what value should the line voltage be changed to 

obtain the same line current with the resistors connected in delta?

Solution VL = 400 V

 IL = 5 A

For a star-connected load,

 Vph = 
VL

3

400

3
=  = 230.94 V

 Iph = IL = 5 A

 Zph =  Rph = 
V

I

ph

ph

= 230 94

5

.
 = 46.19 W

For a delta-connected load,

 IL = 5 A

 Rph = 46.19 W

 Iph = 
IL

3

5

3
= A

 Vph = Iph Rph = 
5

3
 ¥ 46.19 = 133.33 V

 VL = 133.33 V

Voltage needed is one-third of the star value.
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7xample 29 

Three 100 W, non-inductive resistors are connected in (a) star, and (b) delta across a 400 V, 50 

Hz, three-phase supply. Calculate the power taken from the supply in each case. If one of the 

resistors is open circuited, what would be the value of total power taken from the mains in each 

of the two cases?

Solution VL = 400 V

 Zph = 100 W

For a star-connected load,

 Vph = 
VL

3

400

3
=  = 230.94 V

 Iph = 
V

Z

ph

ph

= 230 94

100

.
 = 2.31 A

 IL = Iph = 2.31 A

 cos f = 1 (For pure resistor, pf = 1)

 P = 3 VL IL cos f = 3  ¥ 400 ¥ 2.31 ¥ 1 = 1600.41 W

For a delta-connected load,

 Vph = VL = 400 V

 Iph = 
V

Z

ph

ph

= 400

100
 = 4 A

 IL = 3  Iph = 3  ¥ 4 = 6.93 A

 P = 3  VL IL cos f = 3  ¥ 400 ¥ 6.93 ¥ 1 = 4801.24 W

When one of the resistors is open circuited

(i) Star connection The circuit consists of two 100 W resistors in series across a 400 V 

supply.

 Currents in lines A and C = 
400

200
 = 2 A

 Power taken from the mains = 400 ¥ 2 = 800 W

Fig. 5.22(a) Star connection

Hence, when one of the resistors is open circuited, the 

power consumption is reduced by half.

(ii) Delta connection In this case, currents in A and C 

remain as usual 120° out of phase with each other.

 Current in each phase = 
400

100
 = 4 A
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7xample 30 

Three identical impedances of 10 –30° W each are connected in star and another set of three 

identical impedances of 18 –60° W are connected in delta. If both the sets of impedances are 

connected across a balanced, three-phase 400 V supply, �nd the line current, total volt-amperes, 

active power and reactive power.

Solution ZY = 10 –30° W

 ZD = 18 –60° W

 VL = 400 V

Three identical delta impedances can be converted into equivalent star impedances.

 ¢ZY  = 
ZD W
3

18 60

3
6 60= – ∞ = – ∞

Now two star-connected impedances of 10 –30° W and 6 –60° W are connected in parallel 

across a three-phase supply.

 Zeq = 
( )( )10 30 6 60

10 30 6 60

– ∞ – ∞
– ∞ + – ∞  = 3.87 –48.83° W

For a star-connected load,

(i) Line current

 Vph = 
VL

3

400

3
=  = 230.94 V

 Iph = 
V

Z

V

Z

ph

ph

ph

eq

= = 230 94

3 87

.

.
 = 59.67 A

 IL = Iph = 59.67 A

(ii) Total volt-amperes

 S = 3  VL IL = 3  ¥ 400 ¥ 59.67 = 41.34 kVA

(iii) Active power

 P = 3  VL IL cos f = 3  ¥ 400 ¥ 59.67 ¥ cos (48.83°) = 27.21 kW

(iv) Reactive power

 Q  = 3  VL IL sin f = 3  ¥ 400 ¥ 59.67 ¥ sin (48.83°) = 31.12 kVAR

Fig. 5.22(b) Delta connection

 Power taken from the mains = 2 ¥ 4 ¥ 400 = 3200 W

Hence, when one of the resistors is open circuited, the 

power consumption is reduced by one-third.
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7xample 31 

Three star-connected impedances ZY = (20 + j37.7) W per phase are connected in parallel with 

three delta-connected impedances ZD = (30 – j159.3) W per phase. The line voltage is 398 V. 

Find the line current, pf, active and reactive power taken by the combination.

Solution ZY = 20 + j37.7 = 42.68 –62.05° W

 ZD = 30 – j159.3 = 162.1 ––79.3° W

 VL = 398 V

Three identical delta-connected impedances can be converted into equivalent star 

impedances.

 ¢ZY  = 
162 1 79 3

3

. .– - ∞
 = 54.03 ––79.3° W

Now two star-connected impedances of 42.68 –62.05° W and 54.03 ––79.3° W are 

connected in parallel across the three-phase supply.

 Zeq = 
( . . )( . . )

. . . . )
.

42 68 62 05 54 03 79 3

42 68 62 05 54 03 79 3
68

– ∞ – - ∞
– ∞ + – - ∞

= 333 9 88– ∞. W

For a star-connected load,

(i) Line current

 Vph = 
VL

3

398

3
229 79= = . V

 Iph = 
V

Z

V

Z

ph

ph

ph

eq

=  = 
229 79

68 33

.

.
 = 3.36 A

 IL =  Iph = 3.36 A

(ii) Power factor

 pf  =  cos f = cos (9.88°) = 0.99 (lagging)

(iii) Active power

 P  =  3  VL IL cos f = 3  ¥ 398 ¥ 3.36 ¥ 0.99 = 2.29 kW

(iv) Reactive power

 Q = 3  VL IL sin f = 3  ¥ 398 ¥ 3.36 ¥ sin (9.88°) = 397.43 VAR

7xample 32 

Three coils, each having a resistance of 20 W and a reactance of 15 W, are connected in star 

to a 400 V, three-phase, 50 Hz supply. Calculate (i) line current, (ii) power supplied, and  

(iii) power factor. If three capacitors, each of same capacitance, are connected in delta to the 

same supply so as to form a parallel circuit with the above coils, calculate the capacitance of 

each capacitor to obtain a resultant power factor of 0.95 lagging.

Solution Rph = 20 W

 Xph = 15 W

 VL = 400 V
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For a star-connected load,

(i) Line current

 Z ph  = Rph + jXph = 20 + j15 = 25 –36.87° W

 Vph = 
VL

3

400

3
=  = 230.94 V

 Iph = 
V

Z

ph

ph

= =230 94

25
9 24

.
. A

 IL = Iph = 9.24 A

(ii) Power supplied

 P1 = 3 VL IL cos f1 = 3 ¥ 400 ¥ 9.24 ¥ cos (36.87°) = 5.12 kW

(iii) Power factor

 pf = cos f1 = cos (36.87°) = 0.8 (lagging)

(iv) Value of capacitance of each capacitor

 Ql =  3 VL IL sin f1 = 3  ¥ 400 ¥ 9.24 ¥ sin (36.87°) = 3.84 kVAR

When capacitors are connected in delta to the same supply

 pf = 0.95

 f2 = cos–1 (0.95) = 18.19°

 tan f2 = tan (18.19°) = 0.33

Since capacitors do not absorb any power, power remains the same even when capacitors 

are connected. But reactive power changes.

