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SOLUTION

(2) In Example 2.1 the value of A was found as 1.152 Wb-T for B, = 1.2 T. Therefore, for sinusoidai variation of B,

A =1.152 sin 314t Wb-T

The emf is
i
e= " =361.7cos 314t V
b R L
® ¢ dotyAe 4 x1077x 6000 % 16x 1074
=3317x10*
Iy 6x107* .
Ry = = — — =29.856 % 10
Hodg  4mx107x16x10
(c) From Example 2.1
i=1.06A
AL op
i 1.06
It can also be found by using Eq. (2.21). Thus
2 2 2
L-np=N N (600)

=1.08 H

(d) The energy stored in the magnetic field is from Eq. (2.32)

1 (1.152)7°
27 1.08

2.6 HYSTERESIS AND EDDY-CURRENT LOSSES

=0.6144]

R Re+Ry (3316+29.84)x10°

When a magnetic material undergoes cyclic magnetization, two kinds of power losses occur in it—hysteresis
and eddy-current losses—which together are known as core-loss. The core-loss is important in determining

heating, temperature rise, rating and efficiency of
transformers, machines and other ac run magnetic
devices.

Hysteresis Loss

Figure 2.18 shows a typical hysteresis loop of a
ferromagnetic material. As the mmf is increased from
zero to its maximum value, the energy stored in the field
per unit volume of material is

B,=B,
J. HdB = area ofabgo

e

Fig.2.18 Hysteresis loss
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As H is now reduced to zero, dB being negative, the energy is given out by the magnetic field (from the
exciting coil back to the voltage source) and has a value

B,
J. HdB = area chg
B,=B,

The net energy unrecovered in the process is area ofabco which is lost irretrievably in the form of heat and
is called the hysteresis loss. The total hysteresis loss in one cycle is easily seen to be the area of the complete
loop (abcdefa) and let it be indicated as wy, (hysteresis loss/unit volume). Then hysteresis loss in volume 7 of
material when operated at f Hz is

Ph:Wth W (235)
In order to avoid the need for computation of the loop area, Steinmetz gave an empirical formula for
computation of the hystersis loss based on experimental studies according to which

Py, =k,fB", W/m?> (2.36)

where £, is a characteristic constant of the core material, B,, is the maximum flux density and », called the
Steinmetz exponent, may vary from 1.5 to 2.5 depending upon the material and is often taken as 1.6.

Eddy-current Loss

When a magnetic core carries a time-varying flux, voltages are induced in all possible paths enclosing the flux.
The result is the production of circulating currents in the core (all magnetic materials are conductors). These
currents are known as eddy-currents and have power loss (izR) associated with them called eddy-current loss.
This loss, of course, depends upon the resistivity of the material and lengths of the paths of circulating currents
for a given cross-section. Higher resistivity and longer paths increase the effective resistance offered by the
material to induced voltages resulting in reduction of eddy-current loss. High resistivity is achieved by adding
silicon to steel and hence silicon steel is used for cores conducting alternating flux. Dividing up the material
into thin laminations along the flow of flux, with each lamination lightly insulated (varnish is generally used)
from the adjoining ones, increases the path length of the circulating currents with consequent reduction in
eddy-current loss. The loss in fact can be shown to depend upon the square of lamination thickness. The
lamination thickness usually varies from 0.3 to 5 mm for electromagnetic devices used in power systems and
from about 0.01 to 0.5 mm for devices used in electronic applications where low core-loss is desired.
The eddy-current loss can be expressed by the empirical formula

pe=k.f*B> Wim’ (2.37)
wherein
k,=K.d*/p (2.38)

d being the thickness of lamination and p the resistivity of material.

It is only an academic exercise to split the core-loss into its two components. The core loss in fact
arises from two types of flux variations: (i) flux that has a fixed axis and varies sinusoidally with time as
in transformers (this is the type visualized in the above discussion), (ii) flux density is constant but the flux
axis rotates. Actually in ac machines as well as in armature of dc machines the flux variation comprises both
these types occurring simultaneously. The core-loss is measured experimentally on material specimen and
presented graphically. Typical values of the specific core-loss (W/kg of material) are displayed in Figs 2.19
(a) and (b) for cold-rolled grain-oriented (crgos) steel. It is easy to see from these figures that for reasons
mentioned above specific core loss is much higher in machines than in transformers.
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Fig. 2.19 Core-loss at 50 Hz: (a) transformers, (b) machines

EXAMPLE 2.9 The total core loss of a specimen of silicon steel is found to be 1500 W at 50 Hz. Keeping
the flux density constant the loss becomes 3000 W when the frequency is raised to 75 Hz. Calculate separately
the hysteresis and eddy current loss at each of those frequencies.

SOLUTION From Egs. (2.36) and (2.37) for constant flux density, total core loss can be expressed as

P = Af+ Bf? or Plf=A+ Bf

1500/50 =4 + 50 B or 30=4+50B 6)

3000/75=A4+75 B or 40=4+75B (ii)
Solving Egs. (i) and (i), we get A =10, B=2/5
Therefore P=10f+2/5f*=P,+P, (iii)
At 50 Hz P, =10x50=500 W

P, =2/5x 2500 = 1000 W

At 75 Hz P, =10x75=750 W

P, =2/5x%(75)*=2250 W

2.7 PERMANENT MAGNETS

The permanent magnet is an important excitation source (life long) commonly employed for imparting energy
to magnetic circuits used in rotating machines and other types of electromechanical devices. There are three
classes of permanent magnet materials (or hard magnetic materials) used for permanent magnet dc (PMDC)
motors: Alnicos, ceramics (ferrites) and rare-earth materials. Alnico magnets are used in motors up to
200 kW, while ceramic magnets are most economical in fractional kW motors. The rare-earth magnetic
materials are very costly, but are the most economic choice in very small motors. Latest addition is
neodymium-iron boron (Nd FeB). At room temperature, it has the highest energy product (to be explained
later in this section) of all commonly available magnets. The high permeance and coercivity allow marked
reductions in motor frame size for the same output compared to motors using ferrite (ceramic) magnets. For
very high temperature applications Alnico or rare-earth cobalt magnets must be used.
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MAGNETIC CIRCUITS
AND INDUCTION

2.1 INTRODUCTION

The electromagnetic system is an essential element of all rotating electric
machinery and electromechanical devices as well as static devices like the
transformer. The role of the electromagnetic system is to establish and control
electromagnetic fields for carrying out conversion of energy, its processing and
transfer. Practically all electric motors and generators, ranging in size from fractional horsepower units
found in domestic appliances to the gigantic several thousand kW motors employed in heavy industry and
several hundred megawatt generators installed in modern generating stations, depend upon the magnetic
field as the coupling medium allowing interchange of energy in either direction between electrical and
mechanical systems. A transformer though not an electromechanical conversion device, provides a means
of transferring electrical energy between two electrical ports via the medium of a magnetic field. Further,
transformer analysis runs parallel to rotating machine analysis and greatly aids in understanding the latter.
It is, therefore, seen that all electric machines including transformers use the medium of magnetic field for
energy conversion and transfer. The study of these devices essentially involves electric and magnetic circuit
analysis and their interaction. Also, several other essential devices like relays, circuit breakers, etc. need the
presence of a confined magnetic field for their operation.

The purpose of this chapter is to review the physical laws governing magnetic fields, induction of emf
and production of mechanical force, and to develop methods of magnetic-circuit analysis. Simple magnetic
circuits and magnetic materials will be briefly discussed. In the chapters to follow, how the concepts of this
chapter are applied in the analysis of transformers and machines will be shown.

2.2 MAGNETICCIRCUITS

The exact description of the magnetic field is given by the Maxwell’s equations* and the constitutive
relationship of the medium in which the field is established.

* Maxwell’s equations governing the electric and magnetic fields are
V-B=0 and V-D=p
o~ ro— 3 aD = - _ —12
VXH_J+8_ and D =&E;&=885x%x10
t
wherein J = conduction current density and D = displacement current density, negligible for slowly-varying

fields D =&, 7 ; & = 8.85 x 10~ F/m).
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Such description apart from being highly complex is otherwise not necessary for use in electric machines
wherein the fields (magnetic and electric) are slowly varying (fundamental frequency being 50 Hz) so that
the displacement current can be neglected. The magnetic field can then be described by Ampere’s law and is
solely governed by the conduction current. This law is in integral form and is easily derivable from the third
Maxwell’s equation (by ignoring displacement current) by means of well-known results in vector algebra.
The Ampere’s law is reproduced as follows:

J'Sde = i -di @1
wherein . = conduction current density
H = magnetic field intensity
s = the surface enclosed by the closed path of length /
d s = differential surface
d[ = differential length
Consider the example of a simple electromagnetic system comprising an exciting coil and ferromagnetic
core as shown in Fig. 2.1. The coil has N turns and carries a constant (dc) current of i A. The magnetic field is
established in the space wherein most of the total magnetic flux set up is confined to the ferromagnetic core

for reasons which will soon become obvious. Consider the flux path through the core (shown dotted) which in
fact is the mean path of the core flux. The total current piercing the surface enclosed by this path is as follows:

[ J-as =ni
S
HC
(TTTTTTT 'Z)" """"" \
. ' i
/ -~y o T 1
o A Core mean
+ /I C-L:\) \\ i " “length I
| Frrpy :‘/ (Ferromagnetic)
[« °
e ! [T IPN 7 !
‘\ C;}~1L|_> | : Leakage fiux
\ /' I l
- T—:‘\‘) / !
~ : L — c a : b
Exciting coil “______ oo )

Fig.2.1 A simple magnetic system

Hence Eq. (2.1) acquires the form

Ni= 9519.(1? 2.2)
1
Since N is the number of coil turns and i the exciting current in amperes, the product #= Ni has the units of
ampere-turns (AT) and is the cause of establishment of the magnetic field. It is known as the magnetomotive
force (mmf) in analogy to the electromotive force (emf) which establishes current in an electric circuit.
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The magnetic field intensity H causes a flux density B to be set up at every point along the flux path which

is given by
B =uH=puyu.H (for flux path in core) (2.3a)
and B =uyH (for flux path in air) (2.3b)

The units of flux density are weber (Wb )/m2 called tesla (T). The term L is the absolute permeability of
free space and has a value of

Uo=4mx 1077 henry (H)/m
The permeability 1 = Lo, of a material medium is different from , because of a certain phenomenon
occurring in the material. The term L, is referred to as relative permeability of a material and is in the range of

2000-6000 for ferromagnetic materials (see Sec. 2.3). It is, therefore, seen that for a given H, the flux density
B and, therefore, the flux over a given area

¢=C.[>E’-d5

will be far larger in the magnetic core in Fig. 2.1 than in the air paths. Hence, it is safe to assume that the
magnetic flux set up by mmf Ni is mainly confined to the ferromagnetic core and the flux set up in air paths
is of negligible value. The flux set up in air paths is known as the leakage flux as if it leaks through the core;
some of the leakage flux paths are shown chain-dotted in Fig. 2.1. There is no way to avoid magnetic leakage
as there are no magnetic insulators in contrast to electric insulators which confine the electric current to the
conductor for all practical purposes. The effect of the leakage flux is incorporated in machine models through
the concept of the leakage inductance.

The direction of field intensity is H and so the direction of flux ¢ is determined from the Right Hand Rule
(RHR). It is stated as:

Imagine that you are holding a current carrying conductor in your right hand with the thumb pointing in
the direction of current. Then the direction in which the fingers curl gives the direction of flux. In case of a
coil you imagine that you are grasping the coil in right hand with the thumb in the direction of current; then
the fingers curl in the direction of flux.

The reader may apply RHR to the exciting coil in Fig. 2.1 to verify the direction of flux as shown in the
figure.

The magnetic field intensity / is tangential to a flux line all along its path, so that the closed vector
integration in Eq. (2.2) along a flux-line reduces to closed scalar integration, i.e.

Ni= gSH di 2.4)
1

With the assumption of negligible leakage flux, the flux piercing the core cross-section at any point
remains constant. Further, from the consideration of symmetry it immediately follows that the flux density
over straight parts of the core is uniform at each cross-section and remains constant along the length; such
that H is constant along the straight parts of the core. Around the corners, flux lines have different path lengths
between magnetic equipotential planes (typical ones being ab and cd shown in Fig. 2.1) so that A varies from
a high value along inner paths to a low value along outer paths. It is reasonable to assume that H shown dotted
along the mean path will have the same value as in straight parts of the core (this mean path technique renders
simple the analysis of magnetic circuits of machines and transformers).
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It has been seen previously that the magnetic field intensity along the mean flux path in the core can be
regarded constant at H_. It then follows from Eq. (2.4) that
F=Ni=H./I, (2.5)
where F=mmfin AT and /.= mean core length (m)
From Eq. (2.5)
Ni

He=—=  AT/m (2.6)

c

If one now imagines that the exciting current i varies with time, Eq. (2.6) would indicate that H, will vary
in unison with it. Such fields are known as guasi-static fields in which the field pattern in space is fixed but
the field intensity at every point varies as a replica of the time variation of current. This simplified field picture
is a consequence of negligible displacement current in slowly-varying fields as mentioned earlier. In a quasi-
static field, the field pattern and field strength at a particular value of time-varying exciting current will be the
same as with a direct current of that value. In other words, a field problem can be solved with dc excitation
and then any time variation can be imparted to it.

Now, the core flux density is given by,

B.=u.H, tesla (T)

and core flux (assumed to be total flux) is given by,

6= gSE-dE —BA, Wb
s

where A4, = cross-sectional area of core and flux in the limbs is oriented normal to cross-sectional area. Then
from Eq. (2.6)

¢:/ichAc:L or ¢:£:}-7) (2.7)
I R
l’tCAC
F I, T
where R = X = —— =reluctance* of the magnetic circuit (AT/Wb) (2.8)
He

and P = 1/R = permeance of the magnetic circuit. It is, therefore, seen that by certain simplifying assumptions
and field symmetries, it has been possible to lump the distributed magnetic system into a lumped magnetic
circuit described by Eq. (2.7) which is analogous to Ohm’s law in dc circuits. The electrical circuit analog
of the magnetic system (now reduced to a magnetic circuit) is shown in
Fig. 2.2 wherein F (mmf) is analogous to E (emf), R (reluctance) is
analogous to R (resistance) and ¢ (flux) is analogous to 7 (current).

The analogy though useful is, however, not complete; there being two
points of difference: (i) magnetic reluctance is nondissipative of energy
unlike electric resistance, (ii) when F is time-varying, the magnetic Fig.2.2 Electrical analog of the
circuit still remains resistive as in Fig. 2.2, while inductive effects are simple magnetic circuit of
bound to appear in an electric circuit. This is because there is no time- Fig. 2.1
lag between the exciting current and the establishment of magnetic flux
(quasi-static field).

¢ (~1)

7 (~ E) R(~ R)

* Unit of reluctance is AT/Wb and will not be specified every time in examples.
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The lumped magnetic circuit and its electrical analog are useful concepts provided the permeability (u) of
the core material and, therefore, the core reluctance is constant as is tacitly assumed above. This, however,
is not the case with ferromagnetic materials, but when air-gaps are involved, the assumption of constant
reluctance is generally valid and leads to considerable simplicity in magnetic circuit analysis.

In more complicated magnetic circuits—with multiple excitations and series-parallel core arrangement—
the general theorems of electric circuits apply, i.e. Kirchhoff’s voltage (mmf) law and Kirchhoff’s current
(flux) law. This is illustrated in Example 2.3.

B-H Relationship (Magnetization Characteristic)

In free space (also nonmagnetic materials), the permeability 1 is constant so that B-H relationship is linear.
This, however, is not the case with ferromagnetic materials used in electric machines, wherein the B-H
relationship is strictly nonlinear in two respects—
saturation and hysteresis. Hysteresis non-linearity
is the double valued B-H relationship exhibited in
cyclic variation of H (i.e. exciting current). This
nonlinearity is usually ignored in magnetic circuit
calculations and is important only when current
wave shape and power loss are to be accounted
for. This is discussed in Sections 2.3 and 2.6. A
typical normal B-H relationship (magnetization
characteristic) for ferromagnetic materials is shown | --/------

in Fig. 2.3. Tt has an initial nonlinear zone, a middle ~—— Initial nonlinear zone

B(T)

<——— Saturation zone

'« Linear zone
(constant u)

almost linear zone and a final saturation zone in 0 H(ATIm)
which B progressively increases less rapidly with # Fig.2.3  Typical normal magnetization curve of
compared to the linear zone. In the deep saturation ferromagnetic material

zone, the material behaves like free space.

Due to considerations dictated by economy, electric machines and transformers are designed such that
the magnetic material is slightly saturated (i.e. somewhat above the linear zone). In exact magnetic circuit
calculations the nonlinear magnetization curve has to be used necessitating graphical/numerical solutions.

Core with Air-gap

Transformers are wound on closed cores as in Fig. 2.1. Rotating machines have a moving element and must
therefore have air-gaps in the cores out of necessity. A typical magnetic circuit with an air-gap is shown in
Fig. 2.4. It is assumed that the air-gap is narrow and the flux coming out of the core passes straight down the
air-gap such that the flux density in the air-gap is the same as in the core. Actually as will soon be seen, that
the flux in the gap fringes out so that the gap flux density is somewhat less than that of the core. Further, let
the core permeability u,. be regarded as constant (linear magnetization characteristic).

The mmf Ni is now consumed in the core plus the air-gap. From the circuit model of Fig. 2.4(b) or directly
from Fig. 2.4(a)

Ni = H,l, + H, (2.92)
B

C

Bg
Nl (2.9b)
He & opo ¢

or Ni
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HC
/————’{-»— ————— \I// Mean core length, /,
i |
— =D | Cross-sectional
* T (+) { area A
| |
° 1P ~— Air-gap; Hg, Ig
¢ I N | T
D ” o
¢ ! l .
._—___fl-) {
_ _/ Ni Rq

(a) (b)

Fig. 2.4 A typical magnetic circuit with air-gap and its equivalent electric circuit

Assuming that all the core flux passes straight down the air-gap (it means no fringing (see Fig. 2.5))

By =B,
. ¢=B.A=B,A (2.10)
Substituting Eq. (2.10) in Eq. (2.9b)
L g
Ni ¢(ﬂcAj+¢[ﬂoAj (2.11)
Recognizing various quantities in Eq. (2.11)
F=0¢(R.+Rg) = ¢R,, (2.12)

/
where Re € = core reluctance

/

R,= = = air-gap reluctance
Y

From Eq. (2.12)

FIR
].‘
¢ = = £ (2.13)
R +R 1+R./R
(4 g c g
R
But Ze _ Hole
Rg luclg

because p,. is 2000 to 6000 times L in ferromagnetic materials. The permeability effect predominates the
usual core and air-gap dimensions even though /, > [,. It then follows from Eq. (2.13), that

¢ = FIR, (2.14)
which means that in a magnetic circuit with air-gap(s), core reluctance may be neglected with no significant
loss of accuracy. This assumption will be generally made in modelling rotating machines. The effect of core

saturation (reduction of core permeability) will be introduced as a correction wherever greater accuracy is
desired.
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Magnetic Circuit Calculations

Normally magnetic circuit calculations involve two types of problems. In the first type of problem it is
required to determine the excitation (mmf) needed to establish a desired flux or flux density at a given point
in a magnetic circuit. This is the normal case in designing electromechanical devices and is a straight forward
problem. In the second category, the flux (or flux density) is unknown and is required to be determined for a
given geometry of the magnetic circuit and specified mmf. This kind of problem arises in magnetic amplifiers
wherein this resultant flux is required to be determined owing to the given excitation on one or more control
windings. A little thought will reveal that there is no direct analytical solution to this problem because of the
non-linear B-H characteristic of the magnetic material. Graphical/numerical techniques have to be used in
obtaining the solution of this problem.

Leakage Flux

In all practical magnetic circuits, most of the flux is confined to the intended path by use of magnetic cores but
a small amount of flux always leaks through the surrounding air. This stray flux as already stated is called the
leakage flux, Leakage is characteristic of all magnetic circuits and can never be fully eliminated. Calculations
concerning the main magnetic circuit are usually carried out with the effect of leakage flux either ignored or
empirically accounted for. Special studies of leakage must be made for ac machines and transformers since
their performance is affected by it.

Fringing

At an air-gap in a magnetic core, the flux fringes out into neighbouring air paths as shown in Fig. 2.5;
these being of reluctance comparable to that of the gap. The result is nonuniform flux density in the air-
gap (decreasing outward), enlargement of the effective air-

gap area and a decrease in the average gap flux density. The Fringing flux
fringing effect also disturbs the core flux pattern to some 3
depth near the gap. The effect of fringing increases with the = Air o
air-gap length. Corrections for fringing in short gaps (as used Core Fgap3 Core
in machines) are empirically made by adding one gap length
. . . . \/
to each of the two dimensions making up its area. For the ] - .
example of the core with the air-gap previously presented, the Fig.2.5 Flux fringing at air-gap
gap reluctance would now be given by
/
_ 'z
Ry=
.u()Ag

which will be less than the previous value as 4, > 4.

It can be shown theoretically that the magnetic flux leaves and enters the surface of an infinitely permeable
material normally. This will be nearly so in ferromagnetic materials which have high permeability. In electric
machines a small amount of the tangential flux component present at iron surfaces will be neglected.

Stacking Factor

Magnetic cores are made up of thin, lightly insulated (coating of varnish) laminations to reduce power loss
in cores due to the eddy-current phenomenon (explained in Sec. 2.6). As a result, the net cross-sectional area
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of the core occupied by the magnetic material is less than its gross cross-section; their ratio (less than unity)
being known as the stacking factor. Depending upon the thickness of laminations, stacking factor may vary
from 0.5-0.95, approaching unity as the lamination thickness increases.

EXAMPLE 2.1 The magnetic circuit of Fig. 2.4(a) has dimensions: A, = 4 x 4 cm’, lg=0.06 cm, [, =
40 cm; N = 600 turns. Assume the value of W, = 6000 for iron. Find the exciting current for B, = 1.2 T and
the corresponding flux and flux linkages.