 P2 = 5.12 kW

 Q2 = P2 tan f2 = 5.12 ¥ 0.33 = 1.69 kVAR

Dierence in reactive power is supplied by three capacitors.

 Q = Q1 – Q2 = 3.84 – 1.69 = 2.15 kVAR

 Q = 3  VL IL sin f

 2.15 ¥ 103 = 3  ¥ 400 ¥ IL ¥ sin (90°)

 IL = 3.1 A

 Iph = 
IL

3
 = 1.79 A

 Iph = 
V

X

ph

C

 = Vph ¥ 2pf C

 C = 
I

V f

ph

ph ¥
=

¥ ¥

=

2

1 79

400 2 50
14 24

p p

.
.  mF

Fig. 5.23
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12.1 • POLYPHASE SYSTEMS

polyphase

neutral
ground

balanced load At no
instant does the instantaneous power drawn by the total load reach zero;
in fact, the total instantaneous power is constant

CHAPTER 12 POLYPHASE CIRCUITS

■ An example set of three voltages, each of which is 120◦ out of phase with the other
two. As can be seen, only one of the voltages is zero at any particular instant.

t 
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rectifiers.

Double-Subscript Notation
double-

subscript notation. Vab

Ia A V Ix

a b Vab

a a
equivalent

b
Vad = Vab +Vcd

Vad = Vab +Vbd = Vac +Vcd = Vab +Vbc +Vcd

Vad = Vax +Vxd x

Van Vbn Vcn

Van = / ◦

Vbn = /− ◦

Vcn = /− ◦

Vab

Vab = Van +Vnb = Van −Vbn

= / ◦ − /− ◦

= − (− − j . )

= . / ◦

Vab

Iab a b by the most direct path

■ (a) The definition of the voltage Vab .
(b) Vad = Vab + Vbc + Vc d = Vab + Vcd .

Vab

a

b

a

b

a c

b d

■ A network used as a numerical
example of double-subscript voltage notation.

°

c

b

a
n

° °

■ This phasor diagram illustrates the
graphical use of the double-subscript voltage
convention to obtain Vab for the network of Fig. 12.3.

Vcn

Vbn

Van

Vnb Vab Van Vnb

°

°
°

implicitly
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■ An illustration of the use and misuse
of the double-subscript convention for current
notation.

IcdIcd
Iab

a

c

d

b

■ (a) A single-phase three-wire source.
(b) The representation of a single-phase three-wire
source by two identical voltage sources.

a

n

b

a

V

V

a

n

b
b

■

c

g

k

h i

d e

l

a b

j

f

. / . ◦ / . ◦ . / . ◦ −

12.2 • SINGLE-PHASE THREE-WIRE SYSTEMS

single-phase three-wire
source a n

b a Van Vnb

b Van = Vnb = V
Vab = Van = Vnb

a b

Iab

tell
Icd

PRACTICE 
●

Vab = / ◦ ,Vbd = / ◦ Vca = / ◦

a Vad b Vbc c Vcd

I f j = Ide =
Ihd = − a Icd b Ief c Ii j
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single-phase Van Vnb

neutral, ◦ Van = −Vbn

Van +Vbn =
amplitude

Two-phase,

Zp

Van = Vnb

Ia A =
Van

Zp
= IBb =

Vnb

Zp

InN = IBb + IAa = IBb − Ia A =

Effect of Finite Wire Impedance

a A bB
Zp

Zn

■ A simple single-phase three-wire
system. The two loads are identical, and the neutral
current is zero.

a A

N

Bb

Vnb

Van Zp

Zp

n
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EXAMPLE

Analyze the system shown in Fig. 12.9 and determine the power
delivered to each of the three loads as well as the power lost in the
neutral wire and each of the two lines.

D Identify the goal of the problem.
N N

+ j N

N N

D Collect the known information.

D Devise a plan.

D Construct an appropriate set of equations.

− / ◦ + I + (I − I )+ (I − I ) =
( + j )I + (I − I )+ (I − I ) =
− / ◦ + (I − I )+ (I − I )+ I =

I − I − I = / ◦

− I + ( + j )I − I =
− I − I + I = / ◦

D Determine if additional information is required.

■ A typical single-phase three-wire system.

I

I

I

°

°

a

b

n

7

7 7

j 77

7

7

A

B

N
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D Attempt a solution.
I I I

I = . /− . ◦

I = . /− . ◦

I = . /− . ◦

Ia A = I = . /− . ◦

IbB = −I = . / . ◦

InN = I − I = . /− . ◦

P = |I − I | ( ) =
P = |I − I | ( ) =

P + j = |I | ( ) =

Pa A = |I | ( ) =
PbB = |I | ( ) =
PnN = |InN | ( ) =

D Verify the solution. Is it reasonable or expected?
+ + +

Pan = ( . ) . ◦ =
Pbn = ( . ) . ◦ =

transmission efficiency

η = = + = .

Note that we do not need to include a factor of 1
2 since

we are working with rms current values.

(Continued on next page)

Imagine the heat produced by two 100 W light bulbs!

These outer wires must dissipate the same amount

of power. In order to keep their temperature down,

a large surface area is required.



12.3 • THREE-PHASE Y-Y CONNECTION
line

neutral

a b c n

|Van| = |Vbn| = |Vcn|

Van +Vbn +Vcn =

phase voltages. Van

Van = Vp/
◦

Vp amplitude

Vbn = Vp/− ◦ Vcn = Vp/− ◦

Vbn = Vp/
◦ Vcn = Vp/

◦

positive phase sequence, abc phase sequence,
a negative phase sequence,

cba phase sequence, b

CHAPTER 12 POLYPHASE CIRCUITS

Ia A + IbB + InN =

■ A Y-connected three-phase 
four-wire source.

A

B

N

C

a

n

c

b

Van
Vbn

Vcn

■ The source voltages and three of the currents in the circuit
of Fig. 12.9 are shown on a phasor diagram. Note that Ia A + IbB + In N = 0.

IbB

IaA IbB

InN

IaA

Vbn Van

PRACTICE 
●

N

N
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a b c

Line-to-Line Voltages
line

voltages a

◦

Vab =
√

Vp/
◦

Vbc =
√

Vp/− ◦

Vca =
√

Vp/− ◦

VL

VL =
√

Vp

Van Vbn Vbn

Vcn
◦ Vab Vbc Vbc Vca

◦

°Van Vp

°Vbn Vp

°Vcn Vp

a

°Van Vp

°Vcn Vp

°Vbn Vp

b

■ (a) Positive, or abc, phase sequence. (b) Negative, or cba, phase sequence.