SOLUTION From Eq. (2.9), the ampere-turns for the circuit are given by

Ni = ——l. +—51 i
oMy ¢ Mo € ()
Neglecting fringing
A, =4, therefore B.=B,
B. (1
Then i= —C[L+l ]
N\, ¥
= 1'27 ( 40 +0.06) x 1072 (ii)
47 x 107" x 600\ 6000
=1.06 A

2
The reader should note that the reluctance of the iron path of 40 cm is only [%) = 0.11 of the reluctance of the
0.06 cm air-gap.
0=B.A,=12x16x104=192x 10" Wb
Flux linkages, A =N¢=600x 19.2 x 10 =1.152 Wh-turns

If fringing is to be taken into account, one gap length is added to each dimension of the air-gap constituting the area.
Then

Ag = (4+0.06) (4 +0.06) = 16.484 cm’

Effective 4, > 4, reduces the air-gap reluctance. Now

19.2x1074
16.484 x 10
From Eq. (i)
1 (Bl
i _#ON[_; : +Bglg] (i)
r
-2
- 17 1:2X40X10 7 |} 165 % 0.06 102
47 %1077 % 600 6000
~1.0332A

EXAMPLE 2.2 4 wrought iron bar 30 cm long and 2 cm in diameter is bent into a circular shape as
shown in Fig. 2.6. It is then wound with 600 turns of wire. Calculate the current required to produce a flux
of 0.5 mWb in the magnetic circuit in the following cases:

(i) no air-gap;
(ii) with an air-gap of 1 mm; U, (iron) = 4000 (assumed constant); and
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(iii) with an air-gap of 1 mm; assume the following data for the magnetization of iron:

Hin AT/m 2500 3000 3500 4000
BinT 1.55 1.59 1.6 1.615
SOLUTION

(1) No air-gap

30x1072 5
= = —7 =1.9%x10 30 cm, core length
4000 x 47 x10™ " x T x10
Ni = gR, |
3 5 —=— 1mm
. 0.5x107"x1.9x10 T
or i=¢R/N= =0.158A
600 4 2
A.=nx10 m
(i) Air-gap = 1 mm, u, (iron) = 4000
R, =1.9x10° (as in part (i)
1x107° .
. = — — =2533x10° Fig. 2.6
4 x10” "' x x10
R(total) = R, + R, =27.1 x 10°
-3 5
;- 05x107%27.0x10° oo
600
(iii) Air-gap = 1 mm; B-H data as given
-3
B, =B,= % =1.59 T (fringing neglected)
%10
- B_g _ 1.59
4 —7
:Ll() 4w x10
AT = g = SOXDI0T
£ EE 4pxi07’

From the given magnetization data (at B, = 1.59 T),
H,.=3000 AT/m
AT, = H.I. = 3000 x 30 x 1072 =900
AT (total) = AT, + AT,
=900 + 1265 =2165

=29 _361a
600

EXAMPLE 2.3 The magnetic circuit of Fig. 2.7 has cast steel core with dimensions as shown:

Mean length from A to B through either outer limb = 0.5 m
Mean length from A to B through the central limb = 0.2 m
In the magnetic circuit shown it is required to establish a flux of 0.75 mWb in the air-gap of the central
limb. Determine the mmf of the exciting coil if for the core material (a) U, = o (b) W, = 5000. Neglect
[fringing.
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Mean flux path
K o/

———— —~‘ = ——~
| | |
l o1 i |
I i : | 0 P 1x1cm
| | L |
| I | N |
: I : 0.02cm :
.
0.02 cm —:L : 2cm — | i/ @ : i._ 0.025 cm
@ T \_ __ _____ ,B\——T ______ J @
1x1cm

SOLUTION

(a) U, = oo, i.e. there are no mmf drops in the magnetic core. It is easy to see from Fig.2.7 that the two outer limbs
present a parallel magnetic circuit. The electrical analog of the magnetic circuit is drawn in Fig. 2.8(a). Various
gap reluctances are:

0.025 x 1072
Ryt = % =1.99 x 10°
4rx107 7 x1x10”
» 0.02x 1072 592 % 10°
=5 L. X
2 4rx107 x1x107
0.02x1072 s
Rgs = =0.796 % 10

4 x107"x2x107%
From Fig. 2.8(b),
Ni=0.75% 107 (Rgs + Ry1 || Ry2)
=0.75 x 107 (0.796 + 0.844) x 10°

= 1230 AT
. ¢=0.75 mWb
} 0.75 mWb
N Ni
Rg, $ S, > § g llvg,
(R‘gg Rgs
(a) (b)

Fig. 2.8 Electrical analog of Fig. 2.7

(b) w, = 5000. This means that the reluctance of magnetic core must be taken into consideration. The analogous
electric circuit now becomes that of Fig. 2.9.
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Since gap lengths are negligible compared to core lengths, various core reluctances can be calculated as follows:

ol = — 05 — =0.796 x 10° .
4 x107" x5000x1x10 I 0.75 mWb
6 ;
Rcz = Rcl =0.796 x 10 Rep Ni R
0.2 6 Re3
Res = = — =0.159% 10
47 x107" % 5000% 2 %10
Rg2 Ryg Rg1
The equivalent reluctance is g
7?'eq = (Rcl + 7?'gl) H (RCZ + RgZ) + Rc3 + Rg3) Flg 2.9

 27.86x23.86
T 512

Now Ni = ¢@Req
=0.75%x 107 x 1.955 x 10°
= 1466 AT

x 10°+0.955 x 10° = 1.955 x 10°

EXAMPLE 2.4 The magnetic circuit of Fig. 2.10 has cast steel core. The cross-sectional area of the
central limb is 800 mm’ and that of each outer limb is 600 mm?. Calculate the exciting current needed
to set up a flux of 0.8 mWb in the air gap. Neglect magnetic leakage and fringing. The magnetization
characteristic of cast steel is given in Fig. 2.16.

v i Ty |
T T -
: I | 1 mm |
| T I — |
|
. q |
400 0 400
m|m 500 turns p — 160 mm mm
| q :
[
: | [ [
Lo ___ ¥ o ________
Fig. 2.10
SOLUTION
08 1073
Air ga B,= —X——=1T and H,= — AT/m
gap £ 300 107 ¢ 4zx107
1
Fo= ———— x1x107° =796 AT
47 %10
Central limb B, =B,=1T
From Fig. 2.16 H,=1000 AT/m

F.=1000x 160 x 107> = 160 AT
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Because of symmetry, flux divides equally between the two outer limbs. So
¢ (outer limb) = 0.8/2 = 0.4 mWb
0.4x1073
600%107°
F (outer limb) = 375 x 400 x 107> = 150 AT
F (total) = 796 + 160 + 150 = 1106 AT
Exciting current = 1106/500 =2.21 A

B (outer limb) = =0.667 AT

EXAMPLE 2.5 The magnetic circuit of Fig. 2.11 has a cast steel core whose dimensions are given below:

Length (ab + cd) = 50 cm Cross-sectional area = 25 cm’
Length ad = 20 cm Cross-sectional area = 12.5 cm”
Length dea = 50 cm Cross-sectional area = 25 cm’

Determine the exciting coil mmf required to establish an air-gap flux of 0.75 m Wb. Use the B-H curve
of Fig. 2.16.

| ! |
|
| | I
| | |
| | |
1P ! |
d P : |
{op | ol L g
L 7 | [Te}
F d P I | € T g
—t | |
q | |
— I P | |
| | |
| |
| |

Fig. 2.11

SOLUTION Assuming no fringing the flux density in the path abcd will be same, i.e.

-3
5 0,75><104 03T
25x10”
B 0.3x025%x1073
Fpe=—lpe= ———————— =60AT
Ho 47 x10

H,, = H,4 (from Fig. 2.16 for cast steel for B=0.3 T) =200 AT/m

Fuprea =200 x50 x 1072 =100 AT

F.; =60+ 100 = 160 AT
Hy = &2 =800 AT/m
20x10~



The McGraw-Hill Companies

24 Electric Machines

B, (from Fig. 2.16) = 1.04 T
0.0 =1.04x125%1074=13 mWb
Bgea = 0.75 + 1.3 =2.05 mWb
2.05%1073
=5 =08T
25x10
Hy,, (from Fig. 2.16) = 500 A T/m
Frea = 500 x 50 x 102 =250 AT
F = Fuea+ Fag =250+ 160 = 410 AT

dea

EXAMPLE 2.6 A caststeel ring has a circular cross-section of 3 cm in diameter and a mean circumference
of 80 cm. A 1 mm air-gap is cut out in the ring which is wound with a coil of 600 turns.
(a) Estimate the current required to establish a flux of 0.75 mWb in the air-gap. Neglect fringing and
leakage.
(b) What is the flux produced in the air-gap if the exciting current is 2A? Neglect fringing and leakage.
Magnetization data:

H (AT/m) 200 400 600 800 1000 1200 1400 1600 1800 2020
B (T) 0.10  0.32 0.60  0.90 1.08 118 1.27 1.32 136 140
SOLUTION
¢=0.75%x10"> Wb 16
_3 15
0.75x10 1.4
By=¢/A= ———— =106 T

X(om] 12
2

B, = B, (no fringing)

B(T)

Reading from the B-H curve drawn in Fig. 2.12, o8- _____

H, =900 AT/m 0.6
I, = 0.8 m (air-gap length can be neglected) 0.4
AT.=H_.,=900 % 0.8 =720

0.2
1.06 3
o= 7 X107 =843 0 : : ' '
4 4 x10 0 400 H, 800 1200 1600 2000
Ni = AT, + AT, =720 + 843 = 1563 Hin AT/m
1563 Fig. 2.12
Therefore i = 600 2.6A

(b) The excitation is now given and the flux is to be determined from the B-H curve given. The problem must,
therefore, be solved numerically/graphically. It is solved here graphically. Now

. B .
Ni= 2 b+ Hl (B~ B) ()

This is a linear equation in B, and H,; the second equation is the nonlinear B-H curve. The intersection of the
two for a given Ni will yield the solution. For this problem

Ni =600x2=1200AT
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Substituting various values in Eq. (i)

B 10°+08 H ii
azx107 e @

1200 =

This equation is plotted in Fig. 2.12, by locating the points
H.=0, B.=15
B.=0, H.=1500
The intersection gives the result

B.=0.78 T
¢=B.A=0.78x % (0.03)>=0.55 mWb

2.3 MAGNETIC MATERIALS AND THEIR PROPERTIES

From the magnetic point of view* a material is classified according to the nature of its relative permeability
(1,). All nonmagnetic materials are classified as paramagnetic, i, slightly greater than 1, and diamagnetic,
1, slightly less than 1. For all practical purposes, 1, of these materials can be regarded as unity, i.e. their
magnetic properties are very much similar to that of free space. Such materials are not of interest to us in this
treatise.

Materials which are of interest to us are those whose relative permeability is much higher than that of free
space. These can be classified as ferromagnetic and ferrimagnetic. Ferromagnetic materials can be further
subdivided as /ard and soft. Hard ferromagnetic materials include permanent magnet materials, such as
alnicos, chromium steels, certain copper-nickel alloys and several other metal alloys. Soft ferromagnetic
materials are iron and its alloys with nickel, cobalt, tungsten and aluminium. Silicon steels and cast steels
are the most important ferromagnetic materials for use in transformers and electric machines. Ferrimagnetic
materials are the ferrites and are composed of iron oxides—MeO. Fe,0;, where Me represents a metallic
ion. Ferrites are also subgrouped as hard (permanent magnetic) and soft (nickel-zinc and manganese-zinc)
ferrites. Soft ferrites are quite useful in high frequency transformers, microwave devices, and other similar
high-frequency operations. There is a third category of magnetic materials, known as superparamagnetic,
made from powdered iron or other magnetic particles. These materials are used in transformers for electronics
and cores for inductors. Permalloy (molybdenum-nickel-iron powder) is the best known example of this
important category of magnetic materials.

Properties of Magnetic Materials

Magnetic materials are characterized by high permeability and the nonlinear B-H relationship which
exhibits both saturation and hysteresis. The physics of these properties is explained by the domain theory of
magnetization usually taught in junior level courses.

The B-H relationship for cyclic H is the hysteresis loop shown in Fig. 2.13 for two values of maximum
flux density. It is easily observed from this figure that B is a symmetrical two-valued function of H; at any
given H, B is higher if H is reducing compared to when H is increasing. This is the basic hysteresis property
in which B lags behind H. It can also be recognized as a memory-type non-linearity in which the material

* For the theory of magnetization based on atomic structure of materials a suitable book on material science may be
consulted.
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Magnetic fields

7 Magnetic circuits

At the end of this chapter you should be able to:

¢ describe the magnetic field around a permanent magnet

s state the laws of magnetic attraction and repulsion for two
magnets in close proximity

s define magnetic flux, ¢, and magnetic flux density, B, and
state their units

¢ perform simple calculations involving B = A

¢ define magnetomotive force, F,,, and magnetic field strength,
H, and state their units

NI
s perform simple calculations involving F,, = NT and H = E

¢ define permeability, distinguishing between g, £, and g

¢ understand the B—H curves for different magnetic materials
s appreciate typical values of w,

s perform caleulations mvolving B = pope, H

¢ define reluctance, S, and state its units

. . . mmf i
¢ perform calculations imvolving § = —— =
@ MOM?’A

s perform calculations on composite series magnetic circuits

¢ compare electrical and magnetic quantities

s appreciate how a hysteresis loop is obtained and that
hysteresis loss is proportional to its area

A permanent magnet is a piece of ferromagnetic material (such as irom,
nickel or cobalt) which has properties of attracting other pieces of these
materials. A permanent magnet will position itgelf in a north and south
direction when freely suspended. The north-secking end of the magnet is
called the north pole, N, and the south-secking end the south pole, S.

The area around a magnet is called the magnetic field and it is in
this area that the effects of the magnetic force produced by the magnet
can be detected. A magnetic field cannot be seen, felt, smelt or heard
and therefore is difficult to represent. Michael Faraday suggested that the
magnetic field could be represented pictorially, by imagining the field
to consist of lines of magnetic flux, which enables investigation of the
distribution and density of the field to be carried out.

The distribution of a magnetic field can be investigated by using some
iron filings. A bar magnet is placed on a flat surface covered by, say,
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Lings of
magnetic

Figure 7.1

cardboard, upon which is sprinkled some iron filings. If the cardboard
1s gently tapped the filings will assume a pattern similar to that shown
in Figure 7.1. If a number of magnets of different strength are used, it
is found that the stronger the field the closer are the lines of magnetic
flux and vice versa. Thus a magnetic field has the property of exerting a
force, demonstrated in this case by causing the iron filings to move into
the pattern shown. The strength of the magnetic field decreases as we
move away from the magnet. It should be realized, of course, that the
magnetic field is three dimensional in its effect, and not acting in one
plane as appears to be the case in this experiment.

If a compass is placed in the magnetic field in various positions, the
direction of the lines of flux may be determined by noting the direction of
the compass pointer. The direction of a magnetic field at any point is taken
as that in which the north-secking pole of a compass needle points when
sugpended i the field. The direction of a line of flux is from the north
pole to the south pole on the outside of the magnet and 1s then assumed to
continue through the magnet back to the point at which it emerged at the
north pole. Thus such lines of flux always form complete closed loops or
paths, they never intersect and always have a definite direction. The laws
of magnetic attraction and repulsion can be demonstrated by using two
bar magnets. In Figure 7.2(a), with unlike poles adjacent, attraction
takes place. Lines of flux are imagined to contract and the magnets try to
pull together. The magnetic field is strongest in between the two magnets,
shown by the lines of flux being close together. In Figure 7.2(b), with
similar poles adjacent (i.e. two north poles), repulsion occurs, i.c. the
two north poles try to push each other apart, since magnetic flux lines
rununing side by side in the same direction repel.

Figure 7.2

7.2

Magnetic flux and
flux density

Magnetic flux is the amount of magnetic field (or the number of lines of

force) produced by a magnetic source. The symbol for magnetic flux is

P (Greek letter ‘phi’). The unit of magnetic flux is the weber, Wb
Magnetic flux density is the amount of flux passing through a defined

area that is perpendicular to the direction of the flux:

. . magnetic flux

Magnetic flux density = ————

area
The symbol for magnetic flux density is B. The unit of magnetic flux
density is the tesla, T, where 1 T = 1 Wb/m? Hence
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7.3 Magnetomotive force
and magnetic field
strength

o .
B = — tesla | where A(m?) is the area

Problem 1. A magnetic pole face has a rectangular section having
dimensions 200 mm by 100 mm. If the total flux emerging from
the pole is 150 uWh, calculate the flux density.

Flux & = 150 uWhbh = 150 x 10~ Wb

Cross sectional area A = 200 x 100 = 20000 mm?
= 20000 x 1078 m?

) D 150 ¢ 108
Flux density B= — = ——————
A 20000 x 10-6

=0.0075 T or 7.5 mT

Problem 2. The maximum working flux density of a lifting elec-
tromagnet is 1.8 T and the effective area of a pole face is circular
m cross-section. If the total magnetic flux produced is 353 mWhb,
determine the radius of the pole face.

Flux density B = 1.8 T; flux & =353 mWb = 353 x 107* Wb

, o , $ 3531073 5
Since B = —, cross-sectional area A = m = T m

—0.1961 m?

The pole face is circular, hence area = 7, where r is the radius.

Hence 72 — 0 1061
I AV U A

0.1961 i 0.1961
and radius r = =0.250m

from which #2 =
T T

1.e. the radius of the pole face is 250 mm

Magnetomotive force (mmf) is the cause of the existence of a magnetic
flux in a magnetic circuit,

mmf, F,, = NI amperes

where N is the number of conductors (or turng) and [ is the current
in amperes. The unit of mmf is sometimes expressed as ‘ampere-turns’.
However since ‘turns’ have no dimensions, the SI unit of mmf is the
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7.4 Permeability and
B-H curves

ampere. Magnetic field strength (or magnetizing force),

H = NI/l ampere per metre,

where / is the mean length of the flux path in metres.
Thus mmf = NI = HI amperes.

Problem 3. A magnetizing force of 8000 A/m is applied to a
circular magnetic circuit of mean diameter 30 cm by passing a
current through a coil wound on the circuit. If the coil is uniformly
wound around the circuit and has 750 turns, find the current in

the coil.

H = 8000 A/m; I =nd =7 % 30 x 1072 m; N = 750 turns

_ NI HI 8000 x 7 x 30 x 1072
Since H = — then, [ = — =
I N 750

Thus, current I — 10.05 A

For air, or any non-magnetic medium, the ratio of magnetic flux density
to magnetizing force is a constant, i.e. B/H = a constant. This constant is
tto, the permeability of free space (or the magnetic space constant) and
is equal to 47 x 1077 H/m, i.e., for air, or any non-magnetic medium,

the ratio | B/H = uy | (Although all non-magnetic materials, including

air, exhibit slight magnetic properties, these can effectively be neglected.)

For all media other than free space, | B/H = yyu-

where #, is the relative permeability, and is defined as

flux density in material

br = flux density in a vacuum

t, varies with the type of magnetic material and, since it is a ratio of
flux densities, it has no unit. From its definition, g, for a vacuum is 1.
fofy = i, called the absolute permeability

By plotting measured values of flux density B against magnetic field
strength H, a magnetization curve (or B—H curve) is produced. For non-
magnetic materials this is a straight line. Typical curves for four magnetic
materials are shown in Figure 7.3.

The relative permeability of a ferromagnetic material is proportional
to the slope of the B—H curve and thus varies with the magnetic field
strength. The approximate range of values of relative permeability e, for
somme common magnetic materials are:
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Figure 7.3 B—H curves for four materials

Cast iron My = 100-250 Mild steel w, = 200-800
Silicon iron g, = 1000-5000 Cast steel  u, = 300-900
Mumetal Hy = 200-5000 Stalloy Hy = 500-6000

Problem 4. A flux density of 1.2 T is produced in a piece of
cast steel by a magnetizing force of 1250 A/m. Find the relative
permeability of the steel under these conditions.

For a magnetic material:

B= Hoftr H
B 1.2
= = 764
o H (47 = 10 7)(1250)

ile. H, =

Problem 5. Determine the magnetic field strength and the mmf
required to produce a flux density of 0.25 T in an air gap of length
12 mm.
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For air: B = ¢ H (since p, = 1)

. B 0.25
Magnetic field strength H = — = ———
o 4w 1077

mmf = H] = 198 940 x 12 x 107> = 2387 A

=198 940 A/m

Problem 6. A coil of 300 twrns is wound wniformly on a ring
of non-magnetic material. The ring has a mean circumference of
40 cm and a uniform cross sectional area of 4 cm?. If the current
m the coil is 5 A, caleulate (a) the magnetic fleld strength, (b) the
flux density and (c) the total magnetic flux in the ring.

NI 300 x5
(a) Magnetic field strength H = — = ————— = 3750 A/m
I 40 x 102

(b) For a non-magnetic material g, = 1, thus flux density B = woH
ie. B=4m x 1077 x 3750 = 4.712 mT
(¢) Flux ® = BA = (4.712 x 1073)}(4 % 10*) = 1.885 pWh

Problem 7. An iron ring of mean diameter 10 cm is uniformly
wound with 2000 turns of wire. When a current of 0.25 A is passed
through the coil a flux density of 0.4 T is set up in the iron. Find
(a) the magnetizing force and (b) the relative permeability of the
iron under these conditions.

I=md =7 %10 cm =7 x 10 x 1072 m; N = 2000 twns; I = 0.25 A;
B=04T

NI 2000 x 0.25 5000
(ay H=— = = =1592 A/m
i 7 x 10 x 1072 T
B 0.4

= =200
wol (4 x 10-7)(1592)

(b) B = popH, hence g, =

Problem 8. A uniform ring of cast iron has a cross-sectional area
of 10 em® and a mean circumference of 20 em. Determine the mmf
necessary to produce a flux of 0.3 mWb in the ring. The magneti-
zation curve for cast iron is shown on page 78.

A=10em?=10x%10*m% 1 =20cm =02m; ® =03 x 107 Wb

_ o 03x1073
Flix density B= — = ——— =03 T
A 10 x 10-*
From the magnetization curve for cast iron on page 78, when B = 0.3 T,
H = 1000 A/m, hence mmf = H] = 1000 x 0.2 =200 A
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7.5 Reluctance

A tabular method could have been used in this problem. Such a solution
is shown below.

&
Part of Material & (Wh) Am?*) B=—(T) Hfrom [ (m) mmf=
circuit 4 graph HI (A)

Ring  Castiron 0.3 107 10 1074 03 1000 0.2 200

Reluctance S (or Ry;) is the ‘magnetic resistance’ of a magnetic circuit
to the presence of magnetic flux.

Fy NI HI I I
Reluctance S = — = — = — = =
D D BA (B/H)YA  pojtrA

The unit of reluctance is 1/H (or H™!) or A/Wh

Ferromagnetic materials have a low reluctance and can be used as
magnetic screens to prevent magnetic fields affecting materials within
the screen.

Problem 9. Determine the reluctance of a piece of mumetal of
length 150 mm and cross-sectional area 1800 mm? when the rela-
tive permeability is 4000. Find also the absolute permeability of
the mumetal.

I 150 = 1073
oft-A (4 x 107 7H4000){1800 x 10-6)
=16 580/H

Reluctance § =

Absolute permeability, g = 1o, = (4 > 1077)(4000)
=5.027 x 10~° H/m

Problem 10. A mild steel ring has a radius of 50 mm and a cross-
sectional area of 400 mm?. A current of 0.5 A flows in a coil wound
uniformly around the ring and the flux produced is 0.1 mWh. If
the relative permeability at this value of current is 200 find (a) the
reluctance of the mild steel and (b) the number of turns on the coil.