VcnVca

Vbn

Vbc

Van

Vab

�

■ A phasor diagram which is used 
to determine the line voltages from the given phase 
voltages. Or, algebraically, Vab = Van − Vbn =
V p/0◦ − V p/−120◦ = V p − V p cos(−120◦) −
j V p sin(−120◦) = V p (1 + 1

2 + j
P

3/2) =P
3V p/30◦ .

a

c

n N

C

A Bb

Zp

ZpZp

■ A balanced three-phase system, connected Y-Y and including a neutral.



Zp

Ia A =
Van

Zp

IbB =
Vbn

Zp
=

Van/− ◦

Zp
= Ia A/− ◦

IcC = Ia A/− ◦

INn = Ia A + IbB + IcC =

ZL

Zn

n N

visualize

CHAPTER 12 POLYPHASE CIRCUITS

EXAMPLE

For the circuit of Fig. 12.15, find both the phase and line currents,
and the phase and line voltages throughout the circuit; then calcu-
late the total power dissipated in the load.

° 7°

B

C

A

N

n

b

c

a

■ A balanced three-phase three-wire Y-Y connected system.
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Vca

Vcn Vab

Van

Vbc

Vbn

IbB

IaA

IcC

�

�

■ The phasor diagram that applies to
the circuit of Fig. 12.15.

Van = / ◦ Vbn = /− ◦ Vcn = /− ◦

√
=

Vab / ◦

Vbc = /− ◦ Vca = /− ◦

A

Ia A =
Van

Zp
=

/ ◦

/ ◦ = /− ◦

Ia A

IbB =
n
(− ◦ − ◦) = /− ◦

IcC =
n
(− ◦ − ◦) = /− ◦

A {VanI∗a A},

PAN = ( ) ( ◦ + ◦) =

PRACTICE 
●

− j N N

+ j N Vab = / ◦

a Van b Ia A c

/− ◦ . /− ◦

/ total
A

vAN =
√

( π t + ◦)

i AN =
√

( π t − ◦)

The factor of 
P

2 is required to convert from rms units.



A

pA(t) = vAN iAN = ( πt) ( πt − ◦)

= (− ◦)+ ( πt − ◦)

= + ( πt − ◦)

pB(t) = + ( πt − ◦)

pC(t) = + ( πt − ◦)

total

p(t) = pA(t)+ pB(t)+ pC(t) =

CHAPTER 12 POLYPHASE CIRCUITS

EXAMPLE

A balanced three-phase system with a line voltage of 300 V is sup-
plying a balanced Y-connected load with 1200 W at a leading PF
of 0.8. Find the line current and the per-phase load impedance.

/
√

/ =

= √ (IL)( . )

llZp

ll =
Vp

IL
=

/
√

.
= N

− . ◦

Zp = /− . ◦ N

PRACTICE 
●

− j N
+ j N a b

c d
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EXAMPLE

IIL

I

■ The per-phase circuit that is used
to analyze a balanced three-phase example.

A balanced 600 W lighting load is added (in parallel) to the system
of Example 12.3. Determine the new line current.

I

= √ |I | ◦

|I | = .

I

|I | = .

◦ − ( . ) = . ◦,

I = . / ◦ I = . /+ . ◦

IL = I + I = . /+ . ◦

Pp = √ . (+ . ◦) =

PRACTICE 
●

(

N

N a b
c

d e



unbalanced
if

if

symmetrical components

12.4 • THE DELTA (�) CONNECTION
�

CHAPTER 12 POLYPHASE CIRCUITS

a b

c

A

C

B

n

p

p

p

■ A balanced �-connected load is present on a three-
wire three-phase system. The source happens to be Y-connected.

�

Zp

VL = |Vab| = |Vbc| = |Vca|

Vp = |Van| = |Vbn| = |Vcn|

VL =
√

Vp Vab =
√

Vp/
◦

�

phase currents

IAB =
Vab

Zp
IBC =

Vbc

Zp
IC A =

Vca

Zp

Ia A = IAB − IC A

Ip = |IAB | = |IBC | = |IC A|

IL = |Ia A| = |IbB | = |IcC |

IL =
√

Ip
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�

√

√

VCA

ICA

IAB

IaA

IcC

Vcn VAB

Van

VBC

Vbn

IBC
IbB

■ A phasor diagram that could apply to the
circuit of Fig. 12.18 if Zp were an inductive impedance.

EXAMPLE

Again, keep in mind that we are assuming all voltages

and currents are quoted as rms values.

Determine the amplitude of the line current in a three-phase system
with a line voltage of 300 V that supplies 1200 W to a �-connected
load at a lagging PF of 0.8; then find the phase impedance.

= (Ip)( . )

Ip = .

IL =
√
( . ) = .

− ( . ) = . ◦

Zp =
.
/ . ◦ = / . ◦ N

PRACTICE 
●

�

µ

N

ω = a
b c



√

θ

Pp = Vp Ip θ = Vp IL θ = VL√ IL θ

P = Pp =
√

VL IL θ

�

Pp = Vp Ip θ = VL Ip θ = VL
IL√ θ

P = Pp =
√

VL IL θ

�
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EXAMPLE

Determine the amplitude of the line current in a three-phase 
system with a 300 V line voltage that supplies 1200 W to a 
Y-connected load at a lagging PF of 0.8. (This is the same circuit
as in Example 12.5, but with a Y-connected load instead.)

/
√

= √ (Ip)( . )

Ip = . ( IL = . )

◦

Zp =
/
√

.
/ . ◦ = / . ◦ N

PRACTICE 
●

�

Vab = / ◦ a
b IAB c IAB d Ia A

/− . ◦ / . ◦ /− . ◦
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TABLE Comparison of Y- and �-Connected Three-Phase Loads. Is the Voltage 

●
Magnitude of Each Y-Connected Phase

Load Phase Voltage Line Voltage Phase Current Line Current Power per Phase

VAN = Vp/
◦

VB N = Vp/− ◦

VC N = Vp/− ◦

VAB = Vab

=
√

Vp/
◦

VBC = Vbc

=
√

Vp/− ◦

VC A = Vca

=
√

Vp/− ◦

�

VAB = Vab

= (
√
/ ◦)VAN

=
√

Vp/
◦

VBC = Vbc

= (
√
/ ◦)VB N

=
√

Vp/− ◦

VC A = Vca

= (
√
/ ◦)VCN

=
√

Vp/− ◦

VAB = Vab

=
√

Vp/
◦

VBC = Vbc

=
√

Vp/− ◦

VC A = Vca

=
√

Vp/− ◦

Ia A = IAN =
VAN

Zp

IbB = IB N =
VB N

Zp

IcC = IC N =
VC N

Zp

IAB =
VAB

Zp

IBC =
VBC

Zp

IC A =
VC A

Zp

Ia A = IAN =
VAN

Zp

IbB = IB N =
VB N

Zp

IcC = IC N =
VCN

Zp

Ia A = (
√
/− ◦)

VAB

Zp

IbB = (
√
/− ◦)

VBC

Zp

IcC = (
√
/− ◦)

VC A

Zp

√
VL IL θ

θ =

√
VL IL θ

θ =

=
√
( )(IL)( . )

IL = √ = .