[=2mr =2xm x50 %10 mA—=400x10%m? I =035 A;
d =0.1x 1072 Wb; g, = 200

I 2 x x50 x 1073
oA (47 % 10-7){200)(400 x 10-5)

=3.125 x 104/

(a) Reluctance § =
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7.6 Composite series
magnetic circuits

f
b 5= e mmf=S5d
so that NI =S5® and
SO 3125 x 105 0.1 x 1073
hence N = T = G = 625 turns

Further problems ow magnetic circuil quanfifies may be jound in
Section 7.9, problems I to 14, page 85,

For a series magnetic circuit having n parts, the total reluctance § is
given by:

S:S1+S2+---+Sn

(This is similar to resistors connected in series mn an electrical circuit.)

Problem 11. A closed magnetic circuit of cast steel contains a
6 cm long path of cross-sectional area 1 cm? and a 2 cm path of
cross-sectional area 0.5 cm?. A coil of 200 turns is wound around
the 6 cm length of the circuit and a current of 0.4 A flows. Deter-
mine the flux density in the 2 om path, if the relative permeability
of the cast steel 1s 750.

For the ¢ cm long path:
Lo 6 % 1072
totyAr (4 1077HT50)(1 < 10—4)
=6.366 x 10°/H

Reluctance §1 =

For the 2 cm long path:
L 2 x 1072
oAy {dm x 1077)3(750){0.5 x 10-4)
=4.244 % 10°/H

Reluctance S, =

Total circuit reluctance § = Sy + 83 = (6.366 + 4.244) x 10°
=10.61 x 10°/H

mmf . mmf NI 200 < 0.4
S:T’ le. b= —=

- = T 754 %1070 Wh
3 S 1061 x 10°

-5
Flux density in the 2 cm path, B = P _754x10

= =151T
A 0.5 % 10~
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Cast steel

st

Figure 7.4

Mild steel

Problem 12. A silicon iron ring of cross-sectional area 5 cm? has
a radial air gap of 2 mm cut mto it. If the mean length of the silicon
won path 1s 40 cm, calculate the magnetomotive force to produce
a flux of 0.7 mWb. The magnetization curve for silicon is shown
on page 78.

There are two parts to the circuit— the silicon iron and the air gap. The
total mmf will be the sum of the mmf’s of each part.

®  0.7x107
A 5xl10t
From the B—H curve for silicon iron on page 78, when B=1.4 T,
H = 1650 At/m.

Hence the mmf for the iron path = HI = 1650 x 0.4 = 660 A

For the air gap:

The flux density will be the same in the air gap as in the iron, i.e. 1.4 T.
(This agsumes no leakage or fringing occurring. )

For the silicon iron: B = =14T

. B 1.4
Foraw, H = — = ———
o 4w 1077
= 1114000 A/m

Hence the mmf for the air gap = HI = 1114000 x 2 x 1073

=2228 A
Total mmf to produce a flux of 0.7 mWh = 660 4 2228
=2888 A

A tabular method could have been used as shown below.

Part of Material & (Wby A m®) B (T) H (A/m) I (m) mmf =

circuit HI (A)
Ring Silicon 0.7x107% 3x10™% 14 1650 0.4 660
iron (from graph)
1.4
Air- Ai 0751072 5% 107% 14 ————  2x107% 2228
ir-gap Air x x o107 x
= 1114000
Total: 2888 A

Problem 13. Figure 7.4 shows a ring formed with two different
materials — cast steel and mild steel. The dimensions are:

mean length cross-sectional area
Mild steel 400 mm 500 mm?
Cast steel 300 mm 312.5 mm?
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Find the total mmf required to cause a flux of 500 uWb i the
magnetic circuit. Determine also the total circuit reluctance.

A tabular solution is shown below.

Part of Material D (Wh) A (m?) B (T H (A/m) { (m) mmf= H1
circuit (=d/A) (from (A)
graphs p 78)
A Mild steel 500 x 107® 500 x 107° 1.0 1400 400 x 1072 560
B Cast steel 500 % 107%  312.5 1078 1.6 4800 300 < 1072 1440
Total: 2000 A
f 2000
Total circuit reluctance S = —
o 300 x 10-6
=4 x 10°/H
25 cm . L .
) Problem 14. A section through a magnetic circuit of uniform
cross-sectional area 2 cm? is shown in Figure 7.5. The cast steel
il o : ; ;

) TP core has a mean length of 25 ¢m. The air gap is | mm wide and
ALr__: - i?rﬂi the coil has 5000 turns. The B—H curve for cast steel is shown on
gap Lo page 78. Determine the current in the coil to produce a flux density

Q of 0.80 T in the air gap, assuming that all the flux passes through
both parts of the magnetic circuit.
Figure 7.5 For the cast steel core, when B =0.80 T, # =750 A/m (from page 78)

Iy
MOM?’AI

Reluctance of core 57 =

and since B = pou,H,

I8 _LH (25 < 107%)(750)

B
then p, = ——. Thus §; = — 5
Hol Mo (—
wolH

)A TOBA T (0812 x 107H

=1172000/H

L b
toft-Ay  ploAs

For the air gap: Reluctance, Sy =

(since w, = 1 for air)

1% 1073

T G < 102 % 104

=3979000/H

Total circuit reluctance § = 57 + 52 = 1172000 4+ 3979000

=5151000/H
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7.7 Comparison between
electrical and magnetic

7.8

1
m

quantities

Hysteresis and
hysteresis loss

P

il

-HY

ek

Figure 7.6

=

Flux & = BA = 0.80 <2 x 107 = 1.6 x 10~ Wb

mmf

S:—q) , thus mmf = SP
Hence NI =59
o 5151000%1.6 x 104
and cwrrent f = S— = ( 5)500 - ) =0.165 A

Further problems on composite series magnetic circuits may be found in
Section 7.9, problems 15 fo 19, page 806.

Electrical circuit Magnetic circuit
em.f. E (V) mmf F, (A)
current I (A) flux © (Wh)
resistance R (£2) reluctance §  (H™1)

E mmf
I —= CD == ——

R Ay

[ I

R=2 S =

A MO/—LrA

Hysteresis is the ‘lagging’ effect of flux density B whenever there are
changes in the magnetic field strength H. When an initially unmagnetized
ferromagnetic material is subjected to a varying magnetic field strength H,
the flux density B produced in the material varies as shown in Figure 7.6,
the arrows indicating the direction of the cycle. Figure 7.6 i1s known as a
hysteresis loop.

From Figure 7.6, distance OX indicates the residual flux density or
remanence, OY indicates the coercive force, and PP’ is the saturation
flux density.

Hysteresis results in a dissipation of energy which appears as a heating
of the magnetic material. The energy loss associated with hysteresis is
proportional to the area of the hysteresis loop.

The production of the hysteresis loop and hysteresis loss are explained
in greater detail in Chapter 38, Section 3, page 692.

The area of a hysteresis loop varies with the type of material. The area,
and thus the energy loss, is much greater for hard materials than for soft
materials.

For AC-excited devices the hysteresis loop is repeated every cycle of
alternating current. Thus a hysteresis loop with a large area (as with hard
steel) is often unsuitable since the energy loss would be considerable.
Silicon steel has a narrow hysteresis loop, and thus small hysteresis loss,
and is suitable for transformer cores and rotating machine armatures.




Analysis of

AC Circuits

IEE}| inTrRODUCTION

We have discussed the network theorems with reference to resistive load and dc sources. Now, all the
theorems will be discussed when a network consists of ac sources, resistors, inductors and capacitors. All the
theorems are also valid for ac sources.

EXEN| wmesH anALysis

Mesh analysis is useful if a network has a large number of voltage sources. In this method, currents are
assigned in each mesh. We can write mesh equations by Kirchhoff’s voltage law in terms of unknown mesh
currents,

” SEN VMW  Find mesh currents 1, and I, in the network of Fig. 3.1.

3Q j4Q

— —j10Q

+
100£45°V /> j10Q
- |

1

Fig. 3.1

Solution Applying KVL to Mesh 1,
100£45" = (3 + 41, —j10(I, - 1) =0

(3 +j14)I, - j10L, =100 £45° (1)
Applying KVL to Mesh 2,
—-10(L, 1) +;10(1,)=0
J10I,=0 ...(1h)
I,=0
Substituting I, in Eq. (i),
—j101, =100£45°
2 = 100245 =10£135° A

-J
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||m Find mesh current 1, I, and I in the network of Fig. 3.2.

50 —j2Q j5Q
I 00
20
o ) BB
I I Iy T —j2Q
Fig. 3.2

Solution  Applying KVL to Mesh 1,
10 £30°-(5-2)I, -3(1,-1,)=0

8 -72)I, - 3L, = 10£30° (D)
Applying KVL to Mesh 2,
3L -1) -j5L-5(1,-1)=0
=31+ (8 +;5)L, - 51,=0 ... (i)
Applying KVL to Mesh 3,

SI,-1L)-2-2)L,=0
—SL+(7-2)1,=0 ... (iii)
Writing Egs (i), (ii) and (iii) in matrix form,
8—j2 3 0 L 10£30°
-3 8+j5 =5 ||L|= 0
0 =5 T7-72||L 0
By Cramer’s rule,
10£30° -3 0
0 8+j5 5

0 -5 7-;2
I = - =1434£38.7° A
8—j2 3 0
-3 8+j5 5
0 -5 T1-52
8—72 10£30° 0
-3 0 -5
0 0 7-j2
I, = - =0.693£-22°A
8—j2 3 0
-3 8+j5 5
0 -5 T1-j2
8—j72 -3  10430°
-3 8+5 0
0 -5 0
I; = =0.476£13.8° A

8—j2 -3 0
-3 8+j5 -5
0 -5 1-52



3.2 Mesh Analysis 3.3

||m In the network of Fig. 3.3, find the value of 'V, so that the current through (2 + j3)

ohm impedance is zero.

5Q 20 j3Q 40

n
30,0°V j5Q /D
_ I

Fig. 3.3

Solution Applying KVL to Mesh 1,
30£0° = 51, - j5 (1, - 1,)= 0

(5 +j5)1, —j51, =30 £0° ...(1)
Applying KVL to Mesh 2,
-50,-1)-2+;3),-6(I,-1,)=0
51, + (8 +8)1, - 61,=0 .. (1)
Applying KVL to Mesh 3,

-6(1,-1,)-4L,-V,=0
-6L, + 10L,=-V, ...(1i1)
Writing Eqgs (i), (ii) and (iii) in matrix form,
5475 —j5 0[] [30«£0°
-5 8+;8 —6flL|=| 0
0 -6 10 || I | -V,
By Cramer’s rule,
5+j75 30£0° 0

-Jj5 0 -6
0 -V, 10
L= - - =0
5+j5 —=j5 0
-j5 84,8 -6
0 -6 10
(5+j5)(=6V2)=(30)(=/50)=0
h = _J1500 =35.36£45°V
30+ 30

|| SET NN Find the value of the current 1, in the network shown in Fig. 3.4.

hg 40 104£30°V

20 Q
Fig. 3.4
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Solution Applying KVL to Mesh 1,
20£0° - (4 —jH1, —-j10(1, - L,) - 10(I, -L1,)=0
(14 +;6)1, - j10IL, — 10L,= 20 L0
Applying KVL to Mesh 2,
—10(L, - 1)) - 10£30" - 201, - (4 - j4) (1, -1,) =0
—j10L, + (24 +j6) 1, — (4 — j4) I, = -10£30°
Applying KVL to Mesh 3,
=10, -1) -4 -4 (1, -1)-20L,=0
=10l -4 -jH1L,+ (B4 -j4HL,=0
Writing Eqgs (i), (i1) and (iii) in matrix form,

14+j6  —;10 -10 I, ] 20£0°
-710  24+j6 —(4-jd |1, |=|-10230°
-10  —(4-j4y 34-j4 || 15| 0

By Cramer’s rule,
14+ 6  —j10 20.£0°
—j10 24+ j6  —-10£30°
-10  —(4-j4) 0
“1a+j6 -10 -10
—j10 24+ j6  —(4—j4)
—10  —(4-j4) 34-j4

||m Find the voltage V ,, in the network of Fig. 3.5.

1 J50Q 100 Q

I3

100 Q 40 j2000
96 Q )
I1
()
A=
10£0°V
Fig. 3.5

Solution Applying KVL to Mesh 1,
=961, - (100 +4 +,200) (I, - I,) + 10 £0°=0

(200 +,200) T, - (104 +j200) I, = 10 £0°

Applying KVL to Mesh 2,
— (1 =750 -100) I, - (100 +4 +;200) (I, -1,)=0
= (104 +,;200) I, + (205 +150) 1,=0
Writing Eqgs (i) and (ii) in matrix form,

200+ 7200 —(104+ j200)][1,]
—(104+ j200) 205+ /150 ||1, |~

=0.44£L-14° A

. G)

.. (ii)

... (iii)

.G)

...(i)
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By Cramer’s rule,

‘10400 ~(104 + j200)
0 205+ 150
I : ST _005122.72%107 °A
200+ /200  —(104+ j200)
—(104+ j200) 205+ ;150
200+ 200  10.£0°
—(104+ j200) 0
200+ ;200  —(104 + j200)
—(104+ j200) 205+ 150
V_,“g = 100[2 —(4 e 1200)(11 = 12)

= 100(0.045.£26.34°) — (4 + j200)(0.051.£2.72x 107 ° —0.045.£26.34°)
=0.058£-92.65°V

122

=0.045.26.34° A

|| SEINI NN  For the network shown in Fig. 3.6, find the voltage across the capacitor.

10 30
20 ) 10
I
+

Fig. 3.6

Solution Applying KVL to Mesh 1,
520°—(1+ ;2L -2(L) = 1) —(1+ j3) (I, -13)=0

(4+j5)0 =21, —=(1+ j3)13 =5£0° ...(D)
Applying KVL to Mesh 2,
=2(I, =1}) =31, + j2(I; —=13)=0
2L +(5-j2)1, + j2I; =0 ...(i)
Applying KVL to Mesh 3,
~(1+ /)@ 1)+ 21 - 1) -1+ 1)1 =0
—(1+ 3L+ 21, +(2+ j2)1; =0 ...(1i1)
Writing Eqgs (i), (i1) and (iii) in matrix form,
4+ j5 -2 =+ L 5£0°
—2 5-j2 2 I|=| O

—(1+73)  j2  2+j2 |14 0
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By Cramer’s rule,

445 5200 —(1+ j3)
=2 0 72
—(1+ 3 0 2+ 72
A ) 12 1 _065.13051° A
4+j5 2 —(1+,3)
23 5= 2
—A+/3) 2 242
445 2 5.0°
2 5-2 0
a+/3) 2 0
=43 J L _091,-2151°A
4+ j5 -2 —(1+/3)
2 s 2
—(1+j3) j2 242

V. = (=j2)(1; = 1) =(—j2)(0.91/-21.51° = 0.65.£130.51°) = 3.03/-123.12° V

" SEIN WA  Find the voltage across the 2 2 resistor in the network of Fig. 3.7.

30 Jile
AN OO
20 .
2/30° A Q) /D /) E\) 8,45°V
I T_ﬁ ok -
Fig. 3.7
Solution For Mesh 1,
I, = 2.£30° ()

Applying KVL to Mesh 2,

—-(2-j2)(I, -1;)—jlI, —8£45°=0
22— —(2- 1)1, =8£45° ...(i)
Substituting I in Eq. (i),

(2= j2)(2£30°) = (2= jI)1, = 8£45°

| (RBL45°)+(2— j2)(2£30°)
B 2 fl

Voo =2(I) —1,) = 2(2£30°—3.19£ —65°) = 7.82.284.37° V

I, =3.19£-65°A




3.2 Mesh Analysis

|| SETNACERN  Find the current through 3 Qresistor in the network of Fig. 3.8.

5Q

1@ QDMOOIE) gn Q

Fig. 3.8

Solution Applying KVL to Mesh 1,

10£0°—j21; =3 -1(I; -1,)=0

4+ ;)1 -1, =10£0°
Meshes 2 and 3 will form a supermesh.
Writing current equation for the supermesh,
I, -1, =1£0°
Applying KVL to the outer path of the supermesh,
11, -1))-5I; - jlI; =0

L-L-5+,DI;=0 .

Writing Eqgs (i), (ii) and (iii) in matrix form,
4+ 52 -1 0 I, 10£0°
0 -1 1 I, |={ 1£0°
1 -1 =5+ || 15 0
By Cramer’s rule,
10£0° -1 0
1£0° -1 1

0 -1 —(5+,1)
I = - =2.11£-28.01° A
4+52 -1
0 -1 1
1 =1 =5+

Lio=1 =2.112-28.01°A

|| Exa mple EY-N  Find the currents 1, and I, in the network of Fig. 3.9.

60 2V,

"
"
9.,0°V r\) ,D Viz=-j3 Q/) 3Q
- | - I

3.7

()

..(i)

. (iii)
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Solution From Fig. 3.9,

V.=-j3(T -T,)

Applying KVL to Mesh 1,
920°-61;+ j3(I; -1,)=0
(6-73)1; + j3I, =9.£0°
Applying KVL to Mesh 2,
3@ -1)+2V,-31, =0
3L - 3L +2[-/3(L -1)]-31, =0
JL+3- NI, =0

JleH

Writing Eqgs (ii) and (iii) in matrix form,

[

6- /3
79

j3
3- 9

I
I,

9£0°
0

]

By Cramer’s rule,

..(i)

...(iii)

-=132£2.49° A

=124£-15.95°A

|| SEINTICERON  Find the voltage across the 4 Qresistor in the network of Fig. 3.10.

6£30°V

~Op e

7000

N

D

1

1

-1 Q

20
21,

I>

4Q

Fig. 3.10

Solution  From Fig. 3.10,
IL=1
Applying KVL to Mesh 1,
=21 +6£30°+ ji(I; -1,)-21, =0
=21, +6£30°+ jlI; — j1I, - 21, =0
4-/ DI + j1I, =6£30°

..(0)

..(i)
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Applying KVL to Mesh 2,
21, + j (I, -L))— j2I, —41, =0
2L+ jl, — j1 1 - j21, —41, =0
(2-/DL =4+ )L, =0 .. (iii)

Writing Eqs (ii) and (iii) in matrix form,
4-71 Jl I, | _|6£30°
2-/1 —@4+ih||L ] [ o

4—j1 6£30°
2—-j1 0
4- 41 Jl
2—j1 —(4+j1)
Vi =41, =4(0.74£-291°)=296L-291°V

By Cramer’s rule,

I, = =0.742-291° A

IEEN| noDE ANALYsis

Node analysis uses Kirchhoff’s current law for finding currents and voltages in a network. For ac networks,
Kirchhoff’s current law states that the phasor sum of currents meeting at a point is equal to zero.

" SETOACREMEN /1 the network shown in Fig. 3.11, determine V and V),

j6Q v, 30 v, j5Q

Fig. 3.11

Solution Applying KCL at Node a,
V,-10£0° V, V,-V,

o T =0
Jj6 A 3
1 1 1 P
e Va _lvi: :%
j6  j6 3 3 j6
0.33V, -0.33V;, =1.67£-90° ..(D)
Applying KCL at Node b,
ViV Mo M _ o
3 4l
—lVa+ 1+L+L V=0
3 34 1

~0.33V, +(0.33— j1.25)V, = 0 ..(ii)
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Adding Egs (i) and (ii),
—j1.25V, =1.67£4-90°
_ 1.67£-90°
—j1.25

b =1.34£0°V

Substituting V, in Eq. (i),
0.33V, —0.33(1.34£0°) = 1.67£-90°
_1.73£75.17°
033

|| SETN MY For the network shown in Fig. 3.12, find the voltages V,andV,

50 v, 40 vy, 20

=5.24,-7517°V

50£90°V

Fig. 3.12

Applying KCL at Node 1,
Vi=50£0° 'V, V-V,
+—+
5 72 4

=0

L v 2Ly, oz
5 42 4 4

(0.45— j0.5)V; —0.25V, =10.£0°
Applying KCL at Node 2,
V,-V, . vV, N V2 —50£90° _
4 —j2 2

0

—1V1+ l+L+l V, =25290°
4 4 -2 2

—0.25V; +(0.75+ j0.5)V, = 25.£90°
Writing Eqgs (i) and (ii) in matrix form,
0.45-;0.5  —025 [vi]_[10£0°
-0.25  0.75+ 05|V, | |25£90°
‘10400 -0.25 ‘
2 . 0.
=12 OISO g sy
0.45—j0.5  —0.25
-0.25  0.75+ 0.5

0.45-;0.5 10£0°

-025  25290°
V, = : =34.34./52.82°V
045- 0.5  —0.25

-0.25 0.75+ j0.5

By Cramer’s rule,

.G

.G
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|| Example 3.13 Find the voltage V ,, in the network of Fig. 3.13.

j5Q

L]
000

2Q

1=10£0°A ——o

vV, —
V-V,
2

Solution Applying KCL at Node 1,
10£0° =
1 1

(53+ﬂ)

(0.62-;0.16)V; —=0.5V, =10£0°

1
V1 —EVZ =10£0°

Applying KCL at Node 2,
V=i V2 V2 _
2 j5  j10
11 1
( )Vz = O

~0.5V; +(0.5— j0.3)V, =0

1
——V +

2 27 j5 10

Writing Eqs (i) and (ii) in matrix form,

0.62-;0.16 -0.5 V| |10£0°
-0.5 0.5-703||Vo,| | o
By Cramer’s rule,
10£0° -0.5
0 0.5-,0.3
Vi= -
0.62—-;0.16 -0.5
-0.5 0.5-,0.3
0.62-70.16 10£0°
-0.5 0
V. = -
0.62-;0.16 -0.5
-0.5 0.5-,0.3
V, =V, =18.7487.42°V
V, . 21.8£56.42°
Vg = (j4) = :
3+ j4 3+j4

\4
3+ )4

...(0)

(i)

|

‘ =21.8£56.42°V
=18.7£87.42° V

(j4)=17.45293.32°V

V5=V, —=Vp =(1874£8742°)—(17.45£93.32°)=2.23/34.1° V
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|| SETN RN Find the node voltages V,and V, in the network of Fig. 3.14.