�

�-Connected Sources
�

�

Vab Vbc Vcd � d a
Vab + Vbc +Vca

the circulating
current is one-third of the maximum current
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He who cannot forgive others breaks the bridge over which he must
pass himself.

—G. Herbert

c h a p t e r

Enhancing Your Skills and Your Career

ABET EC 2000 criteria (3.e), “an ability to identify, formulate,
and solve engineering problems.”
Developing and enhancing your “ability to identify, formulate, and
solve engineering problems” is a primary focus of textbook. Follow-
ing our six step problem-solving process is the best way to practice
this skill. Our recommendation is that you use this process whenever
possible. You may be pleased to learn that this process works well for
nonengineering courses.

ABET EC 2000 criteria (f), “an understanding of professional
and ethical responsibility.”
“An understanding of professional and ethical responsibility” is required
of every engineer. To some extent, this understanding is very personal
for each of us. Let us identify some pointers to help you develop this
understanding. One of my favorite examples is that an engineer has the
responsibility to answer what I call the “unasked question.” For
instance, assume that you own a car that has a problem with the trans-
mission. In the process of selling that car, the prospective buyer asks
you if there is a problem in the right-front wheel bearing. You answer
no. However, as an engineer, you are required to inform the buyer that
there is a problem with the transmission without being asked.

Your responsibility both professionally and ethically is to perform
in a manner that does not harm those around you and to whom you are
responsible. Clearly, developing this capability will take time and matu-
rity on your part. I recommend practicing this by looking for profes-
sional and ethical components in your day-to-day activities.

Photo by Charles Alexander



Introduction
So far in this text, we have dealt with single-phase circuits. A single-phase
ac power system consists of a generator connected through a pair of wires
(a transmission line) to a load. Figure 12.1(a) depicts a single-phase two-
wire system, where is the rms magnitude of the source voltage and 
is the phase. What is more common in practice is a single-phase three-
wire system, shown in Fig. 12.1(b). It contains two identical sources
(equal magnitude and the same phase) that are connected to two loads by
two outer wires and the neutral. For example, the normal household sys-
tem is a single-phase three-wire system because the terminal voltages
have the same magnitude and the same phase. Such a system allows the
connection of both 120-V and 240-V appliances.

fVp

12.1
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ZLVp
+
−

(a)

�

ZL1Vp

a A

n N

b B

+
−

(b)

�

ZL2Vp
+
−�

Figure 12.1
Single-phase systems: (a) two-wire type, (b) three-wire type.

Circuits or systems in which the ac sources operate at the same fre-
quency but different phases are known as polyphase. Figure 12.2 shows
a two-phase three-wire system, and Fig. 12.3 shows a three-phase four-
wire system. As distinct from a single-phase system, a two-phase system
is produced by a generator consisting of two coils placed perpendicular
to each other so that the voltage generated by one lags the other by 
By the same token, a three-phase system is produced by a generator con-
sisting of three sources having the same amplitude and frequency but out
of phase with each other by Since the three-phase system is by far
the most prevalent and most economical polyphase system, discussion in
this chapter is mainly on three-phase systems.

Three-phase systems are important for at least three reasons. First,
nearly all electric power is generated and distributed in three-phase, at
the operating frequency of 60 Hz (or ) in the United
States or 50 Hz (or ) in some other parts of the world.
When one-phase or two-phase inputs are required, they are taken from
the three-phase system rather than generated independently. Even when
more than three phases are needed—such as in the aluminum industry,
where 48 phases are required for melting purposes—they can be provided
by manipulating the three phases supplied. Second, the instantaneous
power in a three-phase system can be constant (not pulsating), as we
will see in Section 12.7. This results in uniform power transmission
and less vibration of three-phase machines. Third, for the same amount
of power, the three-phase system is more economical than the single-
phase. The amount of wire required for a three-phase system is less
than that required for an equivalent single-phase system.

� � 314 rad/s
� � 377 rad/s

120�.

90�.

Historical note: Thomas Edison invented
a three-wire system, using three wires
instead of four.

ZL1

Vp

a A

n N

b B

+
−

ZL2
+
−−90°

Vp 0°

ZL1a A

b B

c C

n N

Vp 0°

− +

ZL2
Vp −120°

Vp +120°

− +

ZL3

− +

Figure 12.2
Two-phase three-wire system.

Figure 12.3
Three-phase four-wire system.



We begin with a discussion of balanced three-phase voltages. Then
we analyze each of the four possible configurations of balanced three-
phase systems. We also discuss the analysis of unbalanced three-phase
systems. We learn how to use PSpice for Windows to analyze a bal-
anced or unbalanced three-phase system. Finally, we apply the concepts
developed in this chapter to three-phase power measurement and resi-
dential electrical wiring.

Balanced Three-Phase Voltages
Three-phase voltages are often produced with a three-phase ac gener-
ator (or alternator) whose cross-sectional view is shown in Fig. 12.4.
The generator basically consists of a rotating magnet (called the rotor)
surrounded by a stationary winding (called the stator). Three separate

12.2
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Nikola Tesla (1856–1943) was a Croatian-American engineer whose
inventions—among them the induction motor and the first polyphase ac
power system—greatly influenced the settlement of the ac versus dc de-
bate in favor of ac. He was also responsible for the adoption of 60 Hz as
the standard for ac power systems in the United States.

Born in Austria-Hungary (now Croatia), to a clergyman, Tesla had
an incredible memory and a keen affinity for mathematics. He moved
to the United States in 1884 and first worked for Thomas Edison. At
that time, the country was in the “battle of the currents” with George
Westinghouse (1846–1914) promoting ac and Thomas Edison rigidly
leading the dc forces. Tesla left Edison and joined Westinghouse
because of his interest in ac. Through Westinghouse, Tesla gained the
reputation and acceptance of his polyphase ac generation, transmission,
and distribution system. He held 700 patents in his lifetime. His other
inventions include high-voltage apparatus (the tesla coil) and a wire-
less transmission system. The unit of magnetic flux density, the tesla,
was named in honor of him.

Historical

Stator

Three-
phase
output

a

b

c

n

c

N

S

b′

c′

ba

a′

Rotor

Figure 12.4
A three-phase generator.

Courtesy Smithsonian
Institution



windings or coils with terminals and are physically
placed apart around the stator. Terminals a and for example,
stand for one of the ends of coils going into and the other end coming
out of the page. As the rotor rotates, its magnetic field “cuts” the flux
from the three coils and induces voltages in the coils. Because the coils
are placed apart, the induced voltages in the coils are equal in
magnitude but out of phase by (Fig. 12.5). Since each coil can be
regarded as a single-phase generator by itself, the three-phase genera-
tor can supply power to both single-phase and three-phase loads.

A typical three-phase system consists of three voltage sources con-
nected to loads by three or four wires (or transmission lines). (Three-
phase current sources are very scarce.) A three-phase system is
equivalent to three single-phase circuits. The voltage sources can be
either wye-connected as shown in Fig. 12.6(a) or delta-connected as in
Fig. 12.6(b).