2Q

2V,

22 (})2z50°A

Fig. 3.14

Solution Applying KCL at Node 1,

(

Vi V-V,
M Vi-Va _

2

11
_+_
2 —jl

Applying KCL at Node 2,
\&

_]1

1
—Vl +
jl

1

(

Writing Eqgs (i) and (ii) in matrix form,

_+_
i1 2
—jlVi+j 0.5V, =2.30°

-J

-V
1
J

j2

2V,

)vl_(z_i)vzzo
J1

0.5+,H)Vi =2+ )V, =0

()

Y2y 300

)Vz =2/30°

..(i)

0.5+1 —2+,)|[vi] [ 0
—j1 j0.5 ||V, | |2430°
By Cramer’s rule,
0 —(2+/1)
2/30° 0.5
V, = . L =2.46/130.62°V
0.5+ 1 —(2+ 1)
—jl j0.5
‘0.5+ j1. 0
—jl 2£30°
v, =1 1 _123.2167.49°V
0.5+, 1 —(2+1)
-l j0.5

||m In the network of Fig. 3.15, find the voltage V, which results in zero current through

4 2 resistor.
5Q

Vi

4Q

VvV, 2Q

.
50.20°V r\)

2Q

-j2 Q V,

Fig. 3.15
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Solution Applying KCL at Node 1,
Vi—=5020° V, V-V,
+—+
5 20 4

=0

1 1 1 1
—+—+— |V -=V; =10£0°
5 j2 4 4

(0.45-j0.5)V; —0.25V; =10£0°
Applying KCL at Node 3,
V=W +&+ V:-V;
4 —j2 2

=0

—lV,+ l+L+l V:=0.5V,
4 4 —j2 2

—0.25V, +(0.75+ j0.5) V3 = 0.5V,
Writing Eqgs (i) and (ii) in matrix form,
0.45- j0.5 -0.25 V| _[10£0°
[ -025  0.75+ jG.S][V3:| - [0.5v2 ]

By Cramer’s rule,

10£0°  —0.25
Vi 0.5V, 0.75+_j0.5‘ _ 10(0.75+ j0.5)+0.125 V,
0.45—j0.5  —025 0.55/ —15.95°
025 075+ 0.5
045-70.5 10£0°
V. 025 05V2| _05V,(045-0.5)+25
T 1045- 05  —0.25 0.55£-15.95°
025  0.75+ 05
Vi—V;
Lg=—"—=0
Vi=V;
10(0.75+ j0.5)+0.125V, _ 0.5V,(0.45— j0.5)+2.5
0.55/—15.95° 0.55£-15.95°

7.5+0.125V, — j 5=2.5+0.225V, — j0.25V,
5+ 75=V,(0.1- j0.25)

V=05 960611320V
0.1-,0.25
" SET MW  Find the voltage across the capacitor in the network of Fig. 3.16.
v 12430°V
. +@ - ¢
2/60° A D ne 2Q —Tj2Q

Fig. 3.16

3.13

..(0)

..(i)
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Solution Nodes 1 and 2 will form a supernode.
Writing the voltage equation for the supernode,

V| -V, =12/230° ...()
Applying KCL to the supernode,
Vi ¥,V s 600
12 -
(=/H)Vi +(0.5+ j0.5)V, =2.60° ...(ii)

Writing Eqs (i) and (ii) in matrix form,

1 -1 v ] _[12430°
—j1 0.5+ 05|V, | | 2£60°

By Cramer’s rule,

1 12£30°
—jl 2£60°
Vi = = 18554157420V
‘—jl 0.5+j0‘5‘

V.=V, =18.55£157.42°V

IEXN| SuPERPOSITION THEOREM

The superposition theorem can be used to analyse an ac network containing more than one source. The
superposition theorem states that in a network containing more than one voltage source or current source,
the total current or voltage in any branch of the network is the phasor sum of currents or voltages produced
in that branch by each source acting separately. As each source is considered, all of the other sources are
replaced by their internal impedances. This theorem is valid only for linear systems.

|| SENA RV  Find the current through the 3 + j4 ohm impedance.

50£90°V

Fig. 3.17

Solution

Step I When the 50 £90° V source is acting alone (Fig. 3.18)
NT
2, =5+ 8V 63593200 0000y
3+ 59
. 50£90°
6.35£23.2°

=7.87£66.8° A

T

Fig. 3.18
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2.7 STAR-DELTA TRANSFORMATION

When a circuit cannot be simplified by normal series—parallel reduction technique, the
star-delta transformation can be used.
Figure 2.175(a) shows three resistors R, R; and R connected in delta.
Figure 2.175(b) shows three resistors R, R, and R; connected in star.
1 1

R

Ry Rs3

2 NN 3 2 3
Ra

(a) (b)

Fig. 2.175 Delta and star networks

These two networks will be electrically equivalent if the resistance as measured
between any pair of terminals is the same in both the arrangements.

2.7.1 Delta to Star Transformation

Referring to delta network shown in Fig. 2.175(a),
the resistance between terminals 1 and 2 = R || (R, + Rp)

_ Re(Ry+Ry) 2.4)
R,+Rz+R,
Referring to the star network shown in Fig. 2.175(b),
the resistance between terminals 1 and 2 = R, + R, (2.5)
Since the two networks are electrically equivalent,
R-(R,+R
R +R,= Re(Ry+Ry) (2.6)
R,+Rz+R,
R, (Rg+R
Similarly, R, +R; = Ry Ry + Re) 2.7)
Ry(Ry+R
and Ry +R, = Ry(Ry+Re) (2.8)
R,+Rz+R.
Subtracting Eq. (2.7) from Eq. (2.6),
RzR-—R,R
R —R; = ZBTC TATB (2.9)
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Adding Eq. (2.9) and Eq. (2.8),

RBRC
R=———— (2.10)
R,R
Similarly, R, = ﬁ (2.11)
4T hpt i
R,R
Ry = [ ' (2.12)

Thus, star resistor connected to a terminal is equal to the product of the two delta
resistors connected to the same terminal divided by the sum of the delta resistors.

2.7.2 Star to Delta Transformation

Multiplying the above equations,

R,R,R>
R R, = —alfc (2.13)
(Ry+Rp+Re)
R2R.R
RyR; = ABC 2 (2.14)
(Ry+Rp+Re)
R,R2R
Ry R, = A8 ¢ (2.15)

(Ry+ Ry +Rc)?
Adding Egs (2.13), (2.14) and (2.15),
R,RzR-(Ry+Rz+R,)
(Ry+Ry+Rc)?
_ RyRgRc
R,+Rz+R,
= R4R,
=Rz Ry
= Rc Ry
RR, + RyRy + B3R,
R,
RyRy
1
_ RR, +RyRy+ R3R,
R,

R/ Ry+ Ry, Ry + Ry R|=

Hence, R, =
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RyR,

2
_ RR, + RyRy + RyR,
R3
R1R2

R +R,+
3
Thus, delta resistor between the two terminals is the sum of two star resistors connected
to the same terminals plus the product of the two resistors divided by the remaining third
star resistor.

Note: When three equal resistors are connected in delta, the equivalent star resistance is
given by

RARA RA
RY == — = ==
or R, = 3Ry
A
Ry
Ry Ry
B C
Fig. 2.176
Example 1
Convert the star circuit into its equivalent delta circuit.
A
2Q
N
B . Q - Q c
Fig. 2.177 [May 2015]
Solution Converting the given star network to delta, A
2%x6
Ry=2+6+=—==110Q Re Ra
6x4
Ry=6+4+ =220 B . c
2 B

Fig. 2.178
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4x2
Re=4+2+===1733Q

Example 2

Find an equivalent resistance between terminals A and B.

4Q

M\
450 4.5Q

A 3Q 3Q B
7.5Q 7.5Q
ANV
3Q
Fig. 2.179

Solution Converting the two delta networks formed by resistors of 4.5 Q, 3 Q and
7.5 Q into equivalent star networks,

40
AN
R, Ry
Rq Re
A B
Ry R5
30
Fig. 2.180
R = R =—2XT5 5550
4547543
R= Re= X3
4547543
Ry = R4:&:0.9Q
454+7.5+3
40
AN
090 090
2250Q 2250
A B
15Q 15Q
30

Fig. 2.181
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Simplifying the network,

5.8Q
AV
Ao——\MN— ——W\—o0B
225Q 225Q
ANV
6 Q
(a)
2.25Q 295Q 225Q
Ao NV NN VY oB
(b)
7.45Q
Ao A% °B
(c)
Fig. 2.182
Example 3
Find an equivalent resistance between terminals A and B.
10 Q
aA%Y
Ao ANV c VW——F— VW oB
10 Q 10 Q 10 Q
10 Q
Fig. 2.183

Solution Redrawing the network,

D

Fig. 2.184
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Converting the delta network formed by three resistors of 10 € into an equivalent star
network,

C
Ry 10Q
Ri
A B
Rs 10Q
D
Fig. 2.185
R = R,—R,— _10x10__10,
10+10+10 3

Simplifying the network,

?Q
%OQ A
AO——ANN— ————oB
py
EQ
(a)
10, 2,
Ao AN NN—o0B
(b)
10Q
Ao AN o B
(c)
Fig. 2.187
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Example 4
Calculate R, for the circuit shown in Fig. 2.188.
10 Q
AYAYAY
10 Q 45 Q 20 Q
VYAV A AAN—T—9y
AYAYAY
20 Q
Fig. 2.188 [Dec2012]
Solution Redrawing the network.
20Q
45Q y
20Q

Fig. 2.189

Converting the delta network formed by resistors of 10 €, 10 Q and 45 € into an equivalent star
network,

3 10x10 _1540

P 10+10+45
R — —&—692Q
2073 10+10+45

Fig. 2.190
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Simplifying the network,

26.92 Q
154 Q AN
%© NV ——Oy
NN
26.92 Q
(a)
1.54 Q 13.46 Q
x© NV NV oy
(b)
15Q
x© AYA%AY oy
()
Fig. 2.191
R, =15 Q
Example s
Find an equivalent resistance between terminals A and B.
A
90 150Q
4Q 3Q
B WA~ o
1Q
Fig. 2.192

Solution Converting the star network formed by resistors of 3 Q, 4 Q and 6 € into an
equivalent delta network,

9Q 1.5Q

R R,
Rs3

ANV
B AN C
1Q

Fig. 2.193

4
Ry=6+4+ %:189

R2=6+3+%<3=13.59
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R3:4+3+—4>6<3:9Q

Fig. 2.194
Simplifying the network,
A
6Q 1.35Q
B ANV c
09Q
Fig. 2.195
R;p=06](135+0.9)
=6]225
= 1.64 Q
Example 6
Find an equivalent resistance between terminals A and N by solving outer delta ABC.
A
12Q 120
N
2Q - 2Q
B 120 ¢
Fig. 2.196

Solution Converting outer delta ABC into a star network,

12x12
RY: T . .=
12+12+12
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A
40 2Q
20 2Q
40 M 4 .Q N
C B C
i (
Fig. 2.197
Simplifying the network,
40
Ao VWV M Ao WA M
2Q 2Q
4Q 4Q
No
Ne @ (b)
40
Ao —\\\ y Ao * *
2Q % 30 2Q 7Q
No ° No
(©) A (@
1.56 Q
N
(e)
Fig. 2.198
Example 7
Find an equivalent resistance terminals between A and B.
4Q 41 Q 15Q
ANV VY
2Q 6 Q 15Q 4Q
ANV A%
b 60 17Q 10
A B
Fig. 2.199

Solution The resistors of 2 Q and 4 Q and the resistors of 4 Q and 11 Q are connected

in series.
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41Q 15Q
4% 'A%
6Q
6Q 15Q 150
A% W\
J} 6Q 17 Q
o
A B
Fig. 2.200

Converting the two outer delta networks into equivalent star networks,

_ 6x6
" 6+6+6
_ I5x15
m15415415
41 Q
NV
2Q 5Q
2Q 5Q
A B
20 17.Q 50
NV
Fig. 2.201
Simplifying the network,
48 Q
NV
AO0——A\N— —VW——O0B
2Q 5Q
2%
24 Q
(a)
2Q 16 Q 5Q
AO NN AV A%y O B
(b)
23Q
AO AV OB
(c)
Fig. 2.202

Ry=230Q
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Example 8
Find an equivalent resistance between terminals A and B.
15 Q 20 Q
Ao NV ANV
25 Q

1502 2 350

Fig. 2.203 [May 2014]

Solution Drawing the resistor of 30 Q from outside,

15 Q 20Q
Ao AN AN\

4505 o 0

Fig. 2.204

Converting the delta network formed by resistors of 20 €2, 25 Q and 35 € into an equivalent
star network,

15 Q
Ao——AM———
R R
%Q§ 1
gwg
Rs
Bo we
40Q
Fig. 2.205
20 %35
= 8750
20+35+25
20x 25
Ry= ———2 —625Q
20+35+25
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35%x25
= ————=1094Q
20+35+25
Redrawing the network,
15 Q 6.25 Q 8.75Q
Ao W NN
10.94 Q
§45 Q 400 §30 Q
Bo
Fig. 2.206
Simplifying the network,
15Q 6.25 Q
Ao NN M
45Q 50.94 Q 38.75Q
Bo
(a)
15Q 6.25 Q
Ao AV AV
%45 Q 22.01Q
Bo
(b)
15Q
Ao NV
% 45Q 28.26 Q
Bo
(c)
15 Q
Ao oy
17.36 Q
Bo
(C)
A
32.36 Q
B
(e)
Fig. 2.207

R, =3236Q



Star-Delta Transformation

2.99

°B

Example 9
Find an equivalent resistance between terminals A and B.
10 Q 20Q 5Q
Ao AN\ NV NV
5Q 15Q
109§ 2250
2Q
NV NN
5Q 30Q
Fig. 2.208

Solution The resistors of 5 Q and 25 Q and the resistors of 10 Q and 5 Q are connected

in series.
10Q 20 Q
Ao ANV NN

Fig. 2.209

°B

Converting the delta network formed by the resistors of 20 €, 5 Q and 15 € into an

equivalent star network,

10Q

Ao N

oB

NN
30Q
Fig. 2.210
Rlz__%kﬁl_zzsg
20+5+15
R— 20X15 _5sq
20+5+15
Ry= =Ly g750

20+5+15
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Redrawing the network,

10 Q 25Q
Ao A% A%

oB
1250
Ao AM
3750
3.875 Q§
AAN oB
300

(b)
Fig. 2.211

Converting the delta network formed by the resistors of 3.875 Q, 37.5 Q and 30 Q into
an equivalent star network,

125 Q
Ao N
Ry
B
15Q Re
Rs
Fig. 2.212
Ro— 38TX3TS 00
3.875+37.5+30
R, = 3.875%30 ~1.630
3.875+37.5+30
37.5%30
R = x ~15.76Q

3.875+37.5+30
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Simplifying the network,

12.5Q 2.04Q
AO
15.76 Q
B
A
150 1.63 Q
@)
14.54 Q
Ao
15.76 Q
M ’
16.63 Q
(b)
14.54 Q
AO
15.76 Q
M ’
16.63 Q
(©)
7.76 Q 15.76 Q 23.52Q
AO OB AO OB
(d) (e)
Fig. 2.213
R, =2352Q
Example 10
Find an equivalent resistance between terminals A and B.
A
60 ? 40
3Q 5Q
5Q 8Q 40
B
Fig. 2.214
Solution \ Converting the star network formed by the
6Q ? 4Q resistors of 3 Q, 5 Q and 8 Q into an equivalent
—\W ANV
R, delta network,
3x5
R, =3+5+——=9875Q
R Rs 8
50 § § 40 38
R,=3+8+ E =158Q
b 5x8
B Ry =5+8+ — =2633Q
Fig. 2.215 3
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A
6 Q ? 4Q
— VWV A%
9.875 Q
A%\

15.8Q 26.33Q

503 240

5

B

Fig. 2.216

The resistors of 15.8 Q and 5 Q and the resistors of 26.33 Q and 4 Q are connected in
parallel.

A
6Q ‘f 40
AN AN
9.875Q
NNV
3.8Q 347 Q
B
Fig. 2.217

Converting the delta network into a star network,

o 38X085 00
3.8+9.875+3.47
Ro— 38341
3.849.875+3.47
R, = SATXO8TS

T 38498754347
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A
6Q 7 40Q
A A A
6 Q T 4 Q
NN NV
R4 Re 219Q 20
Rs 077 Q
B B
(a) (b)
Fig. 2.218
Simplifying the network,
4 Q 2Q
A
0.77 Q
AD—E:Z —VW\——— o8B
AN,
6 Q 219Q
(a)
e
0.77 Q
Ao— —VW\——— 0B
AN
8.19Q
(b)
3.46 Q 0.77 Q
4.23 Q
Ao AN\ ANV 0B AO AN oB
(c) (d)
Fig. 2.219
R,;z=4.23Q
Example 11
Find an equivalent resistance between terminals A and B.
60 40
AV t A%
Ao N L 4 A%Y%
5Q 3Q
40 % %3 Q
BO oo

Fig. 2.220
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Solution Converting the star network formed by the resistors of 3 2, 4 Q and 5 Q into
an equivalent delta network,

5Q 3Q
AN A Rs
A

(a) (b)

Fig. 2.221

5+4+¥:15.67Q

-~
Il

3+4+¥:9.4Q

=
[\S)
Il

Ry = 5+3+5f>:3:11.75§2

Similarly, converting the star network formed by the resistors of 4 Q, 6  and 8 € into
an equivalent delta network,

6Q 4Q Rs
A% A% M
8o = Ry Rs
(a) (b)
Fig. 2.222
6x8

R4 = 6+8+T:26Q

4
Rs = 4+8+%8:17.33Q
R = 6x4

6+4+T:13Q

These two delta networks are connected in parallel between points 4 and B.

13Q
A%
AO Vv
11.75Q
26 Q 15.67 Q 9.4 Q 17.33 Q

Fig. 2.223
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The resistors of 9.4 Q and 17.33 Q are in parallel with a short. Hence, the equivalent
resistance of this combination becomes zero.

Simplifying the parallel networks,

Ao VWV
6.17 Q
9.78 Q
BO
Fig. 2.224

R, =6.17]9.78=3.78Q

Example 12

Find the value of current flowing through 6 £ resistor.

50 50 60
AN——W\
50 50
s50 (1)sA
50
W]

1Q 5v
Fig. 2.225 [Dec 2015]

Solution Converting the parallel combination of the current source of 5 A and the resistor
of 5 Q into an equivalent series combination of voltage source and series resistor,

5Q 5Q 6 Q
M ANV ANV
5Q 5Q 5Q
50 —|—25V
i
1Q 5y
Fig. 2.226

Converting the delta network formed by three 5  resistors into an equivalent star
network,

5Q 1.67 Q 1.67 Q 6Q
M- A% AN
1.67 Q 5Q
50 —|—25V
A— |
1Q 5y

Fig. 2.227
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By series-parallel reduction technique and adding two voltage sources,

6.67 Q 13.67 Q
A~ WA~
26670 20V
Fig. 2.228

Again by series-parallel reduction technique,

13.67 Q
e
333Q% I =20V
Fig. 2.229
20
I= ——=1.18A
13.67+3.33
Example 13
Determine the current supplied by the battery.
4Q 60
4Q 60
50V 2Q
Fig. 2.230

Solution Converting the delta network formed by resistors of 6 €2, 6 Q and 6 Q into an
equivalent star network,

4Q 2Q
2Q
4Q 2Q
50V 2Q

Fig. 2.231
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Simplifying the network, -
20Q

50V 2Q
()
Fig. 2.232
50

I=——=714A
5+2

Example 14

Calculate the value of current flowing through the 10 € resistor.

, 180V
i F

8 40Q 300 17 Q
34 Q

A B NN )
12Q 12Q 30 Q 13Q
Y,

C 10 Q E
Fig. 2.233

Solution Between terminals 4 and B resistors of 8 Q and 4 Q are connected in series.
Similarly, between terminals F and E, resistors of 17 €2 and 13 Q are connected in series.

180V
{1 F
300
12Q 340
A AW\ X Zae
120 /E{ZQ 30Q
W
c 100Q E

Fig. 2.234
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Converting delta ABC and DEF into an equivalent star network,

| 180 V
1t
34 Q
10 VWV 10Q
40 10 Q
40
AA, 10Q
10Q
Fig. 2.235
Simplifying the network,
/180 V
T
, ’\/\/\/48 Q
2’&” r 1%
%A%
24 Q
(a)
180V
T
1
NV VY NV
4Q 16 Q 10 Q
(b)
Fig. 2.236
180
= —— =06A
44+16+10
By current-division rule,
48
I'=Lio=1,o=6X =4A
24 Q 10 Q 24 + 48
Example 15
Determine current flow through the 20 (2 resistor in the following circuit in Fig. 2.237.
15 Q 40 Q
WA WA
15Q 15 Q 36 Q 36 Q
VWV
20 Q 36 Q
I+
200 V

Fig. 2.237 [Dec 2013]
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Solution Converting the two outer delta networks into equivalent star networks,

15x15
15+15+15

36X36
36+36+36

Ry, =

Ry,

40 Q

5Q 12Q
5Q 12Q

50 12 Q

20Q

|
ik
200V

Fig. 2.238

Simplifying the network,

57 Q

5Q 12Q

I’ VAAYAY

5Q 22.44 Q 12Q

(b)
Fig. 2.239
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=200 _so7a
5+2244+412

By current-division rule,

Lyo=1170=5.07% =3.07A
20Q 37Q 57+37
Example 16
Find the current supplied by the battery.
40 Q 20 Q
A% AN
%50 Q

NV A%

10 Q 30 Q
{r NV

15V 5V

Fig. 2.240

Solution Converting the star network formed by resistors of 40 €, 20 € and 50 € into
an equivalent delta network,

R
AVAAY
Ry
Rs
10 Q 30Q
X AW
15V 5Q
Fig. 2.241
%20
R, =40+20+ =76 Q
40x50
Ry, =40+ 50+ =190 Q
20x50
Ry =20+50+ =95Q
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76 Q
NN
190 Q

95 Q
10 Q 30 Q

—
15V 5Q

Fig. 2.242

The resistors of 190 Q and 10 Q and the resistors of 95 Q and 30 Q are connected in
parallel.

AN
9.5Q 228 Q

{t NV
15V 5Q

Fig.2.243

Simplifying the network,

15V 5Q
(b)
Fig. 2.244

1 =0.542 A

T 2267+5
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¥

Useful Formulae

Re Rs R
R, Rs
Ra
Delta Star

Delta to star transformation Star to delta transformation
R.R R, R
1= o Ry = Ry+Ry+-22

R,+Rz+R, 1

R R
= — Rafe Ry = R+ Ry +05

R,+Ry+R. R,

RR

R,+Ry+Re R,

2.1 Find the equivalent resistance between terminals 4 and B.

A 6Q 10
o A%
60% 62 230789 S50
B
Lo
3Q 3Q
Fig. 2.245
[5€
2.2 Find the equivalent resistance between terminals 4 and B.
40 Q 60 Q
20 Q 30Q
Ae o8B
100 Q
Fig. 2.246

[25 €