120�
120�

a¿,120�
c-c¿a-a¿, b-b¿,
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0
120°

Van(t)

t

Vbn(t) Vcn(t)

240°

Figure 12.5
The generated voltages are apart
from each other.

120�

+
−

+
−

+
−

(a)

a

Van

VbnVcn

Vca Vab

Vbc

n

b

c

+
−

+
−

(b)

a

b

c

− +

Figure 12.6
Three-phase voltage sources: (a) Y-connected source, (b) -connected
source.

¢

Let us consider the wye-connected voltages in Fig. 12.6(a) for
now. The voltages and are respectively between lines a, b,
and c, and the neutral line n. These voltages are called phase voltages.
If the voltage sources have the same amplitude and frequency and
are out of phase with each other by the voltages are said to be
balanced. This implies that

(12.1)

(12.2)

Thus,

0Van 0 � 0Vbn 0 � 0Vcn 0
Van � Vbn � Vcn � 0

120�,
�

VcnVan, Vbn,

Balanced phase voltages are equal in magnitude and are out of phase
with each other by 120�.

Since the three-phase voltages are out of phase with each
other, there are two possible combinations. One possibility is shown in
Fig. 12.7(a) and expressed mathematically as

(12.3)

 Vcn � Vpl�240� � Vpl�120�

 Vbn � Vpl�120�

 Van � Vpl0�

120�

120°

Vcn

Van

Vbn

120°

−120°

(a)

120°

Vbn

Van

Vcn

120°

−120°

(b)

�

�

Figure 12.7
Phase sequences: (a) abc or positive
sequence, (b) acb or negative sequence.



where is the effective or rms value of the phase voltages. This is
known as the abc sequence or positive sequence. In this phase sequence,

leads which in turn leads This sequence is produced when
the rotor in Fig. 12.4 rotates counterclockwise. The other possibility is
shown in Fig. 12.7(b) and is given by

(12.4)

This is called the acb sequence or negative sequence. For this phase
sequence, leads which in turn leads The acb sequence is
produced when the rotor in Fig. 12.4 rotates in the clockwise direction.
It is easy to show that the voltages in Eqs. (12.3) or (12.4) satisfy
Eqs. (12.1) and (12.2). For example, from Eq. (12.3),

(12.5)

 � 0

 � Vp(1.0 � 0.5 � j0.866 � 0.5 � j0.866)

 Van � Vbn � Vcn � Vpl0� � Vpl�120� � Vpl�120�

Vbn.Vcn,Van

 Vbn � Vpl�240� � Vpl�120�

 Vcn � Vpl�120�

 Van � Vpl0�

Vcn.Vbn,Van

Vp
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As a common tradition in power
systems, voltage and current in this
chapter are in rms values unless
otherwise stated.

Reminder: As time increases, each
phasor (or sinor) rotates at an angular
velocity .�

The phase sequence is the time order in which the voltages pass
through their respective maximum values.

The phase sequence is determined by the order in which the phasors
pass through a fixed point in the phase diagram.

In Fig. 12.7(a), as the phasors rotate in the counterclockwise
direction with frequency they pass through the horizontal axis in a
sequence Thus, the sequence is abc or bca or cab. Sim-
ilarly, for the phasors in Fig. 12.7(b), as they rotate in the counter-
clockwise direction, they pass the horizontal axis in a sequence

This describes the acb sequence. The phase sequence is
important in three-phase power distribution. It determines the direc-
tion of the rotation of a motor connected to the power source, for
example.

Like the generator connections, a three-phase load can be either
wye-connected or delta-connected, depending on the end application.
Figure 12.8(a) shows a wye-connected load, and Fig. 12.8(b) shows a
delta-connected load. The neutral line in Fig. 12.8(a) may or may not
be there, depending on whether the system is four- or three-wire. (And,
of course, a neutral connection is topologically impossible for a delta
connection.) A wye- or delta-connected load is said to be unbalanced
if the phase impedances are not equal in magnitude or phase.

acbacba . . . .

abcabca . . . .
�,

The phase sequence may also be re-
garded as the order in which the phase
voltages reach their peak (or maximum)
values with respect to time.

a

b

n

c

(a)

Z2

Z1

Z3

a

b

c

(b)

ZbZc

Za

Figure 12.8
Two possible three-phase load configura-
tions: (a) a Y-connected load, (b) a 

-connected load.¢

A balanced load is one in which the phase impedances are equal in
magnitude and in phase.

For a balanced wye-connected load,

(12.6)Z1 � Z2 � Z3 � ZY



where is the load impedance per phase. For a balanced delta-
connected load,

(12.7)

where is the load impedance per phase in this case. We recall from
Eq. (9.69) that

(12.8)

so we know that a wye-connected load can be transformed into a delta-
connected load, or vice versa, using Eq. (12.8).

Since both the three-phase source and the three-phase load can be
either wye- or delta-connected, we have four possible connections:

• Y-Y connection (i.e., Y-connected source with a Y-connected
load).

• connection.
• connection.
• -Y connection.

In subsequent sections, we will consider each of these possible con-
figurations.

It is appropriate to mention here that a balanced delta-connected
load is more common than a balanced wye-connected load. This is due
to the ease with which loads may be added or removed from each phase
of a delta-connected load. This is very difficult with a wye-connected
load because the neutral may not be accessible. On the other hand,
delta-connected sources are not common in practice because of the cir-
culating current that will result in the delta-mesh if the three-phase volt-
ages are slightly unbalanced.

¢

¢-¢
Y-¢

Z¢ � 3ZY  or  ZY �
1

3
 Z¢

Z¢

Za � Zb � Zc � Z¢

ZY
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Reminder: A Y-connected load consists
of three impedances connected to a
neutral node, while a -connected
load consists of three impedances
connected around a loop. The load is
balanced when the three impedances
are equal in either case.

¢

Example 12.1 Determine the phase sequence of the set of voltages

Solution:
The voltages can be expressed in phasor form as

We notice that leads by and in turn leads by 
Hence, we have an acb sequence.

120�.VbnVcn120�VcnVan

Van � 200l10� V,  Vbn � 200l�230� V,  Vcn � 200l�110� V

vbn � 200 cos(�t � 230�),  vcn � 200 cos(�t � 110�)

van � 200 cos(�t � 10�)

Practice Problem 12.1 Given that find and assuming a positive
(abc) sequence.

Answer: 110l150� V, 110l�90� V.

Vcn,VanVbn � 110l30� V,



Balanced Wye-Wye Connection
We begin with the Y-Y system, because any balanced three-phase sys-
tem can be reduced to an equivalent Y-Y system. Therefore, analysis
of this system should be regarded as the key to solving all balanced
three-phase systems.

12.3
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A balanced Y-Y system is a three-phase system with a balanced 
Y-connected source and a balanced Y-connected load.

Consider the balanced four-wire Y-Y system of Fig. 12.9, where a
Y-connected load is connected to a Y-connected source. We assume a
balanced load so that load impedances are equal. Although the imped-
ance is the total load impedance per phase, it may also be regarded
as the sum of the source impedance line impedance and load
impedance for each phase, since these impedances are in series. As
illustrated in Fig. 12.9, denotes the internal impedance of the phase
winding of the generator; is the impedance of the line joining a
phase of the source with a phase of the load; is the impedance of
each phase of the load; and is the impedance of the neutral line.
Thus, in general

(12.9)ZY � Zs � Z/ � ZL

Zn

ZL

Z/
Zs

ZL

Z/,Zs,
ZY

+
−

Zl

Zl

Zl

Zn

Zs

Zs Zs

ZL

ZLZL

Van

Vcn Vbn

A

N

BCb

n

c

a

+
− +

−

+− ZY

ZYZY

Van

Vcn Vbn

A

N

BC

b

n

c

a

In

Ib

Ia

Ic

+
−

+
−

Figure 12.9
A balanced Y-Y system, showing the source, line,
and load impedances.

Figure 12.10
Balanced Y-Y connection.

and are often very small compared with so one can assume
that if no source or line impedance is given. In any event, by
lumping the impedances together, the Y-Y system in Fig. 12.9 can be
simplified to that shown in Fig. 12.10.

Assuming the positive sequence, the phase voltages (or line-to-
neutral voltages) are

(12.10)
Vbn � Vpl�120�,  Vcn � Vpl�120�

Van � Vpl0�

ZY � ZL

ZL,Z/Zs



The line-to-line voltages or simply line voltages and are
related to the phase voltages. For example,

(12.11a)

Similarly, we can obtain

(12.11b)

(12.11c)

Thus, the magnitude of the line voltages is times the magnitude
of the phase voltages or

(12.12)

where

(12.13)

and

(12.14)

Also the line voltages lead their corresponding phase voltages by 
Figure 12.11(a) illustrates this. Figure 12.11(a) also shows how to
determine from the phase voltages, while Fig. 12.11(b) shows the
same for the three line voltages. Notice that leads by and

leads by so that the line voltages sum up to zero as do
the phase voltages.

Applying KVL to each phase in Fig. 12.10, we obtain the line cur-
rents as

(12.15)

We can readily infer that the line currents add up to zero,

(12.16)

so that

(12.17a)

or

(12.17b)

that is, the voltage across the neutral wire is zero. The neutral line can
thus be removed without affecting the system. In fact, in long distance
power transmission, conductors in multiples of three are used with the
earth itself acting as the neutral conductor. Power systems designed in
this way are well grounded at all critical points to ensure safety.

While the line current is the current in each line, the phase current
is the current in each phase of the source or load. In the Y-Y system, the
line current is the same as the phase current. We will use single subscripts

VnN � ZnIn � 0

In � �(Ia � Ib � Ic) � 0

Ia � Ib � Ic � 0

Ic �
Vcn

ZY
�

Vanl�240�

ZY
� Ial�240�

Ia �
Van

ZY
,  Ib �

Vbn

ZY
�

Vanl�120�

ZY
� Ial�120�

120�,VcaVbc

120�,VbcVab

Vab

30�.

VL � 0Vab 0 � 0Vbc 0 � 0Vca 0

Vp � 0Van 0 � 0Vbn 0 � 0Vcn 0

VL � 13Vp

Vp,
13VL

 Vca � Vcn � Van � 13Vpl�210�

 Vbc � Vbn � Vcn � 13Vpl�90�

 � Vp a1 �
1

2
� j 

13

2
b � 13Vpl30�

 Vab � Van � Vnb � Van � Vbn � Vpl0� � Vpl�120�

VcaVbc,Vab,
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(a)

30°

Vnb Vab = Van + Vnb

Van

Vbn

(b)

Vca Vcn Vab

Van

Vbc

Vbn

Vcn

Figure 12.11
Phasor diagrams illustrating the relation-
ship between line voltages and phase
voltages.



for line currents because it is natural and conventional to assume that line
currents flow from the source to the load.

An alternative way of analyzing a balanced Y-Y system is to do
so on a “per phase” basis. We look at one phase, say phase a, and ana-
lyze the single-phase equivalent circuit in Fig. 12.12. The single-phase
analysis yields the line current as

(12.18)

From we use the phase sequence to obtain other line currents. Thus,
as long as the system is balanced, we need only analyze one phase.
We may do this even if the neutral line is absent, as in the three-wire
system.

Ia,

Ia �
Van

ZY

Ia
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ZYVan +
−

a A

n N

Ia

Figure 12.12
A single-phase equivalent circuit.

Calculate the line currents in the three-wire Y-Y system of Fig. 12.13. Example 12.2

+−

5 – j2 Ω

10 + j8 Ω

10 + j8 Ω

A

B
c

b

a

5 – j2 Ω 10 + j8 Ω

C5 – j2 Ω

110   −120° V110   −240° V

110  0° V

+
−

+
−

Figure 12.13
Three-wire Y-Y system; for Example 12.2.

Solution:
The three-phase circuit in Fig. 12.13 is balanced; we may replace it
with its single-phase equivalent circuit such as in Fig. 12.12. We obtain

from the single-phase analysis as

where Hence,

Since the source voltages in Fig. 12.13 are in positive sequence, the
line currents are also in positive sequence:

Ic � Ial�240� � 6.81l�261.8� A � 6.81l98.2� A

Ib � Ial�120� � 6.81l�141.8� A

Ia �
110l0�

16.155l21.8�
� 6.81l�21.8� A

ZY � (5 � j2) � (10 � j8) � 15 � j6 � 16.155l21.8�.

Ia �
Van

ZY

Ia



Balanced Wye-Delta Connection12.4
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A Y-connected balanced three-phase generator with an impedance of
per phase is connected to a Y-connected balanced load

with an impedance of per phase. The line joining the gen-
erator and the load has an impedance of per phase.
Assuming a positive sequence for the source voltages and that 

find: (a) the line voltages, (b) the line currents.

Answer: (a)
(b) 3.75l�8.66� A, 3.75l�128.66� A, 3.75l111.34� A.

207.8l60� V, 207.8l�60� V, 207.8l�180� V,

120l30� V,
Van �

0.6 � j0.7 7
24 � j19 7

0.4 � j0.3 7
Practice Problem 12.2

A balanced Y- system consists of a balanced Y-connected source
feeding a balanced -connected load.¢

¢

The balanced Y-delta system is shown in Fig. 12.14, where the
source is Y-connected and the load is -connected. There is, of course,
no neutral connection from source to load for this case. Assuming the
positive sequence, the phase voltages are again

(12.19)

As shown in Section 12.3, the line voltages are

(12.20)

showing that the line voltages are equal to the voltages across the load
impedances for this system configuration. From these voltages, we can
obtain the phase currents as

(12.21)

These currents have the same magnitude but are out of phase with each
other by 120�.

IAB �
VAB

Z¢
,  IBC �

VBC

Z¢
,  ICA �

VCA

Z¢

 Vca � 13Vpl�150� � VCA

 Vab � 13Vpl30� � VAB,  Vbc � 13Vpl�90� � VBC

Vbn � Vpl�120�,  Vcn � Vpl�120�

Van � Vpl0�

¢

+−

Z∆

Z∆

Z∆

Van

Vcn Vbn

IAB

ICA

A

C
bc B

n

a

+
−

+
−

Ia

Ib

IBCIc

Figure 12.14
Balanced Y- connection.¢

This is perhaps the most practical
three-phase system, as the three-phase
sources are usually Y-connected while
the three-phase loads are usually 

-connected.¢



Another way to get these phase currents is to apply KVL. For
example, applying KVL around loop aABbna gives

or

(12.22)

which is the same as Eq. (12.21). This is the more general way of find-
ing the phase currents.

The line currents are obtained from the phase currents by apply-
ing KCL at nodes A, B, and C. Thus,

(12.23)

Since 

(12.24)

showing that the magnitude of the line current is times the mag-
nitude of the phase current, or

(12.25)

where

(12.26)

and

(12.27)

Also, the line currents lag the corresponding phase currents by 
assuming the positive sequence. Figure 12.15 is a phasor diagram illus-
trating the relationship between the phase and line currents.

An alternative way of analyzing the circuit is to transform
the %-connected load to an equivalent Y-connected load. Using the 
transformation formula in Eq. (12.8),

(12.28)

After this transformation, we now have a Y-Y system as in Fig. 12.10.
The three-phase system in Fig. 12.14 can be replaced by the single-
phase equivalent circuit in Fig. 12.16. This allows us to calculate only
the line currents. The phase currents are obtained using Eq. (12.25) and
utilizing the fact that each of the phase currents leads the correspon-
ding line current by 30�.

Y-¢

ZY �
Z¢
3

¢-Y
Y-¢

30�,

Ip � 0IAB 0 � 0IBC 0 � 0ICA 0

IL � 0Ia 0 � 0Ib 0 � 0Ic 0

IL � 13Ip

Ip

13IL

 � IAB(1 � 0.5 � j0.866) � IAB13l�30�

 Ia � IAB � ICA � IAB(1 � 1l�240�)

ICA � IABl�240�,

Ia � IAB � ICA,  Ib � IBC � IAB,  Ic � ICA � IBC

IAB �
Van � Vbn

Z¢
�

Vab

Z¢
�

VAB

Z¢

�Van � Z¢IAB � Vbn � 0
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30°

30°

30°

ICA

IAB

Ib IBC

Ia

Ic

Figure 12.15
Phasor diagram illustrating the relationship
between phase and line currents.

Example 12.3

Van +
−

Ia

Z∆
3

Figure 12.16
A single-phase equivalent circuit of a bal-
anced circuit.Y-¢

A balanced abc-sequence Y-connected source with 
is connected to a -connected balanced load per phase. Cal-
culate the phase and line currents.

(8 � j4) 7¢

Van � 100l10� V



Solution:
This can be solved in two ways.

■ METHOD 1 The load impedance is

If the phase voltage then the line voltage is

or

The phase currents are

The line currents are

■ METHOD 2 Alternatively, using single-phase analysis,

as above. Other line currents are obtained using the abc phase sequence.

Ia �
Van

Z¢Z3
�

100l10�

2.981l26.57�
� 33.54l�16.57� A

Ic � Ial�120� � 33.53l103.43� A

 Ib � Ial�120� � 33.53l�136.57� A

 � 33.53l�16.57� A

 Ia � IAB13l�30� � 13(19.36)l13.43� � 30�

ICA � IABl�120� � 19.36l133.43� A

IBC � IABl�120� � 19.36l�106.57� A

IAB �
VAB

Z¢
�

173.2l40�

8.944l26.57�
� 19.36l13.43� A

VAB � 173.2l40� V

Vab � Van13l30� � 10013l10� � 30� � VAB

Van � 100l10�,

Z¢ � 8 � j4 � 8.944l26.57� 7
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Practice Problem 12.3 One line voltage of a balanced Y-connected source is 
If the source is connected to a -connected load of

find the phase and line currents. Assume the abc sequence.

Answer:

10.392l150� A, 10.392l30� A.

6l�60� A, 6l�180� A, 6l60� A, 10.392l�90� A,

20l40� 7,
¢120l�20� V.

VAB �

Balanced Delta-Delta Connection12.5

A balanced system is one in which both the balanced source
and balanced load are -connected.¢

¢-¢

The source as well as the load may be delta-connected as shown
in Fig. 12.17. Our goal is to obtain the phase and line currents as usual.



Assuming a positive sequence, the phase voltages for a delta-connected
source are

(12.29)

The line voltages are the same as the phase voltages. From Fig. 12.17,
assuming there is no line impedances, the phase voltages of the delta-
connected source are equal to the voltages across the impedances; that is,

(12.30)

Hence, the phase currents are

(12.31)

Since the load is delta-connected just as in the previous section, some
of the formulas derived there apply here. The line currents are obtained
from the phase currents by applying KCL at nodes A, B, and C, as we
did in the previous section:

(12.32)

Also, as shown in the last section, each line current lags the correspond-
ing phase current by the magnitude of the line current is times
the magnitude of the phase current,

(12.33)

An alternative way of analyzing the circuit is to convert both
the source and the load to their Y equivalents. We already know that

To convert a -connected source to a Y-connected source,
see the next section.

¢ZY � Z¢Z3.

¢-¢

IL � 13Ip

Ip

23IL30�;

Ia � IAB � ICA,  Ib � IBC � IAB,  Ic � ICA � IBC

ICA �
VCA

Z¢
�

Vca

Z¢

IAB �
VAB

Z¢
�

Vab

Z¢
,  IBC �

VBC

Z¢
�

Vbc

Z¢

Vab � VAB,  Vbc � VBC,  Vca � VCA

Vbc � Vpl�120�,  Vca � Vpl�120�

Vab � Vpl0�
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Z∆

Z∆
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Vbc

Vab

IAB

ICA
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C
b

c
B

a

+
−

Ia

Ib

IBCIc

+
−

− +

Figure 12.17
A balanced connection.¢-¢

Example 12.4A balanced -connected load having an impedance is
connected to a -connected, positive-sequence generator having

Calculate the phase currents of the load and the line
currents.
Vab � 330l0� V.

¢

20 � j15 7¢



Solution:
The load impedance per phase is

Since the phase currents are

For a delta load, the line current always lags the corresponding phase
current by and has a magnitude times that of the phase current.
Hence, the line currents are

Ic � Ial�120� � 22.86l126.87� A

Ib � Ial�120� � 22.86l�113.13� A

 � 22.86l6.87� A

 Ia � IAB13l�30� � (13.2l36.87�)(13l�30�)

1330�

ICA � IABl�120� � 13.2l156.87� A

IBC � IABl�120� � 13.2l�83.13� A

IAB �
VAB

Z¢
�

330l0�

25l�36.87
� 13.2l36.87� A

VAB � Vab,

Z¢ � 20 � j15 � 25l�36.87� 7
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A positive-sequence, balanced -connected source supplies a balanced
-connected load. If the impedance per phase of the load is 

and find and 

Answer: 5.548l65� A, 120l98.69� V.

VAB.IABIa � 9.609l35� A,
18 � j12 7¢

¢Practice Problem 12.4

Balanced Delta-Wye Connection12.6

A balanced -Y system consists of a balanced -connected source
feeding a balanced Y-connected load.

¢¢

Consider the circuit in Fig. 12.18. Again, assuming the abc
sequence, the phase voltages of a delta-connected source are

(12.34)

These are also the line voltages as well as the phase voltages.
We can obtain the line currents in many ways. One way is to apply

KVL to loop aANBba in Fig. 12.18, writing

or

Thus,

(12.35)Ia � Ib �
Vpl0�

ZY

ZY 
(Ia � Ib) � Vab � Vpl0�

�Vab � ZY 
Ia � ZY 

Ib � 0

Vca � Vpl�120�

Vab � Vpl0�,  Vbc � Vpl�120�

¢-Y



But lags by since we assumed the abc sequence; that is,
Hence,

(12.36)

Substituting Eq. (12.36) into Eq. (12.35) gives

(12.37)

From this, we obtain the other line currents and using the posi-
tive phase sequence, i.e., The phase
currents are equal to the line currents.

Another way to obtain the line currents is to replace the delta-
connected source with its equivalent wye-connected source, as shown
in Fig. 12.19. In Section 12.3, we found that the line-to-line voltages
of a wye-connected source lead their corresponding phase voltages by

Therefore, we obtain each phase voltage of the equivalent wye-
connected source by dividing the corresponding line voltage of the
delta-connected source by and shifting its phase by Thus,
the equivalent wye-connected source has the phase voltages

(12.38)

If the delta-connected source has source impedance per phase, the
equivalent wye-connected source will have a source impedance of 
per phase, according to Eq. (9.69).

Once the source is transformed to wye, the circuit becomes a wye-
wye system. Therefore, we can use the equivalent single-phase circuit
shown in Fig. 12.20, from which the line current for phase a is

(12.39)

which is the same as Eq. (12.37).

Ia �
VpZ13l�30�

ZY

ZsZ3
Zs

Vbn �
Vp

13
l�150�,  Vcn �

Vp

13
l�90�

Van �
Vp

13
l�30�

�30�.13

30�.

Ib � Ial�120�, Ic � Ial�120�.
IcIb

Ia �
VpZ13l�30�

ZY

 � Ia 
a1 �

1

2
� j 

13

2
b � Ia13l30�

 Ia � Ib � Ia(1 � 1l�120�)

Ib � Ial�120�.
120�,IaIb
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Figure 12.18
A balanced connection.¢-Y
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Figure 12.19
Transforming a -connected source to an
equivalent Y-connected source.

¢

ZY
+
−

Ia

Vp   −30°

√3

Figure 12.20
The single-phase equivalent circuit.



Alternatively, we may transform the wye-connected load to an
equivalent delta-connected load. This results in a delta-delta system,
which can be analyzed as in Section 12.5. Note that

(12.40)

As stated earlier, the delta-connected load is more desirable than
the wye-connected load. It is easier to alter the loads in any one phase
of the delta-connected loads, as the individual loads are connected
directly across the lines. However, the delta-connected source is hardly
used in practice because any slight imbalance in the phase voltages will
result in unwanted circulating currents.

Table 12.1 presents a summary of the formulas for phase cur-
rents and voltages and line currents and voltages for the four con-
nections. Students are advised not to memorize the formulas but to
understand how they are derived. The formulas can always be

VBN � VANl�120�,  VCN � VANl�120�

VAN � Ia 
ZY �

Vp

13
l�30�
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TABLE 12.1

Summary of phase and line voltages/currents for 
balanced three-phase systems.1

Connection Phase voltages/currents Line voltages/currents

Y-Y

Same as line currents

Same as phase voltages

Same as phase voltages

Same as line currents

1 Positive or abc sequence is assumed.

Ic � Ial�120�

Ib � Ial�120�

Ia �
Vpl�30�

13ZY

Vca � Vpl�120�

Vbc � Vpl�120�

Vab � Vpl0�¢-Y
Ic � Ial�120�ICA � VcaZZ¢
Ib � Ial�120�IBC � VbcZZ¢
Ia � IAB13l�30�IAB � VabZZ¢

Vca � Vpl�120�

Vbc � Vpl�120�

Vab � Vpl0�¢-¢
Ic � Ial�120�ICA � VCAZZ¢
Ib � Ial�120�IBC � VBCZZ¢
Ia � IAB13l�30�IAB � VABZZ¢
Vca � VCA � Vabl�120�Vcn � Vpl�120�

Vbc � VBC � Vabl�120�Vbn � Vpl�120�

Vab � VAB � 13Vpl30�Van � Vpl0�Y-¢
Ic � Ial�120�

Ib � Ial�120�

Ia � VanZZY

Vca � Vabl�120�Vcn � Vpl�120�

Vbc � Vabl�120�Vbn � Vpl�120�

Vab � 13Vpl30�Van � Vpl0�
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A balanced Y-connected load with a phase impedance of is
supplied by a balanced, positive sequence -connected source with a line
voltage of 210 V. Calculate the phase currents. Use as a reference.

Solution:
The load impedance is

and the source voltage is

When the -connected source is transformed to a Y-connected source,

The line currents are

which are the same as the phase currents.

Ic � Ial120� � 2.57l58� A

Ib � Ial�120� � 2.57l�178� A

Ia �
Van

ZY
�

121.2l�30�

47.12l32�
� 2.57l�62� A

Van �
Vab

13
l�30� � 121.2l�30� V

¢

Vab � 210l0� V

ZY � 40 � j25 � 47.17l32� 7 

Vab

¢

40 � j25 7 Example 12.5

Practice Problem 12.5In a balanced circuit, and 
Calculate the line currents.

Answer: 7.21l�66.34� A, 7.21l�173.66� A, 7.21l53.66� A.

ZY � (12 � j15) 7.Vab � 240l15�¢-Y

Power in a Balanced System
Let us now consider the power in a balanced three-phase system. We
begin by examining the instantaneous power absorbed by the load. This
requires that the analysis be done in the time domain. For a Y-connected
load, the phase voltages are

(12.41)

where the factor is necessary because has been defined as the rms
value of the phase voltage. If the phase currents lag behind
their corresponding phase voltages by Thus,

(12.42)

ic � 12Ip cos(�t � u � 120�)

ia � 12Ip cos(�t � u),  ib � 12Ip cos(�t � u � 120�)

u.
ZY � Zlu,

Vp12

vCN � 12Vp cos(�t � 120�)

vAN � 12Vp cos �t,  vBN � 12Vp cos(�t � 120�)

12.7

obtained by directly applying KCL and KVL to the appropriate three-
phase circuits.


